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 
Abstract—In linear estimation, the traditional Kalman filter uses 

the Kalman filter gain in order to produce estimation and prediction 
of the n-dimensional state vector using the m-dimensional 
measurement vector. The computation of the Kalman filter gain 
requires the inversion of an m x m matrix in every iteration. In this 
paper, a variation of the Kalman filter eliminating the Kalman filter 
gain is proposed. In the time varying case, the elimination of the 
Kalman filter gain requires the inversion of an n x n matrix and the 
inversion of an m x m matrix in every iteration. In the time invariant 
case, the elimination of the Kalman filter gain requires the inversion 
of an n x n matrix in every iteration. The proposed Kalman filter gain 
elimination algorithm may be faster than the conventional Kalman 
filter, depending on the model dimensions. 
 

Keywords—Discrete time, linear estimation, Kalman filter, 
Kalman filter gain.  

I. INTRODUCTION 

STIMATION plays a very important role in many fields 
of science and engineering, such as in applications to 

communication systems, control systems, power systems, 
aerospace industry [1]. 

The estimation problem arises in linear estimation and is 
associated with discrete time systems described by the 
following state space equations: 

 
𝑥ሺ𝑘 ൅ 1ሻ ൌ 𝐹ሺ𝑘 ൅ 1, 𝑘ሻ𝑥ሺ𝑘ሻ ൅ 𝑤ሺ𝑘ሻ                                   (1) 
 
𝑧ሺ𝑘ሻ ൌ 𝐻ሺ𝑘ሻ𝑥ሺ𝑘ሻ ൅ 𝑣ሺ𝑘ሻ                                                      (2) 
 
where 𝑥ሺ𝑘ሻ is the 𝑛 ൈ 1 state vector, 𝑧ሺ𝑘ሻ is the 𝑚 ൈ 1 
measurement vector, 𝐹ሺ𝑘 ൅ 1, 𝑘ሻ is the 𝑛 ൈ 𝑛 transition 
matrix, 𝐻ሺ𝑘ሻ is the 𝑚 ൈ 𝑛 output matrix, 𝑤ሺ𝑘ሻ is the 𝑛 ൈ 1 
state noise and 𝑣ሺ𝑘ሻ is the 𝑚 ൈ 1 measurement noise at 
time 𝑘 ൒ 0. 

The statistical model expresses the nature of the state and 
the measurements. The basic assumption is that the state noise 
ሼ𝑤ሺ𝑘ሻሽ and the measurement noise ሼ𝑣ሺ𝑘ሻሽ are white noises, 
i.e. a stochastic process with uncorrelated successive values: 
ሼ𝑤ሺ𝑘ሻሽ is a zero mean, Gaussian process with known 
covariance 𝑄ሺ𝑘ሻ of dimension 𝑛 ൈ 𝑛 𝑅ሺ𝑘ሻ of dimension 
𝑚 ൈ 𝑚, respectively. The following assumptions also hold: (a) 
the initial value of the state 𝑥ሺ0ሻ is a Gaussian random 
variable with mean 𝑥଴ and covariance 𝑃଴; (b) the stochastic 
processes ሼ𝑤ሺ𝑘ሻሽ, ሼ𝑣ሺ𝑘ሻሽ and the random variable 𝑥ሺ0ሻ are 
independent. 

The discrete time Kalman filter is the most well-known 
algorithm that solves the filtering problem. The linear discrete 
time Kalman filter for solving the linear estimation problem 
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was introduced by Kalman in 1960 [2].  
The Conventional Kalman Filter or Traditional Kalman 

Filter [2] computes the state estimation 𝑥ሺ𝑘/𝑘ሻ and the 
corresponding estimation covariance matrix 𝑃ሺ𝑘/𝑘ሻ as well as 
the state prediction 𝑥ሺ𝑘 ൅ 1/𝑘ሻ and the corresponding 
prediction covariance matrix 𝑃ሺ𝑘 ൅ 1/𝑘ሻ, using 
measurements until time 𝑘. 

The Kalman filter has been evolved as follows:  The Square 
Root Kalman Filter [3] uses the square root 𝑆ሺ𝑘/𝑘ሻ of the 
estimation covariance matrix 𝑃ሺ𝑘/𝑘ሻ, i.e. the covariance 
matrix 𝑃ሺ𝑘/𝑘ሻ is replaced by 𝑃ሺ𝑘/𝑘ሻ ൌ 𝑆ሺ𝑘/𝑘ሻ𝑆்ሺ𝑘/𝑘ሻ, where 
𝑆ሺ𝑘/𝑘ሻ is a triangular matrix. 𝑆் denotes the transpose of 
matrix 𝑆. In UDU Kalman Filter [4] the covariance matrix 
𝑃ሺ𝑘/𝑘ሻ is replaced by a diagonal matrix 𝐷ሺ𝑘/𝑘ሻ and an upper 
triangular matrix 𝑈ሺ𝑘/𝑘ሻ with ones on the main diagonal, 
such that 𝑃ሺ𝑘/𝑘ሻ ൌ 𝑈ሺ𝑘/𝑘ሻ𝐷ሺ𝑘/𝑘ሻ𝑈்ሺ𝑘/𝑘ሻ. Information 
Kalman Filter [5] uses of the inverse 𝑃ିଵሺ𝑘/𝑘ሻ of the 
covariance matrix 𝑃ሺ𝑘/𝑘ሻ and the information state vector 
𝑦ሺ𝑘/𝑘ሻ ൌ 𝑃ିଵሺ𝑘/𝑘ሻ𝑥ሺ𝑘/𝑘ሻ. 

In UDU Information Kalman Filter [6] the inverse 𝑃ିଵሺ𝑘/
𝑘ሻ of the covariance matrix 𝑃ሺ𝑘/𝑘ሻ is replaced by two factors: 
a diagonal matrix 𝐷ሺ𝑘/𝑘ሻ and a lower triangular matrix 
𝑈ሺ𝑘/𝑘ሻ with ones on the main diagonal, such that 𝑃ିଵሺ𝑘/𝑘ሻ  ൌ
𝑈ሺ𝑘/𝑘ሻ𝐷ሺ𝑘/𝑘ሻ𝑈்ሺ𝑘/𝑘ሻ. The Kalman Filter using General 
Chandrasekhar Algorithm [7] uses the difference between two 
successive prediction covariance matrices. The Information 
Kalman Filter using General Chandrasekhar Algorithm [8] has 
been developed. 

Sigma-Rho Kalman Filter [9] propagates standard deviation 
σ and correlation coefficients ρ rather than covariance matrix. 
In Schmidt-Kalman Filter or Consider Kalman Filter [10] the 
state and covariance are augmented with both parameters to be 
estimated and parameters to be considered. Steady State 
Kalman Filter [11] propagates the estimation using 
measurement and previous estimation; the steady state Kalman 
Filter prediction covariance is computed off-line by solving 
the Riccati equation and then the steady state Kalman Filter 
gain is computed and the steady state Kalman Filter 
coefficients are derived. 

In the Finite Impulse Response (FIR) Steady State Kalman 
Filter [12] the FIR filter coefficients are calculated a-priori and 
the estimation depends only on a well-defined set of 
measurements. The Periodic Steady State Kalman Filter [13] 
deals with periodic systems with periodic parameters and the 
periodic steady state Kalman Filter prediction covariance is 
computed off-line. The Implicit Kalman Filter [14] has been 
developed for implicit systems and can be readily applied to 
ill-conditioned systems. 

The Square Root Implicit Kalman Filter [15] concerns 
implicitly defined discrete systems and propagates the factors 
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of the covariance matrix, rather than the covariance matrix 
itself. The Complex Kalman Filter [16] uses augmented 
complex statistics and has been proposed for sequential state 
space estimation of the generality of complex signals. The 
Interval Kalman Filter [17] concerns linear systems which 
contain uncertainties; all the matrices and vectors involved are 
interval quantities except the noise covariance matrices and, as 
a result, this algorithm produces interval estimation vectors. 

The Fuzzy Kalman Filter [18] for interval systems uses 
fuzzification of the interval system matrices. The Monte Carlo 
Kalman Filter [19] concerns binary probit models. The 
Maximum Correntropy Kalman Filter [20] adopts the robust 
maximum correntropy criterion (MCC) as the optimality 
criterion, instead of using the minimum mean square error 
(MMSE). 

All the estimation algorithms developed during the Kalman 
filter evolution in linear estimation are based on the 
conventional or traditional Kalman filter, which uses the 
Kalman filter gain. 

The paper is organized as follows: Section II summarizes 
the conventional Kalman filter. The estimation algorithm 
based on Kalman filter gain elimination is derived in Section 
III. In Section IV the conventional Kalman filter and the 
proposed estimation algorithm based on Kalman filter gain 
elimination are compared with respect to their calculation 
burdens. Finally, Section V summarizes the conclusions. 

II. CONVENTIONAL KALMAN FILTER 

In this section the linear discrete time Kalman filter is 
summarized for time varying and invariant systems. The 
discrete time Kalman filter is the most well-known algorithm 
that solves the filtering problem, producing the state 
estimation 𝑥ሺ𝑘/𝑘ሻ and the corresponding estimation 
covariance matrix 𝑃ሺ𝑘/𝑘ሻ as well as the state prediction 
𝑥ሺ𝑘 ൅ 1/𝑘ሻ and the corresponding prediction covariance 
matrix 𝑃ሺ𝑘 ൅ 1/𝑘ሻ.  

For time varying systems, the Time Varying Kalman Filter 
(TVKF) is derived [1]: 

 
𝐾ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ 
             ሾ𝐻ሺ𝑘ሻ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ ൅ 𝑅ሺ𝑘ሻሿିଵ 
𝑥ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝐾ሺ𝑘ሻ𝑧ሺ𝑘ሻ 
𝑃ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ𝑃ሺ𝑘/𝑘 െ 1ሻ 
𝑥ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝐹ሺ𝑘 ൅ 1, 𝑘ሻ𝑥ሺ𝑘/𝑘ሻ 
𝑃ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝑄ሺ𝑘ሻ ൅ 𝐹ሺ𝑘 ൅ 1, 𝑘ሻ𝑃ሺ𝑘/𝑘ሻ𝐹்ሺ𝑘 ൅ 1, 𝑘ሻ 
𝑓𝑜𝑟 𝑘 ൌ 0,1, …,  
𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑥ሺ0/െ1ሻ ൌ 𝑥଴, 𝑃ሺ0/െ1ሻ ൌ 𝑃଴. 
 
𝐾ሺ𝑘ሻ is the Kalman filter gain. 𝐼 denotes the identity matrix. 

Note that the existence of the inverse of the matrices in the 
Kalman filter gain equation is ensured assuming that every 
covariance matrix 𝑅ሺ𝑘ሻ is positive definite; this has the 
significance that no measurement is exact.  

For time invariant systems, the system transition matrix, the 
output matrix, and the noise covariance matrices are constant. 
For time invariant systems the resulting Time Invariant 
Kalman filter (TIKF) takes the following form [1]: 

 
𝐾ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሾ𝐻𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻் ൅ 𝑅ሿିଵ 
𝑥ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሿ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝐾ሺ𝑘ሻ𝑧ሺ𝑘ሻ 
𝑃ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሿ𝑃ሺ𝑘/𝑘 െ 1ሻ 
𝑥ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝐹𝑥ሺ𝑘/𝑘ሻ 
𝑃ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝑄 ൅ 𝐹𝑃ሺ𝑘/𝑘ሻ𝐹் 
𝑓𝑜𝑟 𝑘 ൌ 0,1, …,  
𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑥ሺ0/െ1ሻ ൌ 𝑥଴, 𝑃ሺ0/െ1ሻ ൌ 𝑃଴. 

 
For time invariant systems, in [1] it is well known that if the 

signal process model is asymptotically stable, then there exists 
a unique steady state value of the prediction covariance 
matrix. In the steady state case, the resulting discrete time 
Steady State Kalman Filter (SSKF) takes the following form: 

 
𝑥ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 െ 𝐾𝐻ሿ𝐹𝑥ሺ𝑘 െ 1/𝑘 െ 1ሻ ൅ 𝐾𝑧ሺ𝑘ሻ  
𝑓𝑜𝑟 𝑘 ൌ 1,2, …,  
𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  
𝑥ሺ0/0ሻ ൌ ሾ𝐼 െ 𝐾ሺ0ሻ𝐻ሿ𝑥ሺ0/െ1ሻ ൅ 𝐾ሺ0ሻ𝑧ሺ0ሻ 

𝑤ℎ𝑒𝑟𝑒 𝐾ሺ0ሻ ൌ 𝑃ሺ0/െ1ሻ𝐻𝑇 ቂ𝐻𝑃ሺ0/െ1ሻ𝐻𝑇 ൅ 𝑅ቃ
െ1

   

𝑎𝑛𝑑 𝑥ሺ0/െ1ሻ ൌ 𝑥଴, 𝑃ሺ0/െ1ሻ ൌ 𝑃଴. 
 
The steady state value 𝑃 of the prediction covariance matrix 

is calculated off-line by solving the corresponding discrete 
time Riccati equation [1]:  

 
𝑃 ൌ 𝑄 ൅ 𝐹𝑃𝐹் െ 𝐹𝑃𝐻்ሾ𝐻𝑃𝐻் ൅ 𝑅ሿିଵ𝐻𝑃𝐹்                     (3) 
 
and computing the SSKF gain: 
 
𝐾 ൌ 𝑃𝐻்ሾ𝐻𝑃𝐻் ൅ 𝑅ሿିଵ                                                       (4) 

III. ESTIMATION ALGORITHM BASED ON KALMAN FILTER 

GAIN ELIMINATION 

The basic idea is to eliminate the Kalman filter gain 
computation in order to derive an estimation algorithm which 
requires the inversion of an 𝑛 ൈ 𝑛 matrix in every iteration. 
This can be achieved by defining the ratio 𝛬ሺ𝑘ሻ (the term 
Ratio corresponds to the Greek term Λόγος): 

 
𝛬ሺ𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ𝐾ሺ𝑘ሻ                                           (5) 
 

This ratio describes the relation between the coefficients of 
prediction and measurement in the estimation equation: 
 
𝑥ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝐾ሺ𝑘ሻ𝑧ሺ𝑘ሻ. 
 

From the Kalman filter gain equation we get: 
 
𝐾ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ  

        ሾ𝐻ሺ𝑘ሻ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ ൅ 𝑅ሺ𝑘ሻሿିଵ 
⇒ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ ൅ 𝐾ሺ𝑘ሻ𝑅ሺ𝑘ሻ  ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ  
⇒ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ ൅ 𝐾ሺ𝑘ሻ  

 ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ 
⇒ 𝐾ሺ𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ  

 
Then using (5) we derive 

 
𝛬ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ                                       (6) 
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From the Kalman filter gain equation we get: 
 
𝐾ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ 
    ሾ𝐻ሺ𝑘ሻ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ ൅ 𝑅ሺ𝑘ሻሿିଵ 
⇒ 𝑃ሺ𝑘/𝑘 െ 1ሻ െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ 
െ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ 
ሾ𝐻ሺ𝑘ሻ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ ൅ 𝑅ሺ𝑘ሻሿିଵ𝐻ሺ𝑘ሻ𝑃ሺ𝑘/𝑘 െ 1ሻ 
ൌ ሾ𝑃ିଵሺ𝑘/𝑘 െ 1ሻ ൅ 𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻ ሿିଵ  
⇒ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ𝑃ሺ𝑘/𝑘 െ 1ሻ 
ൌ ሾ𝑃ିଵሺ𝑘/𝑘 െ 1ሻ ൅ 𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ  
⇒ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ  
ൌ ሾ𝑃ିଵሺ𝑘/𝑘 െ 1ሻ ൅ 𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ𝑃ିଵሺ𝑘/𝑘 െ 1ሻ  
⇒ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ= ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ  
 

Then we are able to eliminate the Kalman filter gain  
a) from the estimation equation 
 
𝑥ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝐾ሺ𝑘ሻ𝑧ሺ𝑘ሻ  
ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ 
    ሼ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ𝐾ሺ𝑘ሻ𝑧ሺ𝑘ሻሽ  
 
by writing: 
 
𝑥ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ   

                 ሾ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝛬ሺ𝑘ሻ𝑧ሺ𝑘ሻሿ                                    (7) 
 
b) from the estimation covariance equation 
 
𝑃ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ𝑃ሺ𝑘/𝑘 െ 1ሻ 
 
by writing: 
 
𝑃ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ 
                 𝑃ሺ𝑘/𝑘 െ 1ሻ                                                           (8) 

 
For time varying systems, the TVKF gain elimination 

algorithm (TVKFge) has been derived: 
 

𝛬ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ 
𝑥ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ 
                   ሾ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝛬ሺ𝑘ሻ𝑧ሺ𝑘ሻሿ 
𝑃ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ 
                   𝑃ሺ𝑘/𝑘 െ 1ሻ 
𝑥ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝐹ሺ𝑘 ൅ 1, 𝑘ሻ𝑥ሺ𝑘/𝑘ሻ 
𝑃ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝑄ሺ𝑘ሻ ൅ 𝐹ሺ𝑘 ൅ 1, 𝑘ሻ𝑃ሺ𝑘/𝑘ሻ𝐹்ሺ𝑘 ൅ 1, 𝑘ሻ 
𝑓𝑜𝑟 𝑘 ൌ 0,1, …,  
𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑥ሺ0/െ1ሻ ൌ 𝑥଴, 𝑃ሺ0/െ1ሻ ൌ 𝑃଴. 

 
Note that the existence of the inverse of the matrices in the 

Kalman filter gain elimination algorithm equations is ensured 
assuming that every covariance matrix 𝑅ሺ𝑘ሻ is positive 
definite and that the initial condition 𝑃ሺ0/െ1ሻ ൌ 𝑃଴ is 
positive definite. 

Note that the Kalman filter gain can be easily retrieved from 
the proposed algorithm using 
 
𝐾ሺ𝑘ሻ ൌ ሾ𝐼 െ 𝐾ሺ𝑘ሻ𝐻ሺ𝑘ሻሿ𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ 

          ൌ 𝑃ሺ𝑘/𝑘ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ                                            (9) 
 
For time invariant systems the resulting TIKF algorithm 

(TIKFge) takes the following form: 
 

𝛬ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்𝑅ିଵ 
𝑥ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்𝑅ିଵ𝐻ሿିଵ 
                 ሾ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝛬ሺ𝑘ሻ𝑧ሺ𝑘ሻሿ 
𝑃ሺ𝑘/𝑘ሻ ൌ ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்𝑅ିଵ𝐻ሿିଵ𝑃ሺ𝑘/𝑘 െ 1ሻ 
𝑥ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝐹𝑥ሺ𝑘/𝑘ሻ 
𝑃ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝑄 ൅ 𝐹𝑃ሺ𝑘/𝑘ሻ𝐹் 
𝑓𝑜𝑟 𝑘 ൌ 0,1, …,  
𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑥ሺ0/െ1ሻ ൌ 𝑥଴, 𝑃ሺ0/െ1ሻ ൌ 𝑃଴. 
 

Note that the matrices 𝑅ିଵ, 𝐻்𝑅ିଵ and 𝐻்𝑅ିଵ𝐻 are 
calculated once and off-line. 

In the steady state case, the resulting discrete time SSKF 
gain elimination algorithm (SSKFge) takes the following 
form: 
 
𝑥ሺ𝑘/𝑘ሻ ൌ ሼሾ𝐼 ൅ 𝑃𝐻்𝑅ିଵ𝐻ሿିଵ𝐹ሽ 𝑥ሺ𝑘 െ 1/𝑘 െ 1ሻ 
               ൅ ሼሾ𝐼 ൅ 𝑃𝐻்𝑅ିଵ𝐻ሿିଵ𝛬ሽ𝑧ሺ𝑘ሻ 
𝑓𝑜𝑟 𝑘 ൌ 1,2, …,  
𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  
𝑥ሺ0/0ሻ ൌ ሾ𝐼 െ 𝐾ሺ0ሻ𝐻ሿ𝑥ሺ0/െ1ሻ ൅ 𝐾ሺ0ሻ𝑧ሺ0ሻ 
𝑤ℎ𝑒𝑟𝑒 𝐾ሺ0ሻ ൌ 𝑃ሺ0/െ1ሻ𝐻்ሾ𝐻𝑃ሺ0/െ1ሻ𝐻் ൅ 𝑅ሿିଵ  
𝑎𝑛𝑑 𝑥ሺ0/െ1ሻ ൌ 𝑥଴, 𝑃ሺ0/െ1ሻ ൌ 𝑃଴. 
 

The steady state value 𝑃 of the prediction covariance matrix 
is calculated off-line by solving the corresponding discrete 
time Riccati equation. The steady state ratio is 
 
𝛬 ൌ 𝑃𝐻்𝑅ିଵ                                                                        (10) 

IV. COMPARISON OF THE ALGORITHMS 

It is established that the Kalman filter gain elimination 
algorithm equations have been derived by the conventional 
Kalman filter equations. Thus the conventional Kalman filter 
and the proposed Kalman filter gain elimination algorithm are 
equivalent filters with respect to their behavior, since they 
calculate theoretically the same estimates. Both filters are 
iterative algorithms; then, it is reasonable to assume that all 
the filters compute the estimation 𝑥ሺ𝑘/𝑘ሻ executing the same 
number of iterations. Thus, in order to compare the algorithms 
with respect to their computational time, we have to compare 
their per step (iteration) calculation burden (CB) required for 
the on-line calculations; the CB of the off-line calculations 
(initialization process for time invariant filters and for the 
steady state filters) is not taken into account. 

Scalar operations are involved in matrix manipulation 
operations, which are needed for the implementation of the 
filtering algorithms. Table I summarizes the CB of needed 
matrix operations. Note that the identity matrix is denoted by 𝐼 
and a symmetric matrix by 𝑆. The details are given in [21].  

The per iteration CB of the conventional Kalman Filter are 
given in [21]. The per iteration CB of the estimation 
algorithms based on Kalman filter gain elimination for the 
general multidimensional case, where 𝑛 ൒ 2, 𝑚 ൒ 2, are 
analytically calculated in the Appendix. The per iteration CB 
of the conventional Kalman filter and of the Kalman filter gain 
elimination algorithm are summarized in Tables II and III, 
respectively. 
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TABLE I 
CB OF MATRIX OPERATIONS 

Matrix Operation Matrix Dimensions CB 

𝐶 ൌ 𝐴 ൅ 𝐵 ሺ𝑛 ൈ 𝑚ሻ ൅ ሺ𝑛 ൈ 𝑚ሻ 𝑛𝑚 

𝑆 ൌ 𝐴 ൅ 𝐵 ሺ𝑛 ൈ 𝑛ሻ ൅ ሺ𝑛 ൈ 𝑛ሻ 
1
2

𝑛ଶ ൅
1
2

𝑛 

𝐵 ൌ 𝐼 ൅ 𝐴 ሺ𝑛 ൈ 𝑛ሻ ൅ ሺ𝑛 ൈ 𝑛ሻ 𝑛 

𝐶 ൌ 𝐴 ∙ 𝐵 ሺ𝑛 ൈ 𝑚ሻ ∙ ሺ𝑚 ൈ ℓሻ 2𝑛𝑚ℓ െ 𝑛ℓ 

𝑆 ൌ 𝐴 ∙ 𝐵 ሺ𝑛 ൈ 𝑚ሻ ∙ ሺ𝑚 ൈ 𝑛ሻ 𝑛ଶ𝑚 ൅ 𝑛𝑚 െ
1
2

𝑛ଶ െ
1
2

𝑛 

𝐵 ൌ 𝐴ିଵ 𝑛 ൈ 𝑛 ቊ
ଵ
଺
ሺ16𝑛ଷ െ 3𝑛ଶ െ 𝑛ሻ, 𝑛 ൒ 2

1,                       𝑛 ൌ 1
 

 
TABLE II 

PER ITERATION CB OF CONVENTIONAL KALMAN FILTER 

System 
Matrix 

Dimensions 
CB 

Time 
Varying 

𝑛 ൒ 1 
𝑚 ൒ 2 

𝐶𝐵்௏௄ி ൌ ଵ
ଶ
ሺ8𝑛ଷ ൅ 7𝑛ଶ െ 3𝑛ሻ 

൅4𝑛ଶ𝑚 ൅ 𝑛𝑚 ൅ 3𝑛𝑚ଶ 
൅ଵ

଺
ሺ16𝑚ଷ െ 3𝑚ଶ െ 𝑚ሻ 

𝑛 ൒ 1 
𝑚 ൌ 1 

𝐶𝐵்௏௄ி௠ଵ ൌ ଵ
ଶ
ሺ8𝑛ଷ ൅ 15𝑛ଶ ൅ 5𝑛ሻ ൅ 1 

Time 
Invariant 

𝑛 ൒ 1 
𝑚 ൒ 2 

𝐶𝐵்ூ௄ி ൌ ଵ
ଶ
ሺ8𝑛ଷ ൅ 7𝑛ଶ െ 3𝑛ሻ 

൅4𝑛ଶ𝑚 ൅ 𝑛𝑚 ൅ 3𝑛𝑚ଶ 
൅ଵ

଺
ሺ16𝑚ଷ െ 3𝑚ଶ െ 𝑚ሻ 

𝑛 ൒ 1 
𝑚 ൌ 1 

𝐶𝐵்ூ௄ி௠ଵ ൌ ଵ
ଶ
ሺ8𝑛ଷ ൅ 15𝑛ଶ ൅ 5𝑛ሻ ൅ 1 

Steady 
State 

𝑛 ൒ 1 
𝑚 ൒ 1 

𝐶𝐵ௌௌ௄ி ൌ 2𝑛ଶ ൅ 2𝑛𝑚 െ 𝑛 

 
TABLE III 

PER ITERATION CB OF KALMAN FILTER GAIN ELIMINATION ALGORITHM 

System 
Matrix 

Dimensions 
CB 

Time 
Varying 

𝑛 ൒ 2 
𝑚 ൒ 2 

𝐶𝐵்௏௄ி௚௘ ൌ ଵ
଺
ሺ52𝑛ଷ ൅ 15𝑛ଶ െ 13𝑛ሻ 

൅3𝑛ଶ𝑚 ൅ 𝑛𝑚2𝑛𝑚ଶ 
൅ଵ

଺
ሺ16𝑚ଷ െ 3𝑚ଶ െ 𝑚ሻ 

𝑛 ൌ 1 
𝑚 ൌ 2 

𝐶𝐵்௏௄ி௚௘௡ଵ ൌ ଵ
଺
ሺ16𝑚ଷ ൅ 9𝑚ଶ ൅ 23𝑚ሻ ൅ 8 

𝑛 ൒ 2 
𝑚 ൌ 1 

𝐶𝐵்௏௄ி௚௘௠ଵ ൌ ଵ
଺
ሺ52𝑛ଷ ൅ 33𝑛ଶ ൅ 5𝑛ሻ ൅ 1 

𝑛 ൌ  1 
𝑚 ൌ 1 

𝐶𝐵்௏௄ி௚௘௡௠ଵ ൌ 15 

Time 
Invariant 

𝑛 ൒ 2 
𝑚 ൒ 2 

𝐶𝐵்ூ௄ி௚௘ ൌ ଵ
ଷ
ሺ26𝑛ଷ ൅ 9𝑛ଶ െ 5𝑛ሻ 

൅2𝑛ଶ𝑚 ൅ 𝑛𝑚 
𝑛 ൌ 1 
𝑚 ൒ 1 

𝐶𝐵்ூ௄ி௚௘௡ଵ ൌ 3𝑚 ൅ 9 

Steady 
State 

𝑛 ൒ 1 
𝑚 ൒ 1 

𝐶𝐵ௌௌ௄ி௚௘ ൌ 2𝑛ଶ ൅ 2𝑛𝑚 െ 𝑛 

 
From Tables II and III we get: 
 

𝐶𝐵்௏௄ி െ 𝐶𝐵்௏௄ி௚௘ ൌ ଵ
ଷ
ሺെ14𝑛ଷ ൅ 3𝑛ଶ ൅ 7𝑛ሻ ൅ 𝑛ଶ𝑚 ൅ 𝑛𝑚ଶ 

𝐶𝐵்ூ௄ி െ 𝐶𝐵்ூ௄ி௚௘ ൌ భ
ల
ሺെ28𝑛ଷ ൅ 3𝑛ଶ ൅ 𝑛ሻ ൅ 2𝑛ଶ𝑚 ൅

3𝑛𝑚ଶ ൅ భ
ల
ሺ16𝑚ଷ െ 3𝑚ଶ െ 𝑚ሻ   

𝐶𝐵ௌௌ௄ி ൌ 𝐶𝐵ௌௌ௄ி௚௘ 
 
for the general multidimensional case, where 𝑛 ൒ 2, 𝑚 ൒ 2. 
Then we lead to the fact that the knowledge of the system 
dimensions can determine which filter is faster. In fact: 
a) For time varying multidimensional systems, the areas 

depending on the model dimensions, where the proposed 
Kalman filter gain elimination algorithm or the 

conventional Kalman filter is faster, are shown in Fig. 1. 
The following Rule of Thumb for time varying systems is 
derived: The TVKFge algorithm is faster than the time 
varying conventional Kalman filter, when m/n ൐ 1.7 

 

 

Fig. 1 Time varying systems: The faster filter depends on the model 
dimensions 

 
b) For time invariant multidimensional systems, the areas 

depending on the model dimensions, where the proposed 
Kalman filter gain elimination algorithm or the 
conventional Kalman filter is faster, are shown in Fig. 2. 
The following Rule of Thumb for time invariant systems 
is derived: The TIKFge algorithm is faster than the time 
invariant conventional Kalman filter, when m/n ൐ 0.8 

 

 

Fig. 2 Time invariant systems: The faster filter depends on the model 
dimensions 

 
c) For the steady state case, the proposed Kalman filter gain 

elimination algorithm is as fast the conventional Kalman 
filter is. 

V. CONCLUSIONS 

The discrete Kalman filter solves the linear estimation 
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problem using the Kalman filter gain; the conventional 
Kalman filter algorithm computes the state estimation through 
measurements till estimation time.  

Elimination of the Kalman filter gain has been proposed. It 
was established that the Kalman filter gain elimination 
algorithm equations have been directly derived by the Kalman 
filter equations. Thus the conventional Kalman filter algorithm 
and the proposed Kalman filter gain elimination algorithm 
compute the same estimates and hence they are equivalent 
algorithms. 

The basic idea was to eliminate the Kalman filter gain 
computation from the Kalman filter equations. This has been 
achieved by replacing the Kalman filter gain by a ratio which 
describes the relation between the coefficients of prediction 
and measurement in the estimation equation. The proposed 
filtering algorithm computes the state estimation and the 
corresponding estimation covariance matrix as well as the 
state prediction and the corresponding prediction covariance 
matrix using this ratio. 

It was shown that the proposed Kalman filter gain 
elimination algorithm is competitive to the conventional 
Kalman filter concerning the computational burden. The basic 
conclusion is that the knowledge of the system dimensions 
leads to the ability to a priori (before the filter 
implementation) determine which filter is faster.  

APPENDIX 

The per iteration CB of the estimation algorithms based on 
Kalman filter gain elimination for the general 
multidimensional case, where n ൒ 2, m ൒ 2, are analytically 
calculated in the Appendix. 

 
TABLE IV 

TVKFGE ALGORITHM 

Matrix Operation Matrix Dimensions Calculation Burden 

𝑅ିଵሺ𝑘ሻ 𝑚 ൈ 𝑚 
ଵ
଺
ሺ16𝑚ଷ െ 3𝑚ଶ െ 𝑚ሻ

𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ ሺ𝑛 ൈ 𝑚ሻ ∙ ሺ𝑚 ൈ 𝑚ሻ 2𝑛𝑚ଶ െ 𝑛𝑚 

𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻ ሺ𝑛 ൈ 𝑚ሻ ∙ ሺ𝑚 ൈ 𝑛ሻ 
𝑛ଶ𝑚 ൅ 𝑛𝑚 

െ
ଵ

ଶ
𝑛ଶ െ

ଵ

ଶ
𝑛  

𝛬ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑚ሻ 2𝑛ଶ𝑚 െ 𝑛𝑚 

𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻ ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑛ሻ 2𝑛ଷ െ 𝑛ଶ 
𝐼

൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻ 
ሺ𝑛 ൈ 𝑛ሻ ൅ ሺ𝑛 ൈ 𝑛ሻ 𝑛 

ሾ𝐼 ൅
𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ  𝑛 ൈ 𝑛 

ଵ
଺
ሺ16𝑛ଷ െ 3𝑛ଶ െ 𝑛ሻ 

𝑟ሺ𝑘ሻ𝑧ሺ𝑘ሻ ሺ𝑛 ൈ 𝑚ሻ ∙ ሺ𝑚 ൈ 1ሻ 2𝑛𝑚 െ 𝑛 

𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝑟ሺ𝑘ሻ𝑧ሺ𝑘ሻ ሺ𝑛 ൈ 1ሻ ൅ ሺ𝑛 ൈ 1ሻ 𝑛 
𝑥ሺ𝑘/𝑘ሻ

ൌ ሾ𝐼
൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ 

ሾ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝛬ሺ𝑘ሻ𝑧ሺ𝑘ሻሿ  

ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 1ሻ 2𝑛ଶ െ 𝑛 

𝑃ሺ𝑘/𝑘ሻ
ൌ ሾ𝐼
൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்ሺ𝑘ሻ𝑅ିଵሺ𝑘ሻ𝐻ሺ𝑘ሻሿିଵ 

𝑃ሺ𝑘/𝑘 െ 1ሻ 

ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑛ሻ 𝑛ଷ ൅
1
2

𝑛ଶ െ
1
2

𝑛 

𝑥ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝐹ሺ𝑘 ൅ 1, 𝑘ሻ𝑥ሺ𝑘/𝑘ሻ ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 1ሻ 2𝑛ଶ െ 𝑛 

𝐹ሺ𝑘 ൅ 1, 𝑘ሻ𝑃ሺ𝑘/𝑘ሻ ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑛ሻ 2𝑛ଷ െ 𝑛ଶ 

𝐹ሺ𝑘 ൅ 1, 𝑘ሻ𝑃ሺ𝑘/𝑘ሻ𝐹்ሺ𝑘 ൅ 1, 𝑘ሻ ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑛ሻ 𝑛ଷ ൅
ଵ

ଶ
𝑛ଶ െ

ଵ

ଶ
𝑛  

𝑃ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝑄ሺ𝑘ሻ 
൅𝐹ሺ𝑘 ൅ 1, 𝑘ሻ𝑃ሺ𝑘/𝑘ሻ𝐹்ሺ𝑘 ൅ 1, 𝑘ሻ 

ሺ𝑛 ൈ 𝑛ሻ ൅ ሺ𝑛 ൈ 𝑛ሻ 
1
2

𝑛ଶ ൅
1
2

𝑛 

𝐶𝐵்௏௄ி௚௘ ൌ ଵ
଺
ሺ52𝑛ଷ ൅ 15𝑛ଶ െ 13𝑛ሻ ൅ 3𝑛ଶ𝑚 ൅ 𝑛𝑚 ൅ 2𝑛𝑚ଶ ൅ ଵ

଺
ሺ16𝑚ଷ െ 3𝑚ଶ െ 𝑚ሻ 

TABLE V 
TIKFGE ALGORITHM 

Matrix Operation Matrix Dimensions Calculation Burden

𝛬ሺ𝑘ሻ ൌ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்𝑅ିଵ ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑚ሻ 2𝑛ଶ𝑚 െ 𝑛𝑚 

𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்𝑅ିଵ𝐻 ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑛ሻ 2𝑛ଷ െ 𝑛ଶ 

𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்𝑅ିଵ𝐻 ሺ𝑛 ൈ 𝑛ሻ ൅ ሺ𝑛 ൈ 𝑛ሻ 𝑛 

ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்𝑅ିଵ𝐻ሿିଵ 𝑛 ൈ 𝑛 
ଵ
଺
ሺ16𝑛ଷ െ 3𝑛ଶ െ 𝑛ሻ

𝑟ሺ𝑘ሻ𝑧ሺ𝑘ሻ ሺ𝑛 ൈ 𝑚ሻ ∙ ሺ𝑚 ൈ 1ሻ 2𝑛𝑚 െ 𝑛 

𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝑟ሺ𝑘ሻ𝑧ሺ𝑘ሻ ሺ𝑛 ൈ 1ሻ ൅ ሺ𝑛 ൈ 1ሻ 𝑛 
𝑥ሺ𝑘/𝑘ሻ

ൌ ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்𝑅ିଵ𝐻ሿିଵ 
ሾ𝑥ሺ𝑘/𝑘 െ 1ሻ ൅ 𝛬ሺ𝑘ሻ𝑧ሺ𝑘ሻሿ

ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 1ሻ 2𝑛ଶ െ 𝑛 

𝑃ሺ𝑘/𝑘ሻ
ൌ ሾ𝐼 ൅ 𝑃ሺ𝑘/𝑘 െ 1ሻ𝐻்𝑅ିଵ𝐻ሿିଵ 

𝑃ሺ𝑘/𝑘 െ 1ሻ
ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑛ሻ 𝑛ଷ ൅

1
2

𝑛ଶ െ
1
2

𝑛 

𝑥ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝐹𝑥ሺ𝑘/𝑘ሻ ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 1ሻ 2𝑛ଶ െ 𝑛 

𝐹𝑃ሺ𝑘/𝑘ሻ ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑛ሻ 2𝑛ଷ െ 𝑛ଶ 

𝐹𝑃ሺ𝑘/𝑘ሻ𝐹் ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 𝑛ሻ 𝑛ଷ ൅
ଵ

ଶ
𝑛ଶ െ

ଵ

ଶ
𝑛  

𝑃ሺ𝑘 ൅ 1/𝑘ሻ ൌ 𝑄 ൅ 𝐹𝑃ሺ𝑘/𝑘ሻ𝐹் ሺ𝑛 ൈ 𝑛ሻ ൅ ሺ𝑛 ൈ 𝑛ሻ 
ଵ

ଶ
𝑛ଶ ൅

ଵ

ଶ
𝑛  

𝐶𝐵்ூ௄ி௚௘ ൌ ଵ
ଷ
ሺ26𝑛ଷ ൅ 9𝑛ଶ െ 5𝑛ሻ ൅ 2𝑛ଶ𝑚 ൅ 𝑛𝑚 

 
TABLE VI 

SSKFGE ALGORITHM 

Matrix Operation Matrix Dimensions
Calculation 

Burden 
ሼሾ𝐼 ൅ 𝑃𝐻்𝑅ିଵ𝐻ሿିଵ𝐹ሽ 𝑥ሺ𝑘 െ 1/𝑘 െ 1ሻ ሺ𝑛 ൈ 𝑛ሻ ∙ ሺ𝑛 ൈ 1ሻ 2𝑛ଶ െ 𝑛 

ሼሾ𝐼 ൅ 𝑃𝐻்𝑅ିଵ𝐻ሿିଵ𝑟ሽ𝑧ሺ𝑘ሻ ሺ𝑛 ൈ 𝑚ሻ ∙ ሺ𝑚 ൈ 𝑛ሻ 2𝑛𝑚 െ 𝑛 
𝑥ሺ𝑘/𝑘ሻ

ൌ ሼሾ𝐼 ൅ 𝑃𝐻்𝑅ିଵ𝐻ሿିଵ𝐹ሽ 𝑥ሺ𝑘 െ 1/𝑘 െ 1ሻ
൅ ሼሾ𝐼 ൅ 𝑃𝐻்𝑅ିଵ𝐻ሿିଵ𝛬ሽ𝑧ሺ𝑘ሻ

ሺ𝑛 ൈ 1ሻ ∙ ሺ𝑛 ൈ 1ሻ 𝑛 

𝐶𝐵ௌௌ௄ி௚௘ ൌ 2𝑛ଶ ൅ 2𝑛𝑚 െ 𝑛 
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