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Abstract—The main cause of several neurodegenerative diseases
such as Alzheimer, Parkinson and spongiform encephalopathies is
formation of amyloid fibrils and plaques in proteins. We have
analyzed different sets of proteins and peptides to understand the
influence of sequence based features on protein aggregation process.
The comparison of 373 pairs of homologous mesophilic and
thermophilic proteins showed that aggregation prone regions (APRs)
are present in both. But, the thermophilic protein monomers show
greater ability to ‘stow away’ the APRs in their hydrophobic cores
and protect them from solvent exposure. The comparison of amyloid
forming and amorphous [-aggregating hexapeptides suggested
distinct preferences for specific residues at the six positions as well
as all possible combinations of nine residue pairs. The compositions
of residues at different positions and residue pairs have been
converted into energy potentials and utilized for distinguishing
between amyloid forming and amorphous [-aggregating peptides.
Our method could correctly identify the amyloid forming peptides at
an accuracy of 95-100% in different datasets of peptides.

Keywords—Aggregation prone regions, amyloids, thermophilic
proteins, amino acid residues, machine learning.

I. INTRODUCTION

GGREGATION is an ancient threat to productive protein

folding and it is essential to overcome aggregation for
the maintenance of metabolic flux and viability of cellular
machineries. The aggregation of endogenous proteins causes
several diseases in humans and animals. Aggregation is also a
major hurdle in successful development of biopharmaceutical
drug products [1]. Given the importance of aggregation in
different areas of biology, it is important to elucidate different
aggregation mechanisms and identify the probability of
peptides to form amorphous [ aggregates or amyloid fibrils.
Several experimental studies have been carried out to
understand the molecular determinants of aggregation,
mutational effects as well as the influence of hydrophobic
residues for promoting aggregation [2]-[6].

On the other hand, several computer approaches have been
put forward to understand the mechanism of aggregation,
aggregation strategies for mesophilic and thermophilic
proteins and for predicting amyloid prone peptides [7]-[10].
These methods are mainly based on amino acid properties,
such as hydrophobicity, charge distribution and propensity of
B-strands [8]-[10]. Further, several structure-based models and
empirical equations have been proposed to predict aggregation
prone regions and change in aggregation propensity/rate due
to mutation [11]-[17]. Agrawal et al. [1] and Belli et al. [18]
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have reviewed several commonly available aggregation
prediction tools and discussed their advantages and
shortcomings with applications.

In this work, we have identified the aggregation prone
regions (APRs) in a set of 373 pairs of mesophilic and
thermophilic proteins and analyzed them to understand the
strategies evolved by the thermophiles to resist aggregation.
Further, we have systematically analyzed the preferences of
amino acid residues in amyloid fibril forming peptides
(referred to as amyloids) and amorphous [-aggregating
peptides (referred to as non-amyloids) at different positions
and all possible nine residue pairs in experimentally known
hexapeptides. The analysis showed the presence of several
similarities and differences at different positions and residue
pairs of amyloids and non-amyloids. These preferences have
been converted into potentials and utilized them for
discriminating amyloid-forming peptides from non-amyloids.
The salient features of the results will be discussed.

II.  APRS IN MESOPHILIC AND THERMOPHILIC PROTEINS

A. Dataset

We have used a dataset of 373 pairs of thermophilic and
mesophilic proteins compiled by [19] in this study. The
dataset has the following features: (i) multi-domain proteins
were divided into separate single domains, (ii) a domain has
no more than 400 residues, (iii) if one partner of the pair had
longer sequences at the N or C termini, the extended segment
of residues were truncated, (iv) the difference in the length
between the proteins in a pair was no more than 10%, (v)
number of residues that lack 3D coordinates were no more
than 10% and (vi) the structural alignment score computed
with Maxsub was greater than 70%.

B. Aggregation Score in Mesophilic and Thermophilic
Proteins

We have computed the aggregation score in mesophilic and
thermophilic protein sequences using the programs, TANGO
[12], PAGE [14] and Waltz [10] as described earlier [20].
TANGO is based on the physicochemical principles of -sheet
formation, extended by the assumption that the core regions of
an aggregate are fully buried. PAGE 1is based on
physicochemical properties and computational design of -
aggregating peptide sequences. Waltz uses position specific
scoring matrices and performs well in recognizing polar APRs
[10]. Recent study showed that the accuracy of currently
available computational tools for prediction of aggregation
prone regions in proteins are approximately 80% [21].
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We have computed the aggregation score for all mesophilic
and thermophilic proteins and their difference using TANGO.
The results were grouped into three different clusters: (i) both
mesophiles and thermophiles have similar aggregation scores,
(i) mesophiles with higher aggregation scores and (iii) high
scores for thermophilic proteins. We observed that mesophilic
proteins tend to have lower aggregation scores.
Approximately, 55% of the mesophilic proteins have the
aggregation score of less than 600. The higher aggregation
scores (>800) are more frequent for the thermophilic proteins.
This might be due to the differences in amino acid
composition among the APRs in thermophilic and mesophilic
proteins [7].

C. Aggregation Prone Regions Identified Using Specific
Patterns

Lopez de la Paz and Serrano have studied the link between
amino acid sequence and amyloid fibril formation [22]. They
have used a de novo designed amyloid hexa-peptide STVIIE
and mutated each of the 6 positions with all the possible 19
natural amino acids and studied amyloid fibril formation. The
authors have described two amyloidogenic sequence patterns
stated below:

Pattern 1
{P}1-{PKRHW}2-[VLS(C)WFNQE]3-[ILTYWFNE]4-
[FIY]5-{PKRH}6 for acidic pH.

Pattern 2

{P}1-{PKRHW }2-[VLS(C)WFNQ]3-[ILTY WFN]4-
[FIY]5-{PKRH}6 for neutral pH.

These sequence patterns are written in PROSITE format.
The numbers 1 to 6 represent positions in the hexa-peptide.
The curly ({ }) and the straight ([ ]) brackets indicate
disallowed and allowed residues at a given position.

A third sequence pattern has been described by Tjenberg
and coworkers [23]:

Pattern 3

[KE]1-[FV]2-[FV]3-[EK]4 where the residue at position 1
is not the same as the one at position 4.

We have evaluated the existence of tetra-peptide and hexa-
peptide amyloid-like fibril forming patterns in mesophilic and
thermophilic proteins. These patterns were detected by using
ScanProsite (http://prosite.expasy.org/scanprosite/) and
http://www.bioinformatics.org/sms2/protein_pattern.html, a
pattern matching tool. The tetra-peptide pattern (pattern 3)
showed 18 hits in 17 mesophilic sequences whereas it showed
40 hits in 38 thermophilic sequences. Similarly, acidic pH
hexa-peptide pattern (pattern 1) showed 811 and 894 hits in
mesophilic and thermophilic proteins, respectively. The
neutral pH hexa-peptide pattern (pattern 2) is a subset of
acidic pH pattern (pattern 2). This pattern has 538 and 529
hits in the mesophilic and thermophilic proteins, respectively.
We have also evaluated the overlap of these patterns with
APRs detected by TANGO/Page and Waltz programs. Pattern
2 showed the greatest number of overlaps with APRs.

Furthermore, the number of matches between patterns and
predicted APRs was greater for thermophilic proteins than
mesophilic proteins. Interestingly, the incidence of these
patterns is very similar between thermophilic and mesophilic
proteins.

We have also compared the existence of experimentally
validated aggregating peptide sequences in mesophilic and
thermophilic proteins by scanning their sequences against the
library of 517 experimentally validated peptide sequences. We
found that mesophilic and thermophilic proteins have 19 and
22 aggregating peptide sequences, respectively. These results
indicate that the thermophilic proteins may also aggregate and
form amyloid-like fibrils in a manner similar to their
mesophilic homologues because sequence features that
facilitate cross-p motif were observed in the thermophilic
proteins as well.

Further, we have analyzed the variation of aggregation
score with surrounding hydrophobicity and solvent
accessibility [7]. We observed that the proteins with low
aggregation score prefer to have lower surrounding
hydrophobicity and are more exposed to solvent. The trend is
opposite for the proteins with high aggregation scores. The
correlations of aggregation score with hydrophobicity and
solvent accessibility are slightly stronger for the thermophilic
proteins. Hence, thermophilic proteins are able to ‘stow away’
their APRs in more hydrophobic regions than the mesophilic
proteins.

III. SEQUENCE ANALYSIS OF AMYLOID FORMING PEPTIDES
AND NON-AMYLOIDS

A. Dataset

We have developed a dataset, which contains 139 amyloid
and 168 non-amyloid hexapeptides, which have been often
used in experiments to grow amyloid-fibrils [10], [12]. These
data have been collected from the careful search on the
literature.

B. Amino Acid Composition of Amyloid Forming Peptides
and Non-Amyloids at Different Positions

The amino acid composition for the set of amyloids and
non-amyloids at different positions has been computed using
the number of amino acids of each type and the total number
of residues in their respective positions. It is defined as [24],
[25]:

Comp(i,j) = Z ny/N; 2

where i and j stands for the 20 amino acid residues and six
positions, njj is the number of residues of each type i at
position j and N is the total number of residues at position j.
The amino acid compositions at six positions of amyloid
forming hexapeptides showed that specific residues are
preferred at some positions [26]. Especially, Glu prefers to
accommodate at position 6 compared with other positions as
well as other amino acid residues; Ile is dominant in positions
4 and 5 and the difference is highly significant; position 1 is
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accommodated by Ser; Thr and Val showed their preference at
positions 2 and 3, respectively [26]. In amorphous peptides,
Ser prefers position 1; Ala and Thr show high preference at
position 2; Val in position 3; Ile and Leu in position 4; Phe
and Ile in position 5, and Gln in position 6. Although some of
the features are similar to amyloids and non-amyloids the
occurrence of several amino acids are different from each
other. For example, Ala in position 2, Asn in position 4, Gly
in position 6 and so on [26]. These differences are helpful for
discriminating amyloids and non-amyloids.

C. Preference of Residue Pairs

Amorphous Peptides

We have computed residue pair compositions in amyloid
and amorphous hexa-peptides and the results revealed the
preference of distinct residue pairs in amyloids and
amorphous peptides [27]. For example, the most preferred
alternate residue pairs are Gly-Thr, at positions 1-2; Thr-Val
at 2-3; Phe-Phe, at 3-4; Trp-Ile at 4-5, Ile-Glu at 5-6, Ser-Val
at 1-3; Gln-Ile at 2-4, Ser-Phe at 3-5 and Ile-Glu at 4-6. The
preferred residue pairs in amorphous peptides are Lys-Ala at
positions 1-2, Met-Phe at 2-3, Phe-Phe at 3-4, Ile-Ile at 4-5,
Ile-Ser at 5-6, Ser-Val at 1-3, Thr-Ile at 2-4, Phe-Ile at 3-5 and
Ile-Glu at 4-6. These residue pairs along with other preferred
pairs can be used for distinguishing between them.

in  Amyloid and

IV. DISCRIMINATION OF AMYLOID FORMING PEPTIDES AND
NON-AMYLOIDS

A. Energy Potentials

We have converted the composition of amino acid residues
at different positions of hexa-peptides (Eqn. 2) into
propensities by normalizing the composition with overall
composition of globular proteins [24], [25]. The propensity of
amino acid residues at different positions is given by

Propen(i,j) = Comp(i,j)/Compglob(i) 3)

where, Compglob(i) is the composition of residue i obtained
with a set of globular proteins [24], [25].

These amino acid propensities at each of position of
amyloid and non-amyloid peptides were treated as partition
functions and converted into thermodynamic energy potential
by using:

¢(i,j) = -RT In Propen(i,j) 4)

where, i and j are the 20 amino acid residues and six positions
respectively. We have derived the energy potentials for both
amyloid and amorphous peptides, which can be used to
distinguish these types of peptides [28].

We have followed a similar procedure to derive the
potentials for all the nine residue pairs (20x20 matrices). The
specific residue pairs, which showed significant differences in
energy between amyloid and amorphous peptides are given
below: KC, MC, MH, MY, NH and WT at positions 1-2; CW,
EC, FW, MF, QF and VF at positions 2-3, CL, CY, FW, VN,

VW, WC and WW at positions 3-4, FF, IF, WI and WY at
positions 4-5, FW and WC at positions 5-6, EC, HC, HW,
KW, MF, MV, MW, TW, VW and WV at positions 1-3, CC,
CN, FW, HC, LW, MF, QI, VW and YW at positions 2-4,
QY, VF and WY at position 3-5 and FC, NF and WC at
positions 4-6.

B. Machine Learning Techniques and Assessment of
Predictive Ability

We have analyzed several machine learning techniques
implemented in WEKA program [29] for discriminating
between amyloid and non-amyloid peptides. WEKA includes
several methods based on different machine learning
techniques such as Bayesian function, Neural network, Radial
basis function network, Logistic function, Support vector
machine, Regression analysis, Nearest neighbor, Meta
learning, Decision tree and Rules. The details of all these
methods are available in our earlier articles [30]. We have
used the energy potentials and selected amino acid properties
as input features for the methods.

We have performed 20-fold, 10-fold and 5-fold cross-
validation tests for assessing the validity of the present work.
In this method, the data set is divided into n groups, n-1 of
them, are used for training and the rest is used for testing the
method. The same procedure is repeated for n times so that
each data is used at least once in the test.

We have used different measures, such as sensitivity,
specificity and accuracy, to assess the performance of machine
learning methods towards discriminating between amyloid
and non-amyloid peptides. The term sensitivity shows the
correct prediction of amyloid peptides, specificity is the
correct prediction of non-amyloid peptides and accuracy
indicates the overall assessment. These terms are defined as:

Sensitivity = TP/(TP+FN)
Specificity = TN/(TN+FP)
Accuracy = (TP+TN)/(TP+TN+FP+FN),

where, TP, FP, TN and FN refer to the number of true
positives, false positives, true negatives and false negatives,
respectively.

C. Discrimination of Amyloid Forming Peptides and Non-
Amyloids

We have utilized several machine learning techniques for
discriminating between amyloid and non-amyloid peptides as
described in the Methods section. Overall, most algorithms
showed similar performance. In a 10-fold cross-validation
method, we obtained an accuracy of 82.1% using statistically
derived position-specific energy potentials. The sensitivity
and specificity are 79.9% and 83.9%, respectively. Combining
these energy potentials with three amino acid properties,
hydrophobicity, isoelectric point and long-range non-bonded
energy improved the accuracy marginally to 82.7%
(sensitivity, 81.3%; specificity, 83.9%). The method was also
tested with 5-fold and 20-fold cross-validations and the
accuracies are 80% and 81.1%, respectively.
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Further, we have utilized the energy potentials derived with
residue pairs, which showed the accuracy of 93.7% in a set of
179 amyloid and 168 amorphous peptides. The sensitivity and
specificity are 95.5% and 91.7%, respectively. The method,
GAP was examined with 15 amyloid peptides from the Protein
Data Bank, which showed the sensitivity of 93.3% [27].

GAP was tested on 310 amyloid-fibril forming peptides of
different lengths. For the peptides of more than six residues,
we divided the peptide sequence into six residue long
windows that slide by one residue at a time. For each window,
we have computed the scores for amyloid-fibril formation and
amorphous aggregation. These scores are summed over all the
windows to obtain total scores for amyloid fibril formation
and amorphous aggregation for the whole peptide. The better
of these two scores predicts the query peptide as either
amyloid fibril forming or amorphous B-aggregating peptide.
Results obtained with 310 peptides of different lengths are
presented in Fig. 1. The accuracy is 100% for most of the
peptides. Specifically, all 14-20 residues long peptides and
those longer than 22 residues are correctly predicted to be
amyloid fibril forming peptides. For most of the remaining
peptides, the accuracy is more than 90%. In all these cases,
GAP missed only one or two peptides for a given length.
Overall, 302 out of 310 (97.4%) peptides in Amyl310 dataset
are correctly predicted to be amyloid-fibril forming [27].

100 4
80 -
60

40

Accuracy (%)

20 A

Peptide length

Fig. 1 Prediction performance of GAP on amyloid-fibril forming
peptides of different lengths

GAP was also tested on 48 experimentally determined
amyloid fibril forming peptide segments, of different lengths,
from 33 well-known amyloidogenic proteins [31]. It correctly
predicted 47 (98%) of them. Further, developers of WALTZ
[10] had bench-marked the performance of their method by
using twelve sup35-derived 10-resudues long peptides that
were shown to form amyloid-fibrils experimentally. The
performance of GAP along with other prediction methods
TANGO, WALTZ, and Amylpred2 is shown in Table I. GAP
correctly predicted all the 12 peptides (100% sensitivity).

TABLE I
PERFORMANCE OF DIFFERENT PREDICTION METHODS ON SEQUENCES OF
SUP35-DERIVED AMYLOID-FIBRIL FORMING PEPTIDES

Sequence WALTZ TANGO  Amylpred2 GAP
GNNQQNYQQY + - - +
YSQNGNQQQG - - - +
RYQGYQAYNA + - - +
GGYYQNYQGY + - - +
YONYQGYSGY + - - +
YSGYQQGGYQ - - - +
YQQGGYQQYN + - - +
PQGGRGNYKN - - - +
NFNYNNNLQG + - - +
YNNNLQGYQA + - - +
NLQGYQAGFQ + - - +

Total 12 8 0 0 12

Sensitivity 66.6% 0% 0% 100%

+ or- represent correct or incorrect predictions, respectively. The sequences
were taken from [10].
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