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Abstract—The aim of this paper is to present the kinematic 

analysis and mechanism design of an assistive robotic leg for 
hemiplegic and hemiparetic patients. In this work, the priority is to 
design and develop the lightweight, effective and single driver 
mechanism on the basis of experimental hip and knee angles’ data for 
walking speed of 1 km/h. A mechanism of cam-follower with three 
links is suggested for this purpose. The kinematic analysis is carried 
out and analysed using commercialized MATLAB software based on 
the prototype’s links sizes and kinematic relationships. In order to 
verify the kinematic analysis of the prototype, kinematic analysis data 
are compared with the experimental data. A good agreement between 
them proves that the anthropomorphic design of the lower extremity 
exoskeleton follows the human walking gait. 

 
Keywords—Kinematic analysis, assistive robotic leg, lower 

extremity exoskeleton, cam-follower mechanism.  

I. INTRODUCTION 
HE third and seventh causes of death in the world are 
stroke and accident, respectively. In Malaysia for 
example, it was estimated that around 52,000 people 

suffer from stroke every year and six new cases occur every 
hour. It is considered to be the single most common cause of 
severe disability. On the other hand, the number of motorist 
involved in accident is increasing every year. Although many 
attempts and researches have been done to prevent the people 
from these events and death, the number of stroke and injured 
patients who survive from these events which require the 
rehabilitation services has been rising. The patients with 
hemiplegia or hemiparesis may not able to carry out the daily 
activities such as talking, walking, crouching and grasping; 
therefore, they need to improve their abilities by active and 
passive rehabilitation therapy iteratively and regularly. In 
passive exercises, the patient receive the rehabilitation 
exercises with physiotherapist; whereas, the active exercises 
are done by the patient [1]. 
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In recent years, the attention on robotic rehabilitation has 
been increasing in order to train the patient base on their daily 
activities. However, as a reason of some, its problems such as 
cost, unfamiliarity of users to the device (therapists and 
patients) and  lack of cognitive capacity to recognize and 
observe; the robotic rehabilitation has not been widely applied 
in clinics [2]. Thus, researchers have been trying to improve 
the interaction of robots and their environments and patients in 
order to carry out some beneficial repetitive exercises.  

Basically, the applications and types of robots can be 
categorized according to the different methods of 
rehabilitations and can be described as follow [2]: 
 

(i)    To train the patients with hemiplegia or hemiparesis 
in daily activities. 

(ii)    To support and hold patients in their movement. 
(iii) To help the therapist in repetitive patients exercises.  

 
As the number of survivors from the events such as 

accident, war and stroke are growing, the attention of 
researchers on developing robotic for lower extremity 
exoskeletons to help hemiplegic patients has been augmented, 
[3-6] and [7]. Professor Sankai in university of Tsukuba for 
example, has developed a hybrid assistive leg (Hal-3) which 
helps to improve the disable to have normal walking motion. 
He uses two DC motors on knee and hip joints, sensory 
systems in terms of rotary encoder to measure the joints 
angles, force sensors to measure floor reaction and 
myoelectricity sensor to estimate the required torques for knee 
and hip joints and control system [5-6]. However, since the 
biological signal such as myoelectricity is not estimated for 
HAL-3 accurately, Suzuki K. et al. proposed two new 
algorithms in case of floor reaction force (FRF) estimation and 
torso angle estimation in order to estimate patient’s intentions 
effectively [8]. Professor Kazerooni and his research group 
carried out extensive research on developing Berkeley lower 
extremity exoskeleton (BLEEX) in order to help the people to 
carry significant loads in some situations such as staircases 
and rocky slopes, in which the wheeled vehicles are not able 
to accomplish these tasks. The developed system highlighted 
four features which include: a novel control scheme, high-
powered compact power supplies, special communication 
protocol and electronics, and a specific architecture to 
decrease the complexity and power consumption [9].  

Besides that, several other designs and methods of 
actuations have been proposed to make the patient’s walking 
motion most comfortable. Artificial pneumatic muscles 
prototype; (KAFO) and (AFO) [10-14], was proposed for 
knee-ankle-foot orthosis  and electro-pneumatic gait orthosis 
[15]. In addition, electrical actuators for different numbers of 
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o69.24coscos 3413421 =⇒+=+×+× θθθ LLSLL  (20) 

cmdLLd SS 31sinsin 3421 =⇒×+×= θθ  (21) 

cmdFFdd StepSStep 53sin =⇒+×−= α  (22) 

 
Therefore, the patient gait through a distance is 

2 106Stepd cm× =  in each cycle which is accordance with 
human step’s length and within the patient’s ability. 
 

IV. CONCLUSION 
This paper presents an assistive robotic leg (lower extremity 

exoskeleton) which was designed and developed based on 
acquired experimental walking data in order to help to 
exercise the stroke people. The experimental hip and knee 
angles for 1 km/h walking speed were obtained by using 
MATLAB image processing toolbox. Thereafter, the angular 
data was converted to linear motion in order to design a proper 
cam-follower mechanism. In this work, a significant deference 
between the present prototype and previous designs was the 
design and development of lower extremity exoskeleton 
mechanism using only a single DC motor to control the 
movement of both the hip and the knee joints. At the end, the 
kinematic analysis and simulation were carried out based on 
the proposed design. The kinematic results were compared 
with the experimental data to prove its validity. These 
validated simulation data obtained from the kinematic analysis 
are very useful which will be applied in our future studies. 
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