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Abstract—Support Vector Domain Description (SVDD) is one
of the best-known one-class support vector learning methods, in
which one tries the strategy of using balls defined on the feature
space in order to distinguish a set of normal data from all other
possible abnormal objects. As all kernel-based learning algorithms its
performance depends heavily on the proper choice of the kernel
parameter. This paper proposes a new approach to select kernel's
parameter based on maximizing the distance between both gravity
centers of normal and abnormal classes, and at the same time
minimizing the variance within each class. The performance of the
proposed algorithm is evaluated on several benchmarks. The
experimental results demonstrate the feasibility and the effectiveness
of the presented method.

Keywords—Gravity centers, Kernel’s parameter, Support Vector
Domain Description, Variance.

[. INTRODUCTION

HE SVDD is kind of one-class classification method

based on Support Vector Machine [1], which is proposed
by Tax [2]-[4]. It tries to construct a boundary around the
target data by enclosing the target data within a minimum
hyper-sphere. Inspired by the support vector machines
(SVMs), the SVDD decision boundary is described by a few
target objects, known as support vectors (SVs). A more
flexible boundary can be obtained with the introduction of
kernel functions [5], [6], by which data are mapped into a
high-dimensional feature space. The most commonly used
kernel function is Gaussian kernel. This method has attracted
many researchers from various fields. For example Liu et al.
applied the SVDD techniques for novelty detection as part of
the validation on an Intelligent Flight Control System (IFCS)
[8]. Ji et al. discussed the SVDD application in gene
expression data clustering [9]. Yu et al used SVDD for image
categorization from internet images [10].

The performance of kernel methods strictly depends on
their hyper parameters, especially the kernel parameters that
directly control the non linear mapping of the features.
Therefore, the tuning of parameters, known also as the model
selection, plays an important role in kernel methods.

In the literature, there are two widely used approaches in
choosing the values of kernel parameters in kernel-based
methods [11]-[13]. The first approach empirically chooses a
series of candidate values for the kernel parameter, executes
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the concerned method under these values again and again, and
selects the one corresponding to the best performance as the
final kernel parameter value. However, this approach suffers
from the fact that only a very limited candidate values are
considered, therefore the performance of the kernel-based
methods may not be optimized. The second approach is the
well-known cross-validation, which is also widely used in
model selection. Compared with the first approach, cross-
validation often yields better performance because it searches
the optimal value for kernel parameter in a much wider range.
However, performing cross-validation is often time-
consuming and hence it cannot be used to adjust the kernel
parameters in real time [12]. Furthermore, when there are only
a limited number of training examples, the cross-validation
approach can hardly ensure robust estimation. Another
approach is to minimize some generalization bounds, such as
the leave-one-out (LOO) error bounds, using numerical
optimization methods [20], [14]. The numerical methods are
generally more efficient than grid search. However, owing to
the non-convexity of the generalization bounds, these methods
may get stuck into local optimum and cause instabilities [17],
[19]. Recently, some global stochastic optimization
techniques, such as genetic algorithm (GA), particles warm
optimization (PSO) and simulated annealing (SA) algorithm
have been adopted to tune the SVM parameters for their better
global search abilities [15], [18]. These methods, although can
find the global solution in a high probability, are limited by
the facts that they usually suffer from the problem of
premature convergence, the slow convergence rate and the
convergence to a single point [21].

In this paper we aim to find a feature space, in which the
objects of each cluster are well separated. To do that we
propose a new numerical optimization methods defined as the
maximization of the distance between both gravity centers, of
normal and abnormal classes and at the same time the
minimization of the variance of each class in feature space.

To evaluate our approach, we run our algorithm on SVDD,
we focus on optimizing the Gaussian kernel since it is widely
used in pattern recognition, neural network and other fields,
and shows good features and strong learning capability.

The rest of this paper is organized as follows. In Section II
the theory behind the Support Vector Domain Description is
presented. Section III gives a detailed description of our
approach. In the last section we give several experiments
results to show the validity of our proposed algorithm.
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II. SUPPORT VECTOR DATA DESCRIPTION (SVDD)

The normal data description model [2]-[3], gives a closed
boundary around the data: a hypersphere characterized by
center a and radius R > 0. It minimizes the volume of the
sphere by minimizing R?, and demand that the sphere contains
all training objects X;.

Let {x;} € x be a data set of N points, with, x; € R? the data
space, we look for the smallest enclosing sphere of radius R
which is described by the following constraints:

llx = all* < R? vj (1)

where ||.|| is the Euclidean norm. Soft constraints are
incorporated by adding slack real and positive variable &;:

by —all* < &+ vj @

To solve this problem we introduce the Lagrangian:
L=RZ—Z;‘(RZ+%‘—||xj—a||z)“j—2ffjﬂf+czj£j €))
where a; > 0 and g > 0 are Lagrange multipliers, C is a
constant, and C Y ;& is a penalty term. Setting the partial

derivatives of L with respect to R, a, g to zero gives the
following constraints:

d¢g;

=0 N =1 4)
z—:=0=>a=2iaixi %)
Losa=C-p (6)

The solution of the primal problem can be obtained by
solving its dual problem [2].
Max:

W =Y x7a; — X aix;x; @)

Subject to 0 < a; < C Vj and Zaj =1
J

When negative examples (objects which should be rejected)
are available, they can be incorporated in the training to
improve the description. In contrast with the training (target)
examples which should be within the sphere, the negative
examples should be outside it. In the following, the target
objects are enumerated by indices i, j and the negative
examples by /, m. Again, we allow for errors in both the target
and the outliers set and introduce slack real positive variables
g and g [2]:

L(R,a,e,6) = R*+C13;6 + C23, 5 (®)
With the constraints:

llx; —al> <R?>+¢& |lx,—al>=R*—¢ &, =0Vil

where C1, C2 are constants real positives, C1)};¢; and,
C2Y, ¢ are penalty terms, these constraints are incorporated
in (8) and the Lagrange multipliers a; o;,y; y, are introduced
as follow:

L(R,a,&;, 8, a;a,Y,7) = R* + Clzfi + CZZ & - z}’iﬁi - Z}’zfz
7 7 7 7

~ D R + e~ i —alF]
- Zl: afllx - al* = R? + &]
| ©)
with @; 2 0,a; 2 0,y; = 0,y; = 0 are Lagrange multipliers.

Setting the partial derivatives of L with respect to R, a, ¢; and
& to zero gives the following constraints:

a
£=O$Ziai—zlal=l (10)
aL
L=0=a=Yax - Yax (11)
aL oL )
s =0and 72=0 = a=Cl—y; & =C2-y Vil (12)

When (10) and (11) are substituted into (9) we obtain:
Max

W= Z axx; — z XX — Z a;axix; + 2 Z axx; — Z QYO X X,
7 T

Lj Lj Lm

Subject to: 0<a; <C1 and0< o < C2 Vi,l (13)
a; — a=1
)

The formulations of SVDD can be extended to obtain a
more flexible description. Data is mapped nonlinearly into a
higher dimensional space where a hyperspherical description
can be found. The mapping is performed implicitly, replacing
all of the inner products by a kernel function K (x; x;) [2], [3].
Table I describes some commonly used kernel functions.

TABLEI
SOME COMMONLY USED KERNEL FUNCTIONS
Gaussian Radial Basis
Function (RBF)
Exponential Radial Basis

k(x, y) = e(i(x_y)z/zﬁ)

k(x, y) = e(_lx_y‘/ZaZ)

Function
Hyperbolic Tangent k(x,y) =tanh (b(x,y) + ¢)
Polynomial k(x,y) = (1 +xT.x)P

sin ((5 +%) x=y)

. (1
sin (7 (x = y))
Tanh(sox".x; + s1)

Fourier Series k(x,y) =

Two-layer perception

For multiclass problems, to classify a test point z, we just
investigate whether it is inside the hypersphere (a;Ry)
constructed during the training and associated to the class &
[2], [3], [7]- Namely the decision function is calculated as
(14), if its value is positive for the £ class and negative for
the others we conclude that z belong to the class &.
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f(@) = sgn(Ri = llz — all®) (14)

This function can be calculated as follows:
In the normal data description case we obtain:

lz = apll? = z.2 = 23; ayx;z + X, j Q%% (15)
RE = x.x — 2% apix + Xy j Qpei Qpej Xij (16)

with a; is the j" Lagrangian multiplier corresponding to the
k™ class. And x € SV the set of Support Vectors having
0< a; <C.

In the SVDD with negative examples case we obtain:

lz—ay lI*?=z.2z— <Z QX2 — Z a,dx,z) Z QXX + Z QA A X1 X
-2 Z i Xpe XXy
il

R,% =x.x—2 (Z QXX — Z ak,x,x) + Z A ApjXiX; + Z A X X1 Xm.

i ij Lm

- ZZ Qi Ay XXy

(18)

For any x € SV the set of support vectors having 0 < a; <
C1 (with x is a target object) or 0 < a; < C2 (with x is
negative object).

III. OPTIMIZATION OF GAUSSIAN KERNEL

A. Generalization Ability of a Classifier

Generalization is the ability that a trained model predicts
the target value of an input sample which is not in the training
set. Many indexes can be used to assess the generalization
ability [27]. For example, the training process of the grid
search uses the wvalidation accuracy to indicate the
generalization ability of the classifier, when the validation data
are not available, k-fold cross validation can be used to
acquire the validation accuracy [22].

Other indexes that estimate the generalization ability can be
used. Takahashi [23], proposed the ratio of the numbers of
SVs to the training samples as an index. Phetkaew [24]
suggested using the SVM margin to identify a classifier that
causes wrong classifications, Wu and Wang [25] introduced a
separation index which indicates the separation of two classes
in the feature space. The index is derived from inter-cluster
distances 64 which was used by Bezdek [26], for unsupervised
data clustering. Bezdek and Pal mentioned several inter-
cluster distance measures J;. They are the measurements of the
distance between two clusters.

8, (X, X_) = min d(x;, Xx_)x,ex, (19)
X_€EX_

8,(X4, X_) = max d(xy, X_)x,ex, (20)
X-EX_

63(X+;X ) ZX+EX+ d(x+:x ) (21)

8, (X0, X)) = Gy, 70) = d (Begiels Brow) (22)

85 (X4 X2) = —— (T, ex, A4, F0) + T_ex_ d(x_,T7)) (23)

[
where X, and X_ are positive and negative classes, /. and /- are
sample sizes of X, and X_, and X and X_are the class means of
X; and X_. 8, 82 and 93 are the shortest, the longest and the
average distance between two samples from different classes.
04 is the distance between two class means, and 0Js is a
combination of &3 and ;.

B. Our Approach

As mentioned previously our goal is to find a feature space
induced by a Gaussian kernel, in which the objects of each
cluster are well separated, to do that we will introduce a new
separation index based on 83 and on the variances within-
class.

Contrarily to the approach mentioned by [27], who use
those indexes to evaluate the generalization ability through
grid search method, we will use our new index to calculate an
optimal parameter of Gaussian kernel, by maximizing an
objective function defined by (24).

In what follows a detailed description of our proposed
algorithm is presented.

N M
Flo) = H%Z @) - %Z ()
i=1
1 N N
- (mZ Yo - o)
J

i

M M
1
oz D ) - d>(x1)||2>
k L

24

B is real and positive parameter used to control the variance.
After substituting the inner product by RBF kenel, and
expanding the equation 24, we obtain the following result:

N N N M ) M M )
F(O‘)_1+2 Zze i _izze Il Xkll 1+2 Zze HXk—XlH
NM L

T Tk

—4B

(e ) L

i<y

F(o) =

1M

L1t Zﬁ kS g x.n2> ~
(222 )

The derivative of F(c) with respect to o:

(25)
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dF(0) _ 2(1+26) ”z‘linxi—xjnz ol
= - _— I
do N2 ol €

T <)

N M
2 [Ix; — xpll? zlxi=xidl®
S
NM o3
Tk

M-1 M 2 2
2u+zm( lIxi. — I ﬂ&3¢>
R —— e 207
o\

k k<l
(26)

The optimal values of the kernel parameters can be obtained
through maximizing (25), i.e.

o* = argmaxF (o) 27

[

In this paper, an iterative algorithm is employed to generate
o', According to the general gradient method, the updating
equation for minimizing the objective function F(o) is given
by :

o) =M 4 g (Z—Z) (28)

Where 1 is the learning rate and n is the iteration step. Our

proposed method is summarized as follows [28]:

Step 1.Choose the value of B. Set the learning rate m , the
maximum iteration number N, and € to a very small
positive number.

Step 2.Initialize the kernel parameters o = 0@and set the
iteration step n = 0.

Step 3.Update the kernel parameters ¢ ™ using (28).

Step 4.1f |J("+1) — J(")| <& or n =N stop otherwise, set
n=n+1, goto step 3.

IV. EXPERIMENTAL RESULTS

A. Datasets and Experimental Setting

Before conducting our experiments on real datasets, we
begin with two artificial ones; which are chessboard and
Double-Spiral.

We fixe B at 0.03, then we calculate the optimal values of
Gaussian width (c*) using our proposed algorithm, after we
classify the datasets through SVDD with C=200 and ¢ = ¢*.

It can be seen in Fig. 1 that the two classes are well
separated. More specifically, we observe that all elements
corresponding to the first class appear in white, while those
corresponding to the second class appear in gray.

We remark also that there are no overlaps between both
classes, and the coloration follows the distribution of classes,
this means that the data from different classes are projected
successfully onto a suitable feature space, (implicitly a good
value of ).

= = el = = - e & -
o o
= = e - = - et g
A e = =3 ox = = = - £
o o o = = o o =
o e e = e x
O = -} o =
= = XSO~ = = = =
o
o = uos o =114

Fig. 1 Clustering results on Chessboard and Double-Spiral datasets,
using SVDD with (¢*) found by our approach

To investigate the success of these results on real datasets,
we conducted various tests in which our algorithm is applied
on monk-1, monk-2, monk-3, iris flowers, wine, ionosphere;
all of these datasets are taken from [16], further details of
these datasets are provided in Table II.

TABLEII
DESCRIPTION OF THE DATASETS USED IN THE EXPERIMENT, TRAINING SAMPLES AND TESTING SAMPLES LIST THE RATE OF DATA USED OR DIRECTLY THE FILES
CONTAINING DATA

dataset Number of data — subset - Number of class Feature
Training set Testing set

432 monks-1.train monks-1.test 2 6
monks 432 monks-2.train monks-2.test 2 6
432 monks-3.train monks-3.test 2 6
iris 150 80% of samples/each class The remaining samples/each class 3 4
wine 178 80% of samples/each class The remaining samples/each class 3 13
Ionosphere 351 The first 200 instances The remaining 150 instances 2 34

Firstly, the three problems defined for monk’s dataset were
used in the experiment; monks-1 is in standard disjunctive
normal form and is supposed to be easily learnable by most of
the algorithms and decision trees. Conversely, monk’s-2 is
similar to parity problems. It combines different attributes in a
way that makes it complicated to describe using the given
attributes only; monks-3 serves to evaluate the algorithms
under the presence of noise.

Secondly, the iris dataset consists of three classes, each of
which has 50 samples. While one cluster is easily separable, it
is difficult to achieve separation between the other two

clusters. Data points correspond to the plants and attributes
correspond to sepal and petal measurements.

Thirdly, the wine dataset is the results of a chemical
analysis of wines grown in the same region but derived from
three different cultivars. The analysis determines the quantities
of constituents found in each of the three types of wines.

Fourthly, the Ionosphere dataset is a radar data; it consists
of a phased array of 16 high-frequency antennas with a total
transmitted power on the order of 6.4 kilowatts. The targets
were free electrons in the ionosphere.

For monk’s problem we use the files monks-(1, 2, 3).train,
as training set and their corresponding files monks-(1, 2,
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3).test, as testing set. Concerning lonosphere, we train SVDD For iris, and wine, datasets, we randomly split each one into
with the first 200 instances, which were split 50% positive and 20 subsets, each subset contains training and testing sets, with
50% negative. We use the remaining 150 instances as testing  the scheme described in Table II. Training and test sets do not
set. intersect.

Monks-1(train set) Monks-1(teste set)
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Fig. 2 Recognition rates (%) for the selected datasets, using the optimal values of Gaussian width (6*) found by our approach, for different
values of the parameter 8
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B. Numerical Results

In all experiments we fix C= 200 and we use one versus all
method. For each dataset from monks-1, monks-2, monks-3,
Ionosphere, iris, and wine: after setting the value of B, we run
the algorithm described above to find the optimal value of
for each class. Using that value, the algorithm SVDD will be
trained by the training set and then, tested by the training and
the corresponding testing set.

In the case of the Monk s (1,2,3) and lonosphere dataset, we
just calculate the recognition rate directly, for both training
and testing set. For iris, and wine we repeat this experiment 20
times for all subsets and we calculate the mean and the
standard deviation of the recognition rate. The results are
shown in Fig. 2.

Fig. 2 shows that a good choose of B, which imply an
optimal compromise between the distance inter cluster and the
variance within cluster, gives a good value of gaussian width
(o*), which achieves an important classification rate.

V.CONCLUSION

In this paper, a novel approach for learning the kernel
parameters is proposed and successfully applied to the SVDD
classifier. An optimal value of the Gaussian kernel width is
obtained by maximizing the distance between the gravity
centers of both normal and abnormal clusters, and at the same
time minimizing the variance of both clusters. The
performance of the proposed algorithm is evaluated on two
artificial datasets and six benchmark datasets from UCI
repository [16]. The experimental results for different datasets
show that our method achieves good performance.
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