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Abstract—In this article, we deal with a variant of the classical
course timetabling problem that has a practical application in many
areas of education. In particular, in this paper we are interested in
high schools remedial courses. The purpose of such courses is to
provide under-prepared students with the skills necessary to succeed
in their studies. In particular, a student might be under prepared in
an entire course, or only in a part of it. The limited availability
of funds, as well as the limited amount of time and teachers at
disposal, often requires schools to choose which courses and/or which
teaching units to activate. Thus, schools need to model the training
offer and the related timetabling, with the goal of ensuring the
highest possible teaching quality, by meeting the above-mentioned
financial, time and resources constraints. Moreover, there are some
prerequisites between the teaching units that must be satisfied. We
first present a Mixed-Integer Programming (MIP) model to solve
this problem to optimality. However, the presence of many peculiar
constraints contributes inevitably in increasing the complexity of
the mathematical model. Thus, solving it through a general-purpose
solver may be performed for small instances only, while solving
real-life-sized instances of such model requires specific techniques
or heuristic approaches. For this purpose, we also propose a heuristic
approach, in which we make use of a fast constructive procedure
to obtain a feasible solution. To assess our exact and heuristic
approaches we perform extensive computational results on both
real-life instances (obtained from a high school in Lecce, Italy) and
randomly generated instances. Our tests show that the MIP model is
never solved to optimality, with an average optimality gap of 57%.
On the other hand, the heuristic algorithm is much faster (in about the
50% of the considered instances it converges in approximately half of
the time limit) and in many cases allows achieving an improvement
on the objective function value obtained by the MIP model. Such an
improvement ranges between 18% and 66%.

Keywords—Heuristic, MIP model, Remedial course, School,
Timetabling.

I. INTRODUCTION

I
N this paper, we study a variant of the classical course

timetabling problem. More specifically, we focus on

remedial courses that have a practical application in many

areas of education. Remedial courses aim at providing

under-prepared students the skills they need to succeed in

their studies. A great restriction when organizing such courses

is the limited availability of funds and teachers, thus forcing

institutions to choose which courses to activate. The goal is
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to model a suitable training offer and a related timetabling

satisfying the largest possible number of students with the

highest possible teaching quality. At the same time, they must

meet the above-mentioned financial and resources constraints.

The originality and the complexity of the approach we propose

for this problem can be found in the following elements of

novelty:

• economic constraints;

• timing constraints;

• prerequisite constraints between teaching units.

The remainder of the paper is organized as follows. In

Section II we review the relevant literature, whereas in

Sections III and IV we present a mathematical formulation

and a heuristic approach, respectively. Then, in Section V

we describe our computational experiments on both real and

randomly-generated instances. Finally, conclusions follow in

Section VI.

II. LITERATURE REVIEW

The problem we study has some similarities with the

problem of course timetabling, which is broadly studied in the

literature. However, our problem differs substantially for the

presence of constraints that preserve the teaching quality, like

prerequisite constraints that determine the possible sequence of

teaching units, for the funds and timing constraints that impose

a selection of the contents to delivery and for a different

objective function that aims at satisfying the largest number

of students, because there is no guarantee that all teaching

units will be provided. The model educational timetabling

problem has always aroused the curiosity of the scientific

community related to the world of operations research. In

the following, we overview the main methods used to solve

this problem. Among the oldest articles there are those using

Integer Programming (IP) ([1],[2]), even if in the real cases,

the huge amount of data requires alternative solutions to reduce

the complexity of the IP model. In particular, [3] propose a

possible decomposition in several stages of the IP model in

order to reduce its complexity. In [4], the authors underline

that a mixed-integer programming model is not appropriate for

practical-sized test instances and propose two decomposition

approaches. The first is based on a two-stage modeling solution

approach, where in the initial stage weekly time-slots for the

classes are determined, while in the second stage teachers

are assigned to classes. The second approach is based on

another mixed-integer programming formulation that selects

valid combinations of weekly schedules from the set of all

feasible schedules, and uses a column generation framework

to exploit its inherent special structure.

Joint Training Offer Selection and Course

Timetabling Problems: Models and Algorithms
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Recently, many meta-heuristic techniques have been

proposed. Among the best known meta-heuristics paradigms

there is the Tabu Search (TS) used in a classic manner

in [5] and in a more innovative manner in [6], because

it integrates it with several distinguished features such as

an original double Kempe chains neighborhood structure, a

penalty guided perturbation operator and an adaptive search

mechanism. In [7] TS is hybridized with a genetic algorithm

and it is applied on a set of neighborhood structures. Among

the others meta-heuristics, well known is also the Simulated

Annealing (SA) used in [8] to improve an initial solution

obtained through an approach of mathematical programming

combined with Lagrangian relaxation. In [9] SA is used

in a more innovative manner because the search process

is applied on variable neighbourhood. In addition to the

previous meta-heuristics there are Genetic Algorithms (GA)

that are used in [10] to optimize the initial solution through

a fitness function. In [11] GA are combined with a search

strategy to create offspring into population based on a

data structure that stores information extracted from good

individuals of previous generations and with a local search

that improves the efficiency of the proposed GA. In [12] the

approach is based on Ant Colony Optimization, where artificial

ants successively construct solutions based on pheromones

and local information. The key feature is the use of two

distinct but simplified pheromone matrices in order to improve

convergence, still providing enough flexibility for effectively

guiding the solution construction process. By parallelizing

the algorithm it is possible to improve the solution quality

significantly. Alternative solutions contemplate the use of

Constraint Programming as in [13].

III. PROBLEM FORMULATION

Before presenting our mathematical model, we first

introduce the following notation:

– S is the set of students having one or more teaching

units to recovery;

– C is the set of all courses to recovery;

– Urec is the set of teaching units to recovery;

– vsu represents the result obtained by student s ∈ S

concerning teaching unit u ∈ Urec. If student s must

recovery teaching unit u, then such a coefficient is equal

to 1. Otherwise it is equal to 0;

– fcu indicates if teaching unit u ∈ Urec is present in

course c ∈ C. In this case, the coefficient is equal to 1.

Otherwise, it is equal to 0;

– pij indicates whether teaching unit j ∈ Urec is a

prerequisite for teaching unit i ∈ Urec. The possible

values are 1 or 0;

– TS is the set of all available timeslots;

– D is the set of all available teachers;

– adc indicates whether teacher d ∈ D has the appropriate

skills to teach course c ∈ C;

– ru is the number of students that must recovery teaching

unit u ∈ Urec;

– lu is the number of timeslots required by teaching unit

u ∈ Urec;

– G is the set of all available days;

– W is the set of all available weeks;

– h is the number of daily timeslots;

– w is the number of weekly timeslots;

– td is the maximum number of daily timeslots per course;

– tw is the maximum number of weekly timeslots per

course;

– B is the maximum number of timeslots allowed by the

available funds.

The decision variables are:

– yts,ud binary variable equal to 1 if one lesson of teaching

unit ud is held in timeslot ts, otherwise it is equal to 0.

– zd,c binary variable equal to 1 if teacher d is assigned

to course c, otherwise it is equal to 0.

– tts,d,c binary variable equal to 1 if timeslot ts is assigned

to teacher d and course c, otherwise it is equal to 0.

The constraints of the model are:

– Each course can be assigned at most to a single teacher

qualified to teach it:
∑

d∈D|adc=1

zd,c ≤ 1 ∀c ∈ C (1)

– If a teaching unit u is held in a timeslots ts, then the

course c containing the teaching unit u must be assigned

to a teacher qualified to teach it:

yts,u ≤
∑

d∈D|adc=1

zd,c

∀ts ∈ TS, ∀c ∈ C, ∀u ∈ Urec|fcu = 1

(2)

– No more than one teaching unit of the same course is

assigned to each timeslot ts:
∑

u∈Urec|fcu=1

yts,u ≤ 1 ∀ts ∈ TS, ∀c ∈ C (3)

– Variables tts,d,c are tied to variables zd,c:

tts,d,c ≤ zd,c ∀ts ∈ TS, ∀d ∈ D, ∀c ∈ C (4)

– For each timeslot ts, if no teaching unit u of course c

is assigned to it, then the corresponding variable tts,d,c
must be equal to 0:

tts,d,c ≤
∑

u∈Urec|fcu=1

yts,u

∀ts ∈ TS, ∀d ∈ D, ∀c ∈ C

(5)

– This constraint models the relationship between decision

variables tts,d,c, decision variables yts,u and decision

variables zd,c:

tts,d,c ≥ zd,c + (
∑

u∈Urec|fcu=1

yts,u)− 1

∀ts ∈ TS, ∀d ∈ D, ∀c ∈ C

(6)

– Teacher cannot teach more than one lesson in the same

timeslot:
∑

c∈C|adc=1

tts,d,c ≤ 1 ∀d ∈ D, ∀ts ∈ TS (7)
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– For each teaching unit u ∈ Urec, there is a maximum

number of timeslots:
∑

ts∈TS

yts,u ≤ lu ∀u ∈ Urec (8)

– A teacher can teach only courses for which he/she is

qualified:

zd,c ∗ (1− adc) = 0 ∀c ∈ C, ∀d ∈ D (9)

– Students cannot attend more than one lesson in the same

timeslot:
∑

u∈Urec|vsu=1

yts,u ≤ 1 ∀s ∈ S, ∀ts ∈ TS (10)

– The budget must be respected:
∑

u∈Urec

∑

ts∈TS

yts,u ≤ B. (11)

– Every teaching unit can be assigned only after its

prerequisite teaching units:

ytsi,i + ytsj ,j ≤ 1

∀i, j ∈ Urec|pij = 1, ∀tsi, tsj ∈ TS|tsi ≤ tsj
(12)

– If a teaching unit i is assigned to a timeslot tsi then at

least one timeslot must be assigned to all its prerequisite

teaching units:
∑

tsj∈TS|tsj<tsi

ytsj ,j ≥ ytsi,i

∀i, j ∈ Urec|pij = 1, ∀tsi ∈ TS

(13)

– Each course can be assigned to a maximum number of

timeslots per day:

∑

u∈Urec|fcu=1

g∗h+h
∑

ts=g∗h+1

ts∈TS

yts,u ≤ td

∀g ∈ G, ∀c ∈ C

(14)

– Each course can be assigned to a maximum number of

timeslots per week:

∑

u∈Urec|fcu=1

w∗k+k
∑

ts=w∗k+1
ts∈TS

yts,u ≤ tw

∀w ∈ W, ∀c ∈ C

(15)

– If in the same day there are two lessons of the same

course, then they must to be consecutive:

yts1,u1
+ yts2,u2

≤ 1

∀g ∈ G, ∀ts1, ts2 ∈ TS |

(ts2 − ts1 > 1 ∨ ts2 − ts1 < −1)

∧ (ts1 > g ∗ h ∧ ts1 ≤ g ∗ h+ h)

∧ (ts2 > g ∗ h ∧ ts2 ≤ g ∗ h+ h),

∀u1, u2 ∈ Urec | ∃ c ∈ C ∧ fcu1
= 1 ∧ fcu2

= 1

(16)

Our MIP model aims at satisfying as much as possible the

recovery needs of the students. To achieve this objective, it is

necessary to reduce as much as possible the gap between the

number of timeslots needed by a single teaching unit and the

timeslots actually assigned to it. In addition, because we want

to satisfy as many students as possible, we assign a weight to

a single teaching unit gap related to the number of students

that need to recovery that specific teaching unit.

min f =
∑

u∈Urec

ru

(

lu −
∑

ts∈TS

yts,u

)

(17)

IV. HEURISTIC APPROACH

Solving the problem with the MIP model through a

general purpose solver may be performed for small instances

only, while solving real-life-sized instances of such model

requires specific heuristic approaches. In particular, we have

performed a number of experiments based on both real

and randomly-generated instances. We have used the general

purpose MIP solver IBM ILOG CPLEX and we have imposed

a time limit of 3, 600 seconds. In our tests the problem was

never solved to optimality and the average optimality gap

was equal to about 57%. Moreover, we underline that in the

realistic case under examination of a high school, it is very

unlikely that the school administration has an hardware so

powerful such as that used in our tests (described in Section

V).

For this purpose, we propose a heuristic approach based on

the use of a fast constructive procedure. Our approach is based

on solving a number of sub-MIP problems. The algorithm

begins by solving the first sub-MIP problem associated to the

first day of the planning horizon, obtaining a partial solution

that will become fixed in the following sub-MIP problems.

Then, the algorithm solves the sub-MIP problem associated

to the first two days (the solution associated to the first day

is fixed) determining a new partial solution that will be used

in the following sub-MIP problems. Thus, at each step the

time window is increased by one day (Fig. 1). The algorithm

execution terminates in the following cases:

– we have considered the entire planning horizon;

– we have completely utilized the available funds;

– the objective function was not improved for a given

number of iterations;

– a time limit is reached.

During each step, only some of the yts,u variables are fixed,

whereas the zd,c and tts,d,c variables are always considered as

free.

Below, we describe the sub-MIP model we use in our

heuristic, by first introducing the following additional notation:

– y′ts,ud is a coefficient taking value 1 if teaching unit ud

is assigned to timeslot ts, 0 otherwise;

– TSR is the set of timeslots for which the decision

variables yts,ud are “fixed”;

– TSU is the set of timeslots for which the decision

variables yts,ud are “free”.

The sub-problem constraints are derived from the initial MIP

model, apart for the following constraints:

– If a teaching unit u is held in a timeslots ts, then the

course c containing the teaching unit u must be assigned
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STEP 1 Resolve the sub_MIP problem associated to the time window [day 1 , day 1]

STEP 2 Resolve the sub_MIP problem associated to the time window [day 1, day 2]

............

............ 

STEP G Resolve the sub_MIP problem associated to the time window [day 1, day G]

It indicates all days included in TSR, a partial solution for this time window is

calculated

It indicats all days included in TSU, the solution for this time window must to be 

calculated on the specific STEP

It indicates all days that are not considered in the actual step for the sub-MIP 

problem resolution

Fig. 1. Time window evolution during the various iterations of the algorithm

to a teacher qualified to teach that course c and constraint

(2) becomes:

y′ts,u ≤
∑

d∈D|adc=1

zd,c

∀ts ∈ TSR, ∀c ∈ C, ∀u ∈ Urec|fcu = 1

(18)

yts,u ≤
∑

d∈D|adc=1

zd,c

∀ts ∈ TSU, ∀c ∈ C, ∀u ∈ Urec|fcu = 1

(19)

– In the same timeslot we do not assign more than one

teaching unit related to the same course and constraint

(3) becomes:
∑

u∈Urec|fcu=1

yts,u ≤ 1 ∀ts ∈ TSU, ∀c ∈ C (20)

– Variables tts,d,c are tied to variables zd,c and constraint

(4) becomes: :

tts,d,c ≤ zd,c

∀ts ∈ {TSR ∪ TSU}, ∀d ∈ D, ∀c ∈ C
(21)

– For each timeslot ts, if no teaching unit u of course c is

assigned to a timeslot ts then the corresponding variable

tts,d,c must be equal to 0 and constraint (5) becomes:

tts,d,c ≤
∑

u∈Urec|fcu=1

y′ts,u

∀ts ∈ TSR, ∀d ∈ D, ∀c ∈ C

(22)

tts,d,c ≤
∑

u∈Urec|fcu=1

yts,u

∀ts ∈ TSU, ∀d ∈ D, ∀c ∈ C

(23)

– This constraint models the relationship between decision

variables tts,d,c, yts,u and zd,c; constraint (6) becomes:

tts,d,c ≥ zd,c +





∑

u∈Urec|fcu=1

y′ts,u



− 1

∀ts ∈ TSR, ∀d ∈ D, ∀c ∈ C

(24)

tts,d,c ≥ zd,c +





∑

u∈Urec|fcu=1

yts,u



− 1

∀ts ∈ TSU, ∀d ∈ D, ∀c ∈ C

(25)

– Teacher cannot teach more than one lesson in the same

timeslot and constraint (7) becomes:
∑

c∈C|adc=1

tts,d,c ≤ 1

∀d ∈ D, ∀ts ∈ {TSR ∪ TSU}

(26)

– For each teaching unit we cannot assign more than the

maximum number of timeslots needed by it and constraint

(8) becomes:
∑

ts∈TSU

yts,u ≤ lu −
∑

ts∈TSR

y′ts,u ∀u ∈ Urec (27)

– Students cannot attend simultaneously more than one

lesson and constraint (10) becomes:
∑

u∈Urec|vsu=1

yts,u ≤ 1 ∀s ∈ S, ∀ts ∈ TSU (28)

– The budget cannot be exceeded and constraint (11)

becomes:
∑

u∈Urec

∑

ts∈TSU

yts,u ≤ B −
∑

u∈Urec

∑

ts∈TSR

y′ts,u (29)

– Every teaching unit must be chronologically assigned

only after its prerequisite teaching units and the constraint

(12) becomes:

y′tsi,i + ytsj ,j ≤ 1

∀i, j ∈ Urec|pij = 1,

∀tsi ∈ TSR, ∀tsj ∈ TSU |tsi ≤ tsj

(30)

ytsi,i + ytsj ,j ≤ 1

∀i, j ∈ Urec|pij = 1,

∀tsi, tsj ∈ TSU |tsi ≤ tsj

(31)

– If a teaching unit i is assigned to a timeslot tsi, then at

least one timeslot must be assigned to all its prerequisite

teaching units and constraint (13) becomes:
∑

tsj∈TSR|tsj<tsi

y′tsj ,j +
∑

tsj∈TSU |tsj<tsi

ytsj ,j ≥ ytsi,i

∀i, j ∈ Urec|pij = 1, ∀tsi ∈ TSU

(32)

– For each course it is not possible to assign more than

a specific number of timeslots per day; constraint (14)

becomes:

∑

u∈Urec|fcu=1









g∗h+h
∑

ts=g∗h+1

ts∈TSR

y′ts,u +

g∗h+h
∑

ts=g∗h+1

ts∈TSU

yts,u









≤ td

∀g ∈ G, ∀c ∈ C

(33)
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– For each course it is not possible to assign more than

a specific number of timeslots per week; constraint (15)

becomes:

∑

u∈Urec|fcu=1







w∗k+k
∑

ts=w∗k+1
ts∈TSR

y′ts,u +

w∗k+k
∑

ts=w∗k+1
ts∈TSU

yts,u






≤ tw

∀w ∈ W, ∀c ∈ C

(34)

– If in the same day there are two lessons of the same

course then they must be consecutive; constraint (16)

becomes:

yts1,u1
+ yts2,u2

≤ 1

∀g ∈ G, ∀ts1, ts2 ∈ TSU |

(ts2 − ts1 > 1 ∨ ts2 − ts1 < −1)

∧ (ts1 > g ∗ h ∧ ts1 ≤ g ∗ h+ h)

∧ (ts2 > g ∗ h ∧ ts2 ≤ g ∗ h+ h),

∀u1, u2 ∈ Urec | ∃ c ∈ C ∧ fcu1
= 1 ∧ fcu2

= 1

(35)

y′ts1,u1
+ yts2,u2

≤ 1

∀g ∈ G, ∀ts1 ∈ TSR, ∀ts2 ∈ TSU |

(ts2 − ts1 > 1 ∨ ts2 − ts1 < −1)

∧ (ts1 > g ∗ h ∧ ts1 ≤ g ∗ h+ h)

∧ (ts2 > g ∗ h ∧ ts2 ≤ g ∗ h+ h),

∀u1, u2 ∈ Urec | ∃ c ∈ C ∧ fcu1
= 1 ∧ fcu2

= 1

(36)

The sub-MIP objective function is:

min f =

∑

u∈Urec

ru

(

lu −

(

∑

ts∈TSR

y′ts,u +
∑

ts∈TSU

yts,u

))

(37)

In Algorithm I we report a pseudo-code describing the steps

of our heuristic approach.

V. COMPUTATIONAL RESULTS

To assess the quality of our approaches, we have performed

a number of experiments on a data set composed by both

real-life and randomly-generated instances. Table I reports a

description of the instances composition, in terms of:

– whether they are real-life (RL) or randomly-generated

(RG);

– number of available teachers (|D|);
– number of of courses to recovery (|C|);
– number of teaching units to recovery (|Urec|);
– number of students involved in the remedial courses

(|S|).

For each experiment we have imposed a time limit of 3, 600
seconds. To evaluate the performance of the exact and heuristic

approaches we have used the percentage objective function gap

obtained as:

gap =
(objM − objH)

objM
100,

TABLE I
DESCRIPTION OF THE TEST INSTANCES

Instance(s) RL / RG |D| |C| |Urec| |S|

1− 7 RG 15 25 150 200

8− 16 RG 15 20 200 200

17− 18 RL 21 54 500 214

19 RL 14 54 400 210

20 RL 21 54 400 210

where objM represents the objective function value obtained

by the MIP model, whereas objH is the objective function

value achieved by the heuristic.

Our experiments have been performed on a Linux machine

clocked at 2.67 GHz and equipped with 27 GB of RAM.

The MIP and the sub-MIP models have been coded using

the mathematical programming language OPL and solved by

means of the black-box solver IBM ILOG CPLEX 12.5.

Finally, our heuristic has been implemented in Java.

Table II reports the results of our computational campaign,

showing for each instance the objective function values

obtained by the MIP model and the heuristic (objM and objH ,

respectively), as well as the heuristic running time in seconds

(TH ) and the percentage objective function gap. We do not

report the MIP model running time, because it always reached

the time limit before finding the optimal solution. For this

reason, it is interesting to report the MIP model percentage

optimality gap (Opt. gap).

We observe that the heuristic always converges before the

time limit. In particular, in about the 50% of the cases it takes

less than half of the available time. In addition, the value of
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TABLE II
COMPARISON OF THE RESULTS OBTAINED BY THE MIP MODEL AND THE

HEURISTIC

Instance objM Opt. gap objH TH gap

1 4, 391 36.48% 3, 601 1, 431 17.99%

2 11, 377 74.14% 3, 871 1, 415 65.98%

3 4, 391 36.51% 3, 752 1, 776 14.55%

4 2, 778 41.79% 2, 033 1, 407 26.82%

5 2, 793 38.94% 2, 192 1, 405 21.52%

6 2, 848 49.31% 1, 980 2, 005 30.48%

7 2, 680 41.28% 1, 950 2, 002 27.24%

8 2, 631 63.01% 1, 386 3, 345 47.32%

9 2, 666 60.20% 1, 345 3, 327 49.55%

10 2, 668 59.78% 1, 365 3, 332 48.84%

11 4, 621 56.86% 2, 300 3, 363 50.23%

12 3, 590 61.47% 1, 838 3, 355 48.80%

13 5, 559 55.44% 2, 841 3, 342 48.89%

14 5, 340 59.80% 2, 870 3, 359 46.25%

15 7, 135 57.95% 4, 102 3, 355 42.51%

16 7, 049 58.34% 4, 124 3, 334 41.50%

17 5, 124 79.53% 2, 627 3, 286 48.73%

18 5, 124 − 3, 353 3, 070 34.56%

19 3, 752 79.07% 1, 925 2, 599 48.69%

20 4, 270 81.61% 2, 401 2, 622 43.77%

Average 40.21%

the heuristic objective function is always better than that of

the MIP model with gaps depending on the complexity of the

instances. In more detail, in the case of instances 1 − 7 the

average optimality gap is 45.49%, the heuristic converges in

less than 2, 000 seconds and the objective function gap varies

from a minimum of about 18% to a maximum of about 66%,

with an average value of 29, 23%. In the case of instances

8 − 16, the average optimality gap is equal to 59, 21%, the

heuristic uses almost all the time at disposal to converge

and the objective function gap ranges between 41.50% and

50.23% with an average value of 47.10%. With respect to

instances 17 and 18, the optimality gap is equal to 79.53%

(this value has not been reported for instance 18, because it

was not possible to find a feasible solution before the time

limit), the heuristic converges in about 3, 200 seconds (on the

average) and the objective function gap varies from 34.56%

to 48.73% with an average gap of 41.65%. In the case of

instance 19 the optimality gap is about 79%, the heuristic

converges in about 2, 600 seconds and the objective function

gap is 48.69%. Finally, for instance 20 the optimality gap is

81.61%, the heuristic converges in about 2, 600 seconds and

the objective function gap is 43.77%.

VI. CONCLUSIONS

In this article, we dealt with a variant of the classic course

timetabling problem that focuses on the organization of high

schools remedial courses. The purpose of such courses is to

provide, with limited availability of funds and with a number

of teachers at disposal, the best training offer to under-prepared

students to succeed in their studies. We have first proposed a

MIP model for this problem. Solving this model to optimality

with a general purpose solver was possible for small instances

only. Thus, in order to deal with real-life-sized instances, we

have also presented a heuristic approach. Our tests have shown

that the heuristic was able to converge, in about the 50% of

the considered instances, in approximately half of the time

limit. On the other hand, the MIP model was never solved to

optimality within the time limit, with an average optimality

gap of about 57%. In addition, the heuristic also obtained an

improvement of the objective function value varying from 18%

to 66% with respect to the value obtained by the MIP model.
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