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Abstract—The aim of this research is to use artificial neural 

networks computing technology for estimating the net heating value 
(NHV) of crude oil by its Properties. The approach is based on 
training the neural network simulator uses back-propagation as the 
learning algorithm for a predefined range of analytically generated 
well test response. The network with 8 neurons in one hidden layer 
was selected and prediction of this network has been good agreement 
with experimental data. 
 

Keywords—Neural Network, Net Heating Value, Crude Oil, 
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I. INTRODUCTION 

ET heat of combustion [ ]nQ (Mj/kg)  is defined the 

quantity of energy released when a unit mass of fuel is 
burned at constant pressure, with all of the products, including 
water, being gaseous. The fuel can be either liquid or solid, 
and contain only the elements carbon, hydrogen, oxygen, 
nitrogen, and sulfur. The products of combustion, in oxygen, 
are carbon dioxide, nitrogen oxides, sulfur dioxide, and water 
all in the gaseous state. 

Gross heat of combustion, gQ (Mj/kg)⎡ ⎤⎣ ⎦  is defined the 

quantity of energy released when a unit mass of fuel is burned 
in a constant volume enclosure, with the products being 
gaseous, other than water that is condensed to the liquid state. 
The fuel can be either liquid or solid and contain only the 
elements carbon, hydrogen, in oxygen, are gaseous carbon 
dioxide, nitrogen oxides, sulfur dioxide, and liquid water. 

In SI the unit of heat of combustion has the dimension J/kg, 
but for practical use a multiple is more convenient. The MJ/kg 
is customarily used for the representation of heats of 
combustion of petroleum fuels. The net heat of combustion is 
represented by the symbol nQ  and is related to the gross heat 

of combustion g(Q )  by the following equation [1]: 
° °

n gQ (net, 25 C) = Q (gross, 25 C) - 0.2122×H        (1) 
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°
nQ (net, 25 C) : Net heat of combustion at constant 

pressure, MJ/kg 
°

gQ (gross, 25 C) : Gross heat of combustion at constant 
volume, MG/kg 
H: Mass % of hydrogen in the sample 

II.  NET HEATING VALUE MEASUREMENT 

A. Significance and Use 
The heat of combustion is a measure of the energy available 

from a fuel. The knowledge of this value is essential when 
considering the thermal efficiency of equipment for producing 
either power or heat. 

The heat of combustion is designated as one of the chemical 
and physical requirements of both commercial and military 
turbine fuels and aviation gasoline’s. 

The mass heat of combustion, the heat of combustion per 
unit mass of fuel, is a critical property of fuels intended for use 
in weight-limited craft such as airplanes, surface effect 
vehicles, and hydrofoils. The range of such craft between 
refueling is a direct function of the heat of combustion and 
density of the fuel. 

The net heat of combustion is a factor in the performance of 
all aviation fuels. Because the exhaust of aircraft engines 
contains uncondensed water vapors, the energy released by 
fuel in vaporizing water cannot be recovered and must be 
subtracted from gross heat of combustion determinations to 
calculate net heat of combustion. For high performance 
weight-limited aircraft, the net heat of combustion per unit 
mass and the mass of fuel loaded determine the total safe 
range. The proper operation of the aircraft engine also requires 
a certain minimum net energy of combustion per unit volume 
of fuel delivered. 

B. Empirical Method 
There is a method that is purely empirical, and it is 

applicable only to liquid hydrocarbon fuels derived by normal 
refining processes from conventional crude oil which conform 
to the requirements of specifications for aviation gasoline or 
aircraft turbine and jet engine fuels of limited boiling ranges. 

The empirical method is intended for use as guide in cases 
where an experimental determination of heat of combustion is 
not available and cannot be made conveniently, and where an 
estimate is considered satisfactory. It is not intended as a 
suitable for experimental measurement of heat of combustion. 
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Because the heat of combustion of hydrocarbon fuel-
mixtures are slowly varying function of the physical properties 
of the  mixtures, the heat of combustion of the mixtures can 
often be estimated with adequate accuracy from simple field 
tests of density and aniline point temperature, without the 
elaborate apparatus needed for calorimeter method. 

The empirical quadratic equation for the net heat of 
combustion of a sulfur- free fuel was derived by the method of 
lest squares from  accurate measurements on fuels, most of 
which conformed to wide range and were chosen to cover a 
range of values of properties. Those fuels not meeting 
specifications were chosen to extend the range of densities and 
aniline-point temperatures above and below the specification 
limits to avoid end effects. The sulfur correction was found by 
a simultaneous least squares regression analysis of sulfur-
containing fuels among those tested. 

C.  Procedure 
1- Determine the aniline point temperature of the sample to 

the nearest 0.05 oC as described in Test Methods D 611 [3] 
 2- Determine the density at 15 oC of the sample to the nearest 

0.5 kg/m3 as described in Test Method D 941, Test Method 
D 1298, or Test Method D 4052 [4]. 

 3- Determine the sulfur content of the sample to the nearest 
0.02 mass % sulfur as described in Test Method D 129, Test 
Method D 1266, Test Method D 2622, or Test Method D 
3120 [5] 

D.  Calculation 
Insert the measured values in equation 2 and calculate Qn, 

the heat of combustion at constant pressure on a sulfur-free 
basis. 

n

-5 2

2

1Q  = 22.9596 - 0.0126587 A + 26604.9  
ρ

A+ 32.622 - 6.69030×10 (A)  
ρ

1- 9217760
ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

              (2) 

ρ :  Density at 15 oC, kg/m3 
A :Aniline point temperature, oC 

nQ  : net heat of combustion on sulfur free basis, MJ/kg 

III.  NEURAL NETWORKS MODELING 

A feed-forward back-propagation artificial neural network 
is chosen in the present study since it is the most prevalent and 
generalized neural network currently in use and 
straightforward to implement. The architecture of the neural 
network used in this paper is shown in Fig. 1. It has three input 
layer, one output layer, and one hidden layer. The neurons in 
hidden layer are represented by a weight matrix W, a bias 
vector B, a net input vector E, and an output vector O. The 
weights determine the strength of the connections between 
interconnected neurons. Every node in any hidden layer sums 
its weighted inputs, adds the bias constant, and then the output 

value of this node is calculated by applying a chosen function 
(known as a basis, activation, or transform function) to the 
weighted sum. In this manner, input values are passed through 
the network topology and transformed into one or more output 
values. The output values are then compared to the desired 
values to adjust the weights and bias in the nodes. Thus, the 
final output from the node is calculated using equation 1. 

 

 
Fig. 1 Architecture of a multiple-layered neural network with a single 

hidden layer 
 

2 1n n

0 j j 0j ij i
j=1 i=1

y = f w  + w f υ  + υ x
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑            (3) 

 
where y is the output variable, x is input variable, w and t are 
the connection weights, n1 is the dimension of the input 
vector, and n2 is the number of hidden neurons. In this study, 
a sigmoid function is used as the transformation function: 
  

1f(x) = 
1 + exp(x)

                             (4) 

 
The backward propagation step calculates the error vector, 

E by comparing the calculated outputs, y and the target values, 
d by equation 5: 

 
E = y - d                                    (5) 

 
The gradient descent method is used to minimize the total 

error on patterns in the training set. In gradient descent, 
connection weights are changed in proportion to the negative 
of an error derivative with respect to each weight: 

 

j j y j
j

E EΔw  = -α  = α - f (NET) x  = α δ x
w y

⎡ ⎤∂ ∂ ′⎢ ⎥∂ ∂⎣ ⎦
       (6) 

 
where α is a learning rate, and ∂  is an error signal. New sets 
of connection weights are iteratively calculated based on the 
error values until a minimum overall error is obtained. The 
connection weights are analyzed after training. These weights 
relate to the average contributions of each input log to the 
network by following equation [6]: 
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where Ci is the average contribution of input variable i and wij 
is the connection weight from input neuron i to hidden neuron 
j. This intelligent computing technique can help engineers in 
solving problems that have not been solved by traditional and 
conventional computing methods. Neural networks do not 
require the specification of a structural relationship between 
the inputs and outputs unlike statistical regression analysis. 

One of the most common problems in training an ANN is 
over fitting; where the error on the training set is reduced but 
the error for predictions using new data is large. This problem 
usually occurs with large networks that have few training 
examples. However, by dividing the data into two sets 
(training and testing) and selecting the best structure among 
them, over fitting can be avoided [6]. In the present study, 

80% of the total data was used for training and testing: 60% 
for training and 20% for testing. The remaining 20% of the 
total data represented the verification or production set. The 
verification set is used to evaluate the accuracy of the newly 
built network by providing the network with a set of data that 
it has never seen. Prior to any modeling, all data were scaled 
to the range [0–1]. Once the training process converged, the 
testing data set was presented to the network. If the testing 
presented good agreement between the actual and the 
estimated net heating value of crude oil (NHV), the bias and 
weight matrices were saved and kept aside. If not, the 
realization was canceled. This process was repeated several 
times until a satisfactory number of realizations with good 
testing results were achieved. In this work, the network is 
trained for maximum 200 epochs. 

IV. EXPERIMENTAL DATA 
Net heating value of 88 different well in three zones was 

measured and is shown in Table Ι. 

 
TABLE Ι 

EXPERIMENTAL DATA OF WATER CONTENT IN CRUDE OIL 
number Pressure (bar) Specific Gravity MW NHV (Exp) NHV (Estimated) Error (%) 

1 44 0.6719 388 1058.4 1052.199054 0.585879217 
2 47 0.6625 382 1039.9 1043.134368 -0.311026809 
3 48 0.6651 384 1048.1 1059.990131 -1.134446205 
4 45.7 0.6442 372 1019.5 1018.77464 0.071148613 
5 35.5 0.6703 388 1052 1051.317578 0.064868971 
6 45 0.6597 382 1041.9 1038.660361 0.310935684 
7 48 0.661 382 1043.3 1045.498645 -0.210739525 
8 45 0.6661 384 1039.2 1045.422559 -0.5987836 
9 43 0.632 364 1004.9 1012.338977 -0.740270419 
10 42 0.6634 394 1047.2 1041.420014 0.551946715 
11 42.2 0.657 380 1025.9 1034.393029 -0.827861311 
12 43 0.666 386 1052 1043.251962 0.831562523 
13 45 0.6621 382 1044.7 1039.21743 0.524798528 
14 45 0.6537 378 1037.2 1030.534511 0.642642615 
15 41 0.6617 382 1042.2 1036.387471 0.557717261 
16 43.5 0.6652 384 1048.8 1041.515623 0.694543913 
17 44 0.6719 388 1053.4 1052.199054 0.11400661 
18 42 0.651 376 1024.8 1030.190096 -0.525965652 
19 35 0.6518 376 935.6 935.9620754 -0.038699805 
20 43.6 0.6442 372 1023.9 1024.175745 -0.026930819 
21 46 0.6552 378 1034.6 1028.77706 0.562820403 
22 42 0.6556 378 1026.4 1032.464433 -0.590845017 
23 44 0.6554 378 1022.7 1031.359338 -0.84671337 
24 42.2 0.6594 380 1041.2 1034.708813 0.623433256 
25 43 0.6617 382 1045 1037.430826 0.724322853 
26 45 0.6552 398 1035.3 1037.562915 -0.218575812 
27 49 0.6559 380 1035.1 1034.65861 0.042642293 
28 43.5 0.6543 378 1032.8 1031.791281 0.097668352 
29 42.9 0.6603 382 1045.2 1037.114844 0.77355111 
30 44 0.6536 378 1028.7 1031.482581 -0.270494885 
31 40.8 0.6383 368 1012.2 1019.735338 -0.744451482 
32 42.2 0.6455 374 1023.2 1027.565596 -0.426661096 
33 43 0.6479 374 1026.8 1027.361002 -0.054635981 
34 35.1 0.6302 364 937.4 937.1265247 0.029173805 
35 42.2 0.6547 378 1033.7 1032.32766 0.132759994 
36 32.2 0.6545 378 45.3 45.75856787 -1.012291112 
37 56 0.5797 336 933.9 937.3171494 -0.365901 
38 53 0.5613 324 910.9 909.9658722 0.102549989 
39 54 0.5622 324 905.1 897.6850317 0.819242987 
40 29.5 0.6614 382 1049 1041.272041 0.736697753 
41 29 0.5636 326 912 905.2306266 0.742255854 
42 55 0.5634 326 911.8 912.6598999 -0.094307948 
43 49.2 0.5656 326 909.2 923.0698349 -1.525498782 
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number Pressure (bar) Specific Gravity MW NHV (Exp) NHV (Estimated) Error (%) 
44 51 0.5814 336 937.6 935.2662958 0.248901902 
45 26 0.6955 402 1088.6 1094.269494 -0.520805954 
46 23.2 0.6598 382 1049.7 1035.520727 1.350792857 
47 54 0.5678 328 917 919.191631 -0.23900011 
48 26.7 0.5788 334 933 920.7191959 1.316270535 
49 56 0.5797 336 933.9 937.3171494 -0.365901 
50 54.1 0.5617 324 908.8 900.1197396 0.955134289 
51 28 0.5622 324 909.7 916.4244901 -0.739198646 
52 28 0.5671 328 916.8 916.5593761 0.026246064 
53 53 0.5601 324 908 919.1378767 -1.226638398 
54 28.8 0.562 324 909.2 909.267081 -0.007378024 
55 45 0.6542 378 1029.1 1030.451379 -0.131316545 
56 28.5 0.5608 324 911.5 912.8037094 -0.143029007 
57 54.5 0.5607 324 902.6 903.276133 -0.074909481 
58 27 0.6898 398 1084 1093.75439 -0.899851467 
59 23.2 0.6711 388 1060.9 1062.728337 -0.172338255 
60 53 0.5688 328 917 915.4096798 0.173426417 
61 52.7 0.5626 324 909.3 901.768102 0.828318268 
62 29.5 0.56 324 908.1 890.2303652 1.967804735 
63 53 0.6316 366 932.1 924.2497809 0.84220782 
64 43 0.5609 324 908.1 910.3094404 -0.243303646 
65 51.5 0.6811 392 1052.3 1051.794549 0.048032994 
66 24.6 0.6672 386 1058 1062.845042 -0.457943439 
67 28 0.5639 326 911 916.4129636 -0.594178218 
68 25.3 0.6013 348 950 928.4476459 2.26866885 
69 24 0.6717 388 1063.2 1068.312729 -0.480881238 
70 28 0.5614 324 910.4 916.3975017 -0.658776553 
71 28.1 0.5971 346 923.9 926.2744959 -0.257007894 
72 25.3 0.6197 358 930.3 948.6382331 -1.97121714 
73 25.2 0.6078 368 926.5 931.0820995 -0.494560116 
74 55 0.7586 438 1155 1153.839364 0.100487947 
75 54.5 0.6729 390 1045.2 1043.577418 0.15524134 
76 54.5 0.6729 390 1045.2 1043.577418 0.15524134 
77 56 0.6868 396 907 940.1198133 -3.651578096 
78 57 0.6393 370 865 862.6734911 0.268960567 
79 57 0.6405 370 825.5 851.7361208 -3.178209664 
80 58 0.6439 372 896.2 884.8757338 1.263586941 
81 56 0.6889 398 972.9 953.0961468 2.035548685 
82 54 0.6437 372 873.1 925.1693038 -5.963727382 
83 55 0.6796 392 947.9 975.8686264 -2.950588289 
84 54.8 0.7148 414 1029.4 1038.841898 -0.917223424 
85 56 0.6402 370 876.5 867.7901719 0.993705434 
86 55 0.6418 370 883.6 874.091276 1.076134449 
87 55.5 0.6369 368 877.5 859.6428179 2.035006508 
88 56 0.6889 398 972.9 953.0961468 2.035548685 

 
V.  RESULTS AND DISCUSSIONS 

Compared to the development in experimental techniques, 
the numerical method has been improved. A feed forward 
back propagation network has been developed as a predicting 
model of NHV. It was proved that the trained network could 
well simulate the relation between NHV of crude oil and its 
properties such as Pressure, specific gravity and molecular 
weight. The model has been trained, validated and tested on 
experimental data. The network with one hidden layer shown 
in Fig. 1 was selected and different neuron in hidden layer was 
examined. The result of different neuron in hidden layer is 
shown in Table ΙΙ. 

 
TABLE ΙΙ 

RESULT OF NEURAL NETWORKS WITH DIFFERENT NEURONS IN HIDDEN 
LAYER FOR NETWORK WITH ONE HIDDEN LAYER 

Number of neurons in hidden layer MSE R2

1 0.4631 0.5417 
2 0.4557 0.5594 
3 0.4578 0.7222 
4 0.4962 0.9783 

5 0.4961 0.9880 
6 0.4961 0.9880 
7 0.5022 0.9923 
8 0.4969 0.9959 
9 0.4969 0.9959 

 
According to Table ΙΙ, the network with 8 neurons in one 

hidden layer was selected. This network is shown in Fig. 1. 
Normalized experimental data versus normalized predicted 

data by ANN is shown in Fig. 2. And predicted data and its 
error are shown in last column of Table Ι. 

The training and testing lead to satisfactory results, the 
network was considered to be well trained and generalized and 
ready to predict the NHV in other conditions. 
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Fig. 2 Experimental and predicted water content in crude oil 
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