IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations A. Safari, H. Shayeghi, H. A. Shayanfar Abstract—On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution. Keywords-- UPFC, IPSO, output feedback Controller. #### Nomenclature m_E | BT | boosting transformer | |--------------|---------------------------------------------------| | D | Machine damping coefficient | | DC | Direct current | | E'q | internal voltage behind transient reactance | | E_{fd} | equivalent excitation voltage | | ET | excitation transformer | | FACTS | flexible alternating current transmission systems | | GTO | gate turn off thyristor | | IPSO | Iteration particle swarm optimization | | ITAE | time multiplied absolute value of the error | | K | proportional gain of the controller | | K_A | regulator gain | | M | Machine inertia coefficient | | | D DC E'q Eft ET FACTS GTO IPSO ITAE K KA | excitation amplitude modulation ration $\begin{array}{ll} m_B & boosting \ amplitude \ modulation \ ration \\ P_e & electrical \ output \ power \\ PI & proportional \ integral \\ P_m & mechanical \ input \ power \\ PSO & particle \ swarm \ optimization \\ SMIB & single \ machine \ infinite \\ \end{array}$ A. Safari is with the Young Researchers Club, Islamic Azad University, Ahar branch, Iran. (e-mail: asafari1650@ yahoo.com). # $\begin{array}{ll} SVC & static \ var \ compensator \\ T_A & regulator \ time \ constant \end{array}$ T'_{do} time constant of excitation circuit T_e electric torque UPFC unified power flow controller V terminal voltage v_{ref} reference voltage VSC voltage source converter ω rotor speed δ rotor angle $\begin{array}{lll} \delta_B & & boosting \ phase \ angle \\ \delta_E & & excitation \ phase \ angle \\ \Delta P_e & & electrical \ power \ deviation \\ \Delta V_{dc} & DC \ voltage \ deviation \end{array}$ #### I. INTRODUCTION DAMPING of low frequency oscillations in a power system is one of the important applications of a unified power flow controller (UPFC). These oscillations can occur in a system as a result of a number of contingencies including sudden load changes or power system faults. The UPFC has the ability to control of the power flow in the transmission line, improve the transient stability, mitigate system oscillation and provide voltage support. It performs this through the control of the in-phase voltage, quadrate voltage and shunts compensation due to its mains control strategy [1, 2]. The UPFC consists of two ac/dc converters. One of the two converters is connected to the transmission line via a series transformer and the other in parallel with the line via a shunt transformer. The series and shunt converters are connected via a large DC capacitor. The series branch of the UPFC injects an AC voltage with controllable magnitude and phase angle at the power frequency via an insertion transformer. The shunt converter exchanges a current of controllable magnitude and power factor angle with the power system [3]. Several trials have been reported in the literature to dynamic models of UPFC in order to design suitable controllers for power flow, voltage and damping controls. Nabavi-Niaki and Iravani [4] developed a steady-state model, a small-signal linearized dynamic model, and a state-space large-signal model of a UPFC. Wang [5-7] presents the establishment of the linearized Phillips-Heffron model of a power system installed with a UPFC. The paper has not presented a systematic approach for designing the damping controllers. Further, no effort seems to have been made to H. Shayeghi is with the Department of Technical Eng., University of Mohaghegh Ardabil, Ardabil, Iran. H. A. Shayanfar is with the Electrical Engineering Department, Iran University of Science and Technology, Tehran, Iran. identify the most suitable UPFC control parameter, in order to arrive at a robust damping controller. Recently, global optimization techniques like particle swarm optimization [8] have been applied for controller parameter optimization. The PSO is a novel population based metaheuristic, which utilize the swarm intelligence generated by the cooperation and competition between the particle in a swarm and has emerged as a useful tool for engineering optimization. Unlike the other heuristic techniques, it has a flexible and well-balanced mechanism to enhance the global and local exploration abilities. This algorithm has also been found to be robust in solving problems featuring non-linearing, non-differentiability and high-dimensionality [9-14]. In this paper, to enrich the searching behavior and to avoid being trapped into local optimum, IPSO technique is proposed, which is modified from PSO, is developed to optimize the output feedback controller parameters. The problem of robust output feedback controller design is formulated as an optimization problem and PSO technique is used to solve it. The proposed design process for controller with the output feedback scheme is applied to a singlemachine infinite-bus power system. Since only local and available states ($\Delta\omega$ and ΔV_t) are used as the inputs of each controller, the optimal decentralized design of controller can be accomplished. The effectiveness of the proposed controller is demonstrated through nonlinear time simulation studies to damp low frequency oscillations under different operating conditions. Results evaluation show that the Iteration PSO based tuned damping controller achieves good performance for a wide range of operating conditions and is superior to designed controller using CPSO technique. #### II. ITERATION PARTICLE SWARM OPTIMIZATION #### A. Classical PSO The PSO method is a population-based one and is described by its developers as an optimization paradigm, which models the social behavior of birds flocking or fish schooling for food. Therefore, PSO works with a population of potential solutions rather than with a single individual [10]. As in evolutionary computation paradigms, the concept of fitness is employed and candidate solutions to the problem are termed particles or sometimes individuals, each of which adjusts its flying based on the flying experiences of both itself and its companion. Its key concept is that potential solutions are flown through hyperspace and are accelerated towards better or more optimum solutions [14]. Its paradigm can be implemented in simple form of computer codes and is computationally inexpensive in terms of both memory requirements and speed. The higher dimensional space calculations of the PSO concept are performed over a series of time steps. The population is responding to the quality factors of the previous best individual values and the previous best group values. It has also been found to be robust in solving problem featuring nonlinearing, non-differentiability and high-dimensionality [8]. The PSO starts with a population of random solutions "particles" in a D-dimension space. The *i*th particle is represented by $X_i = (x_{il}, x_{i2}, \dots, x_{iD})$. Each particle keeps track of its coordinates in hyperspace, which are associated with the fittest solution it has achieved so far. The value of the fitness for particle i (pbest) is also stored as $P_i = (p_{il}, p_{i2}, \ldots, p_{iD})$. The global version of the PSO keeps track of the overall best value (gbest), and its location, obtained thus far by any particle in the population. The PSO consists of, at each step, changing the velocity of each particle toward its pbest and gbest according to (1). The velocity of particle i is represented as $V_i = (v_{il}, v_{i2}, \ldots, v_{iD})$. Acceleration is weighted by a random term, with separate random numbers being generated for acceleration toward pbest and gbest. The position of the ith particle is then updated according to (2) [12]: $$v_{id} = w \times v_{id} + c_1 \times rand() \times (P_{id} - x_{id})$$ + $c_2 \times rand() \times (P_{gd} - x_{id})$ (1) $$x_{id} = x_{id} + cv_{id} \tag{2}$$ Where, P_{id} and P_{gd} are pbest and gbest. The positive constants c_1 and c_2 are the cognitive and social components that are the acceleration constants responsible for varying the particle velocity towards pbest and gbest, respectively. Variables r_1 and r_2 are two random functions based on uniform probability distribution functions in the range [0, 1]. The use of variable w is responsible for dynamically adjusting the velocity of the particles, so it is responsible for balancing between local and global searches, hence requiring less iteration for the algorithm to converge [11]. #### B. Iteration PSO In this paper, a new index named, Iteration Best, is incorporated in (1) to enrich the searching behavior, solution quality and to avoid being trapped into local optimum, IPSO technique is proposed, (3) shows the new form of (1): $$v_{id} = w \times v_{id} + c_1 \times rand() \times (P_{id} - x_{id})$$ $$+ c_2 \times rand() \times (P_{gd} - x_{id}) + c_3 \times rand() \times (I_b - x_{id})$$ (3) Where, I_b is the best value of the fitness function that has been obtained by any particle in any iteration and c_3 shows the weighting of the stochastic acceleration terms that pull each particle toward I_b [13]. Figure 1 shows the flowchart of the proposed IPSO algorithm. ## III. LINEAR MODEL OF POWER SYSTEM A single machine infinite bus power system equipped with a UPFC is shown in Fig 2. The synchronous generator is delivering power to the infinite-bus through a double circuit transmission line and a UPFC. The system data is given in the Appendix. The dynamic model of the UPFC is required in order to study the effect of the UPFC for enhancing the small signal stability of the power system. By applying Park's transformation and neglecting the resistance and transients of the ET and BT transformers, the UPFC can be modeled as [5-81]. Fig. 2 SMIB power system equipped with UPFC $$\begin{bmatrix} v_{Eld} \\ v_{Elq} \end{bmatrix} = \begin{bmatrix} 0 & -x_E \\ x_E & 0 \end{bmatrix} \begin{bmatrix} i_{Ed} \\ i_{Eq} \end{bmatrix} + \begin{bmatrix} \frac{m_E \cos \delta_E v_{dc}}{2} \\ \frac{m_E \sin \delta_E v_{dc}}{2} \end{bmatrix}$$ $$\begin{bmatrix} v_{DL} \\ v_{DL} \end{bmatrix} \begin{bmatrix} 0 & -x_L \end{bmatrix} \begin{bmatrix} i_{DL} \\ i_{DL} \end{bmatrix} \begin{bmatrix} \frac{m_B \cos \delta_B v_{dc}}{2} \end{bmatrix}$$ (5) $$\begin{bmatrix} v_{Bid} \\ v_{Biq} \end{bmatrix} = \begin{bmatrix} 0 & -x_B \\ x_B & 0 \end{bmatrix} \begin{bmatrix} i_{Bd} \\ i_{Bq} \end{bmatrix} + \begin{bmatrix} \frac{m_B \cos \delta_B v_{dc}}{2} \\ \frac{m_B \sin \delta_B v_{dc}}{2} \end{bmatrix}$$ (5) $$\dot{V}_{dc} = \frac{3m_E}{4C_{dc}} \left[\cos \delta_E - \sin \delta_E\right] \begin{bmatrix} i_{Ed} \\ i_{Eq} \end{bmatrix} + \frac{3m_B}{4C_{dc}} \left[\cos \delta_B - \sin \delta_B\right] \begin{bmatrix} i_{Bd} \\ i_{Bq} \end{bmatrix}$$ (6) Where, v_{Eb} i_E , v_{Bt} , and i_B are the excitation voltage, excitation current, boosting voltage, and boosting current, respectively; C_{dc} and v_{dc} are the DC link capacitance and voltage. The nonlinear model of the SMIB system is described by [8, 9]: $$\delta = \omega_0(\omega - 1) \tag{7}$$ $$\omega = (P_m - P_e - D\Delta\omega)/M \tag{8}$$ $$E'_{q} = (-E_{q} + E_{fd}) / T'_{do}$$ (9) $$E_{fd} = (-E_{fd} + K_a(V_{ref} - V_t)) / T_a$$ (10) A linear dynamic model is obtained by linearizing the nonlinear model round an operating condition. The linearized model of power system is given in Ref [5]. ## IV. OUTPUT FEEDBACK CONTROLLER DESIGN USING IPSO A power system can be described by a linear time invariant state space model as follows [8]: $$\dot{x} = Ax + Bu$$ $$y = Cx$$ (11) Where x, y and u denote the system linearized state, output and input variable vectors, respectively. A, B and C are constant matrixes with appropriate dimensions which are dependent on the operating point of the system. The eigenvalues of the state matrix A that are called the system modes define the stability of the system when it is affected by a small interruption. As long as all eigenvalues have negative real parts, the power system is stable when it is subjected to a small disturbance. An output feedback controller has the following structures: $$u = -Ky \tag{12}$$ Substituting (12) into (11) the resulting state equation is: $\dot{x} = A_C x$ (13) Where, $$A_c$$ is the closed-loop state matrix and is given by: $A_C = A - BKC$ (14) Only the local and available state variables $\Delta\omega$ and ΔV_t are taken as the input signals of each controller, so the implementation of the designed stabilizers becomes more feasible. By properly choosing the feedback gain K, the eigenvalues of closed-loop matrix A_c are moved to the lefthand side of the complex plane and the desired performance of controller can be achieved. Once the output feedback signals are selected, only the selected signals are used in forming (11). Thus, the remaining problem in the design of output feedback controller is the selection of K to achieve the required objectives. In this paper, δ_E and m_B are modulated in order to damping controller design. The proposed controller must be able to work well under all the operating conditions where the improvement in damping of the critical modes is necessary. To acquire an optimal combination, this paper employs IPSO [13] to improve optimization synthesis and find the global optimum value of objective function. Since the operating conditions in power systems are often varied, a performance index for a wide range of operating points is defined as follows [8]: $$J = \sum_{i=1}^{Np} \int_{0}^{t \sin t} t |\Delta \omega_{i}| dt$$ (15) Where, the t_{sim} is the time range of simulation and N_P is the total number of operating points for which the optimization is carried out. It is aimed to minimize this objective function in order to improve the system response in terms of the settling time and overshoots. The design problem can be formulated as the following constrained optimization problem, where the constraints are the controller parameters bounds: Minimize J Subject to: $$K_1^{\min} \le K_1 \le K_1^{\max}$$ $$K_2^{\min} \le K_2 \le K_2^{\max}$$ (16) Typical ranges of the optimized parameters are [0.01-150] for K_1 and [0.01-10] for K_2 . The proposed approach employs IPSO to solve this optimization problem and search for an optimal set of output feedback controller parameters. The optimization of UPFC controller parameters is carried out by evaluating the objective cost function as given in (15), which considers a multiple of operating conditions. The operating conditions are considered as [8]: - Base case: P = 0.80pu, Q = 0.114 pu and X_L=0.3 pu. (Nominal loading) - Case 1: P = 0.2 pu, Q = 0.01 and $X_L=0.3$ pu. (Light loading) - Case 2: P = 1.20 pu, Q = 0.4 and $X_L=0.3$ pu. (Heavy loading) - Case 3: P = 0.80pu, Q = 0.114 pu and $X_L = 0.6$ pu. - Case 4: P = 1.20 pu, $Q = 0.4 \text{ and } X_L = 0.6 \text{ pu}$. In this work, in order to acquire better performance, number of particle, particle size, number of iteration, c_1 , c_2 , and c is chosen as 30, 2, 50, 2, 2 and 1, respectively. Also, the inertia weight, w, is linearly decreasing from 0.9 to 0.4. It should be noted that IPSO algorithm is run several times and then optimal set of output feedback gains for the UPFC controllers is selected. The final values of the optimized parameters are given in Table 1. TABLE I OPTIMAL PARAMETERS OF THE PROPOSED CONTROLLERS | | K_1 | K_2 | |-----------------------------------------------|--------|-------| | $m_{\!\scriptscriptstyle B}$ based controller | 174.88 | 0.143 | | δ_E based controller | 87.32 | 0.742 | # V. NONLINEAR TIME DOMAIN SIMULATION To assess the effectiveness and robustness of the proposed controllers, the performance of the proposed controller under transient conditions is verified by applying a 6-cycle three-phase fault at t=1 sec, at the middle of the one transmission line. The fault is cleared by permanent tripping of the faulted line. The speed deviation of generator at nominal, light and heavy loading conditions due to designed controller based on the δ_E and m_B are shown in Figs. 3 and 4. The performance of the proposed method is compared to that of the classical PSO given in [8]. It can be seen that the IPSO based designed controller achieves good robust performance, provides superior damping in comparison with the classical method. Fig. 3. Dynamic responses for $\Delta\omega$ at (a) Nominal (b) Light (c) Heavy loading; Solid (IPSO *based* δ_E *controller*), Dashed (CPSO [8] *based* δ_E *controller*) and Dotted (Without controller). Fig. 4. Dynamic responses for $\Delta\omega$ at (a) Nominal (b) Light (c) Heavy loading; Solid (IPSO based m_B controller) and Dashed (CPSO [8] based m_B controller) and Dotted (Without controller). #### VI. CONCLUSIONS In this paper, improvement of the power systems low frequency oscillations using a UPFC based output feedback controller has been investigated. The design problem of the output feedback controller is converted into an optimization problem which is solved by a IPSO technique that has a strong ability to find the most optimistic results. The effectiveness of the proposed controllers for improving transient stability performance are demonstrated by a weakly connected example power system subjected to different operating conditions. The nonlinear time domain simulation results show the robustness of the proposed controller and their ability to provide good damping of low frequency oscillations. Moreover, the δ_E -based stabilizer provides better damping characteristics and enhances greatly the first swing stability compared to the m_B -based stabilizer. #### APPENDIX The nominal parameters of the system are listed in Table II. TABLE II | SYSTEM PARAMETERS | | | | | | | |-------------------|-----------------|---------------------------------|--------------------------------------------------|--|--|--| | Generator | M = 8 MJ/MVA | $T'_{do} = 5.044 \text{ s}$ | $X_d = 1$ pu | | | | | | $X_q = 0.6$ p.u | $X'_{d} = 0.3$ pu | D = 0 | | | | | Excitation s | system | $K_a = 10$ | $T_a = 0.05$ s | | | | | Transforme | ro | $X_{_{T}}=0.1pu$ | $X_E = 0.1 pu$ | | | | | Talistoffic | 15 | $X_B = 0.1 pu$ | | | | | | Transmissio | on line | $X_{L} = 1$ pu | | | | | | Operating c | ondition | P = 0.8 pu | $V_{_b}=1.0pu$ | | | | | Operating C | ondition | $V_{\iota} = 1.0 pu$ | | | | | | DC link par | ameter | $V_{DC} = 2pu$ | $C_{DC} = 1pu$ | | | | | | | $m_{\scriptscriptstyle B}=0.08$ | $\delta_{\scriptscriptstyle B} = -78.21^{\circ}$ | | | | | UPFC para | meter | $\delta_{E} = -85.35^{\circ}$ | $m_{\scriptscriptstyle E}=0.4$ | | | | | | | $K_s = 1$ | $T_s = 0.05$ | | | | ## REFERENCES - N.G. Hingorani and L. Gyugyi, Understanding FACTS: concepts and technology of flexible AC transmission systems, Wiley-IEEE Press; 1999 - [2] N. Tambey and M. Kothari, "Damping of power system oscillations with unified power flow controller (UPFC)". *IEE Proc. on Generation, Transmission and Distribution*, Vol. 150, No. 2, pp. 129-140, March 2003 - [3] P. K Dash, S. Mishra, and G. Panda, "A radial basis function neural network controller for UPFC", *IEEE Trans on Power Systems*, Vol. 15, No. 4, pp. 1293-1299, 2000. - [4] A. Nabavi-Niaki and M.R. Iravani, "Steady-state and dynamic models of unified power flow controller (UPFC) for power system studies", *IEEE Trans. Power Systems*. Vol. 11, No. 4; pp. 1937-1943, 1996. - [5] H. F. Wang, "A unified model for the analysis of FACTS devices in damping power system oscillations - Part III: unified power flow controller". *IEEE Trans Power Delivery*, Vol. 15, No. 3; pp. 978-983, 2000 - [6] H. F. Wang, "Damping function of unified power flow controller", IEE Proc. on Generation, Transmission and Distribution, Vol. 146, No. 1, pp. 81-87, 1999. - [7] H.F. Wang, "Application of modeling UPFC into multi-machine power systems", *IEE Proc. on Generation, Transmission and Distribution*, Vol. 146, No. 3, pp. 306-312, 1999. - [8] H. Shayeghi , H.A. Shayanfar, S. Jalilzadeh and A. Safari, "Design of output feedback UPFC controllers for damping of electromechanical oscillations using PSO", *Energy Conversion and Management*, Vol. 50, No. 10, pp. 2554-2561, 2009. - [9] J. Kennedy and R. Eberhart, Y. Shi, Swarm intelligence, Morgan Kaufmann Publishers, San Francisco, 2001. - [10] S. L. Ho, S. Yang, G. Ni, E. W. C. Lo and H. C. Wong, "A particle swarm optimization based method for multiobjective design optimizations", *IEEE Trans on Magnetics*, Vol. 41, No. 5, pp. 1756-1759, 2005. - [11] R. Poli, J. Kennedy and T. Blackwell, "Particle swarm optimization: An overview", Swarm Intell. Vol. 1, pp. 33-57, 2007. - [12] A. Ratnaweera, S. K. Halgamuge and H. S. Watson, "Self organizing Hierarchical particle swarm optimizer with time varying acceleration coefficients", *IEEE Trans on Evolutionary Computation*. Vol. 8, No. 3, pp. 240-255, 2004. - [13] T. Y. Lee and C. L. Chen, "Unit commitment with probabilistic reserve: an IPSO approach", *Energy conversion and Management*. Vol. 48, pp. 486–493, 2007. - [14] H. Shayeghi, H.A. Shayanfar, S. Jalilzade and A. Safari, "A PSO based unified power flow controller for damping of power system oscillations", *Energy Conversion and Management*, Vol. 50, No. 10, pp. 2583-2592, 2009.