
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

551


Abstract—Requirements modeling and analysis are important in

successful information systems' maintenance. Unified Modeling
Language (UML) class diagrams are useful standards for modeling
information systems. To our best knowledge, there is a lack of a
systems development methodology described by the organism
metaphor. The core concept of this metaphor is adaptation. Using the
knowledge representation and reasoning approach and ontologies to
adopt new requirements are emergent in recent years. This paper
proposes an organic methodology which is based on constructivism
theory. This methodology is a knowledge representation and reasoning
approach to analyze new requirements in the class diagrams
maintenance. The process and rules in the proposed methodology
automatically analyze inconsistencies in the class diagram. In the big
data era, developing an automatic tool based on the proposed
methodology to analyze large amounts of class diagram data is an
important research topic in the future.

Keywords—Knowledge representation, reasoning, ontology, class
diagram, software engineering.

I. INTRODUCTION

ODELING architectural design according to users’
requirements is an important factor for successful

software system development [1]. UML is a popular modeling
standard in information systems development [2]. Class
diagrams are widely used for modeling the static data aspects of
software systems. The UML diagrams are used in the Rational
Unified Process [3], which does not provide guidance on how
to elaborate the UML diagrams.

Kendal and Kendal [4] indicate that there is a lack of a
systems development methodology described by the organism
metaphor. The systems development methodology, which is
akin to the organism metaphor, must help an organization to
survive, assimilate new ideas, and change to adapt to its
environment and grow [4]. Although a lack of the organism
metaphor in systems development methodologies was revealed
by Kendal and Kendal [4] more than 20 years ago, the organism
metaphor is more and more important today because the
business environment is changing fast and this results in large
amounts of data in this big data era. The core concept of the
organism metaphor is adaptation which is an act of changing
something. The organism metaphor implies that managing
change requests in the post-development phase is important.
Change requests are user requirements for system maintenance.
Change requests analysis is a requirement engineering issue in
the post-development phase [5]. Therefore, developing an
organic methodology for analyzing change requests is an

Chi-Lun Liu is with the Kainan University, No.1 Kainan Road, Taoyuan

City 33857, Taiwan, R.O.C. (e-mail: tonyliu@mail.knu.edu.tw).

interesting research topic in information systems development.
Constructivism theory is a philosophy viewpoint which

argues that assimilation and accommodation are two essential
parts of the adaptation process [6]. Assimilation emphasizes on
possessing of data from the external environment based on
existing knowledge. Accommodation indicates that existing
knowledge changes to fit new assimilated data. Constructivism
theory reveals the adaptation process which is consistent with
the core concept of organism metaphor. Hence, constructivism
theory can be a theoretical foundation for developing an
organism methodology.

Ontology is a conceptualization for representing and sharing
explicit knowledge [7]. Ontology is typically offered to support
a shared understanding [8]. Ontology, which is a conceptual
model represented by vocabulary, comprises three elements:
concepts, relationships, and constraints & axioms [9].
Knowledge representation and reasoning is of immense
importance in the field of Artificial Intelligence. The
knowledge representation and reasoning approach use rules and
ontologies stored in a knowledge base to make inferences to
solve problems. There are empirical evidences of the benefits
of using the knowledge representation and reasoning approach
in requirements engineering activities both in industry and
academy for reducing inconsistencies in functional
requirements [10].

Analyzing system models is crucial when multiple
stakeholder concerns need to be addressed by information
system developers [11]. Design inconsistencies are common in
industries and often hard to be recognized in large systems
which have big data in systems requirements [12]. Big data is a
hot research topic. Using the knowledge representation and
reasoning approach is emergent in the recent years [13], [14].
However, few of the related works uses the knowledge
representation and reasoning approach to analyze class
diagrams automatically.

This paper provides the preliminary methodology based on
constructivism and ontology theories. The proposed
methodology comprises a step-by-step process and a set of
rules to analyze change requests to reduce inconsistencies in
class diagrams maintenance. The analysis process is a
four-phase circle including (1) build prior knowledge, (2)
specify change requests, (3) analyze change requests, and (4)
approve change requests. From constructivism theory and the
knowledge representation and reasoning perspective, phase (1)
and phase (2) assimilate and represent knowledge about in
existing ontologies, class diagrams, and new requirements.
Phase (3) and phase (4) infer inconsistencies from prior
knowledge to adapt to new requirements. Phase (3) executes

Knowledge Representation and Inconsistency
Reasoning of Class Diagram Maintenance in Big Data

Chi-Lun Liu

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

552

inconsistency reasoning. And stakeholders decide whether
change requests are consistency with existing class diagrams or
not in phase (4). These rules handle 14 inconsistency situations.

Scenarios in the electronic commerce context are provided to
demonstrate the proposed rules.

Fig. 1 The process for knowledge representation and inconsistency reasoning

II. KNOWLEDGE REPRESENTATION AND INCONSISTENCY

REASONING PROCESS

This section describes knowledge representation and the
inconsistency reasoning process in the class diagram
maintenance context based on constructivism and ontology
theories. The proposed process is a circle and has four phases,
as shown in Fig. 1: build prior knowledge, specify change
requests, analyze change requests, and approve change
requests. These steps are introduced as follows:
(1) Build Prior Knowledge: Users, system analysts, and

knowledge engineers model the domain knowledge in
ontologies, existing class diagrams, and requests analysis
rules in this phase. The three steps in this phase are
introduced as follows:

A. Build Existing Class Diagrams: These terms in the
ontology will be used to represent class diagrams.
Approved change requests will be added in existing class
diagrams in this step.

B. Build Ontologies: The terms in the domain knowledge
should be stored in ontologies.

C. Define Requests Analysis Rules: This paper defines 14
inconsistency analysis rules. These 14 rules may not be
complete. Therefore, new rules can be added in this phase
if new rules are proposed in the future.

(2) Specify Change Requests: Modeling requests to change the
existing class diagrams in this phase is based on ontologies
built in phase 1. Vocabularies in the ontology, which are
established in phase 1, can be used to represent change
requests. The vocabularies used in change requests have to
be stored in the ontology. If a new vocabulary appears, add
this new ontological vocabulary in step 1b. In other words,
all vocabularies used in change requests have to be defined
in advance.

(3) Analyze Change Requests: This phase uses ontologies and
inconsistency analysis rules to analyze change requests.
Implementing a knowledge representation and a reasoning
tool containing ontologies and inconsistency analysis rules
can analyze change requests automatically.

Approve Change Requests: Stakeholders in the management

committee should negotiate a decision to approve or decline a
change requests in this phase. If a change request is approved,
step 1a would be performed to start these phases again.

III. KNOWLEDGE REPRESENTATION FORMAT

Two knowledge representation formats are used in
inconsistency reasoning: ontology and class diagram.
Knowledge representation of class diagram includes class name,
attribute, method, inheritance, aggregation, and composition.
Fig. 2 depicts an example about knowledge representation for
class diagram. In Fig. 2, Class_A includes Attribute_I (i.e. data)
and Method_X (i.e. operation). An inheritance relationship
between Class_A and Class_B. A composition relationship
between Class_C and Class_D. And an aggregation
relationship between Class_E and Class_F.

Fig. 2 Knowledge Representation Example of Class Diagram

Ontological knowledge representation includes terms and
relationships. A term is a word with a specific meaning. A
relationship is a semantic relation between terms. Four
relationships are used in this work: synonym, antonym, kind,
and part. Fig. 3 depicts an example of ontological knowledge
representation. In Fig. 3, a kind of relationship exists between
term i and term j. And a synonym relationship between term i
and term k.

IV. INCONSISTENCY REASONING RULES

Inconsistency analysis rules focus on inconsistencies
between a change request (CR) and an existing specification
(ES) and between a change request and an ontology. Rules
R1-R14 are proposed in Tables I-III. Tables I-III also show the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

553

IF-THEN rules which are in the format of IF Condition THEN
Conclusion. If all conditions in a rule are true, a conclusion
would be provided. Scenarios are also provided to explain these
rules.

i

j k

l m n

Kind Synonym

o

p

Fig. 3 Ontological Knowledge Representation Example

Generalization inconsistency analyzed by Rule1 means that a

class is not only a superclass but also a subclass of another class
in a wrong class diagram. Composition inconsistency detected
by Rule2 and aggregation inconsistency analyzed by Rule3
mean a class may be a part or a whole of another class.

The scenario of generalization inconsistency is depicted in
Fig. 4. In this scenario, Payment service (ClassM) is a
superclass of Near Field Communication (ClassN) in CR in the

payment system. NFC (ClassO) is a superclass of Payment
service (ClassP) in ES. ClassM equals ClassP. ClassN is a
synonym of ClassO because NFC is the abbreviation of Near
Field Communication. According to Rule1, generalization
inconsistency occurs. The structures of Rule1 to Rule3 are
similar.

Some behaviors in information systems are regulated by
government laws and corporation policies. Attribute and
method exclusion inconsistency analyzed by Rule4 and Rule5
means an undesirable attribute and undesirable method are
added.

The scenario of method exclusion inconsistency is depicted
in Fig. 5. In Fig. 5, storing_credit_card_number() (i.e.
MethodI()) is added in Credit_card (i.e. ClassM) in CR. A
corporation policy indicates that credit card numbers cannot be
stored in the database because stored credit card numbers pose
a security risk related to hacking. Therefore
storing_credit_card_number() (MethodJ) cannot be included in
Any class (i.e. ClassN) in ES in the payment system. MethodI()
equals MethodJ(). ClassM is a kind of ClassN. According to
Rule5, method exclusion inconsistency occurs.

TABLE I

INCONSISTENCY ANALYSIS RULES R1-R5

 Condition Conclusion

Change Request (CR)

Ontology Existing Specification (ES) Analysis Suggestion
Act Target

R1 Add
ClassM, ClassN, and

ClassM is a superclass of
ClassN

An equality or a synonym relationship exists between ClassN
and ClassO.

And an equality or a synonym relationship exists between
ClassM and ClassP.

Class P, Class O, and ClassO
is a superclass of ClassP

There is a generalization
inconsistency.

R2 Add
ClassM, ClassN, and a

composition relationship
from ClassN to ClassM

An equality or a synonym relationship exists between ClassN
and ClassO.

And an equality or a synonym relationship exists between
ClassM and ClassP.

ClassP, ClassO, and a
composition relationship
from ClassP to ClassO

There is a composition
inconsistency.

R3 Add
ClassM, ClassN, and an
aggregation relationship
from ClassN to ClassM

An equality or synonym relationship exists between ClassN and
ClassO.

And an equality or a synonym relationship exists between
ClassM and ClassP.

ClassP, ClassO, and an
aggregation relationship
from ClassP to ClassO

There is an aggregation
inconsistency.

R4 Add AttributeX in ClassM

An equality, kind, part, or synonym relationship exists between
AttributeX and AttributeY.

And an equality, kind, part, or synonym relationship exists
between ClassM and ClassN.

Attribute Y is not allowed in
ClassN

There is an attribute
exclusion inconsistency.

R5 Add MethodI() in ClassM

An equality, kind, part, or synonym relationship exists between
MethodI() and MethodJ()

And an equality, kind, part, or synonym relationship exists
between ClassM and ClassN

MethodJ() is not allowed in
ClassN

There is a method
exclusion inconsistency.

Fig. 4 Scenario of generalization inconsistency

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

554

Fig. 5 Scenario of method exclusion inconsistency

TABLE II
INCONSISTENCY ANALYSIS RULES R6-R10

 Condition Conclusion

 Change Request (CR) Ontology Existing Specification (ES) Analysis Suggestion

R6 Add
A generalization relationship

from ClassO to ClassN
None

ClassM, ClassN, ClassO, and there
is a generalization relationship from

ClassO to ClassM

There is a multiple inheritance
inhibition inconsistency.

R7 Add
A generalization relationship

from ClassN to ClassM

There is an equality, part, antonym, or
synonym relationship between ClassM and

ClassN
ClassM and ClassN

There is a generalization and
alternative inconsistency.

R8 Add
A generalization relationship

from ClassN to ClassM
ClassM is a kind of ClassN ClassM and ClassN

There is an inverse
generalization inconsistency.

R9 Add
An aggregation relationship

from ClassN to ClassM
There is a equality, part, antonym, or synonym

relationship between ClassM and ClassN
ClassM and ClassN

There is an aggregation and
alternative inconsistency.

R
10

Add
An aggregation relationship

from ClassN to ClassM
ClassM is a kind of ClassN ClassM and ClassN

There is an inverse aggregation
inconsistency.

TABLE III

INCONSISTENCY ANALYSIS RULES R11-R14
 Condition Conclusion
 Change Request (CR) Ontology Existing Specification (ES) Analysis Suggestion

R
11

Add
A composition

relationship from
ClassN to ClassM

There is a equality, part, antonym, or synonym
relationship between ClassM and ClassN

ClassM and ClassN
There is a composition and
alternative inconsistency.

R
12

Add
A composition

relationship from
ClassN to ClassM

ClassM is a kind of ClassN ClassM and ClassN
There is an inverse

composition inconsistency.

R
13

Delete AttributeX

There is a equality, part, antonym, or synonym
relationship between AttributeX and AttributeY.
There is a equality, part, antonym, or synonym

relationship between ClassM and ClassN.

AttributeY cannot be deleted
in ClassN.

AttributeX exists in ClassM.

There is an attribute deletion
inconsistency.

R
14

Delete MethodI()

There is a equality, part, antonym, or synonym
relationship between MethodI() and MethodJ().
There is a equality, part, antonym, or synonym

relationship between ClassM and ClassN

MethodJ() cannot be deleted
in ClassN.

MethodJ() exists in ClassM.

There is a method deletion
inconsistency.

Fig. 6 Scenario of generalization and alternative inconsistency

Some programming languages, such as Java, inhibit multiple
inheritance [10]. Rule6 detects the conflict about multiple
inheritance inhibition inconsistency. It indicates that more than
one superclass exists in a class diagram.

Generalization and alternative inconsistency in class
diagrams can be detected in Rule7. Normally, if there is a
generalization relationship between two classes, it means that a

parent-child relationship exists between two classes. Therefore,
other relationships, such as equality, part, antonym, and
synonym relationships should not exist between these two
classes. Besides, Rule7, Rule9 and Rule11 are similar.

The scenario of generalization and alternative inconsistency
is depicted in Fig. 6. In this scenario, the ontology indicates that
Payment service (ClassN) is a part of an Electronic commerce

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:7, 2018

555

website (ClassM). According to Rule7, adding a generalization
relationship from Payment service (ClassN) to Electronic
commerce website (ClassM) in CR causes a generalization and
alternative inconsistency.

Rule8 detecting inverse generalization inconsistency means
that the direction of generalization relationship between two
classes in a class diagram is inverse comparing to the ontology.
The structures of Rule8, Rule10 and Rule12 are similar.

Fig. 7 Scenario of inverse generalization inconsistency

Fig. 7 depicts the scenario of inverse generalization

inconsistency. In this figure, the ontology shows NFC (ClassM)
is a kind of Wireless connectivity (ClassN). According to Rule8,
adding a generalization relationship from Wireless connectivity
(ClassN) to NFC (ClassM) in CR, which means wireless is a
kind of NFC, causes inverse generalization inconsistency.

Rule13 analyzes an attribute deletion inconsistency, which
means a change request intended to delete an attribute
inappropriately. And Rule14 analyzes a method deletion
inconsistency, which means a change request intended to delete
a method inappropriately. The structure of Rule13 and Rule14
are the same.

V. CONCLUSION

This work proposes a methodology including a process and a
set of rules for knowledge representation and inconsistency
reasoning in class diagrams to automatically analyze
requirements. The proposed methodology is based on ontology
and constructivism theories. This methodology fills the systems
development research gap in the organism metaphor.
Structured domain knowledge and explicit rules can facilitate
automatic conflict detection and even increase systems
development productivity. In the big data and high competitive
business environment context, the organism metaphor systems
development methodology and the automatic system
development tool are important research topics.

REFERENCES
[1] J. He and W.R. King, "The Role of User Participation in Information

Systems Development: Implications from a Meta-analysis," Journal of
Management Information Systems, vol. 25, no. 1, pp. 301–331, summer
2008.

[2] N.H. Ali, Z. Shukur, and S. Idris, "A Design of an Assessment System for
UML Class Diagram," In Proc. of International Conference on
Computational Science and its Application, New York, 2007, pp. 539 -
546.

[3] P. Kruchten, The Rational Unified Process: An Introduction, Boston,
MA: Addison-Wesley Professional, 2004.

[4] J. E. Kendal and K. E. Kendal, "Metaphors and Methodologies: Living
Beyond the Systems Machine", MIS Quarterly, Vol. 7, No. 2, pp.

149-171, 1993.
[5] L. Liu and H. L. Yang, "Applying Ontology-based Blog to Detect

Information System Post-Development Change Requests Conflicts",
Information Systems Frontiers, Vol. 14, No. 5, pp. 1019-1032, 2012.

[6] G. M. Bodner, "Constructivism: A Theory of Knowledge", Journal of
Chemical Education, Vol. 63, pp. 873-878, 1986.

[7] M. Gruninger, J. Lee, "Ontology: Applications and Design",
Communications of the ACM, Vol. 45, No. 2, pp. 39–65, 2002.

[8] Richards, "A Social Software/Web 2.0 Approach to Collaborative
Knowledge Engineering", Information Sciences, Vol. 179, No. 15, pp.
2515-2523, 2009.

[9] R. Kishore, R. Sharman, and R. Ramesh, "Computational Ontologies and
Information Systems: I. Foundations", Communications of Association
for Information Systems, Vol. 14, No. 8, pp: 158-183, 2004.

[10] D. Dermeval, J. Vilela, I. I. Bittencourt, J. Castro, S. Isotani, P. Brito, A.
Silva, "Applications of Ontologies in Requirements Engineering: a
Systematic Review of the Literature", Requirements Engineering, pp. 1–
33, 2015.

[11] J. Savolainen and T. Männistö, "Conflict-Centric Software Architectural
Views: Exposing Trade-Offs in Quality Requirements," IEEE Software,
vol. 27, no. 6, pp. 33-37, Nov./Dec. 2010.

[12] Egyed, "Instant Consistency Checking for the UML," In Proc. of 28th
International Conference on Software Engineering, New York, 2006, pp.
381–390.

[13] Y. Nomaguchi and K. Fujita, "DRIFT: A Framework for Ontology-based
Design Support Systems," In: Proc. of Semantic Web and Web 2.0 in
Architectural, Product, Engineering Design Workshop, Aachen, 2007,
pp. 1-10.

[14] C. L. Liu, "CDADE: Conflict Detector in Activity Diagram Evolution
Based on Speech Act and Ontology", Knowledge-Based Systems, vol. 23,
no. 6, pp. 536-546, Aug. 2010.

