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Abstract—The innovative fuzzy estimator is used to estimate the 

ground motion acceleration of the retaining structure in this study. The 
Kalman filter without the input term and the fuzzy weighting recursive 
least square estimator are two main portions of this method. The 
innovation vector can be produced by the Kalman filter, and be 
applied to the fuzzy weighting recursive least square estimator to 
estimate the acceleration input over time. The excellent performance 
of this estimator is demonstrated by comparing it with the use of 
difference weighting function, the distinct levels of the measurement 
noise covariance and the initial process noise covariance. The 
availability and the precision of the proposed method proposed in this 
study can be verified by comparing the actual value and the one 
obtained by numerical simulation. 
 

Keywords—Earthquake, Fuzzy Estimator, Kalman Filter, 
Recursive Least Square Estimator. 

I. INTRODUCTION 
N  the past few years, there were many horrible earthquakes 
occurred in the seismic zones around the world, e.g., the 

Southern Sumatra earthquake in Indonesia (2009), the 
Wenchuan earthquake in China (2008), the Jawa earthquake in 
Indonesia (2007), the Chi-Chi earthquake in Taiwan (1999), 
the Kobe earthquake in Japan (1995), and the Northridge 
earthquake in California (1994). The probability of occurring 
earthquakes increases on account that Taiwan is located on the 
seismic belt of the Pacific Ocean. The Taiwan area was 
destroyed by the serious Chi-Chi (921) earthquake event in the 
twentieth century. Owing to the strong shaking and widespread 
surface damage, more than 2500 people lost their lives and 
more than 100,000 buildings were destroyed in this significant 
event [1]. Earth-retaining structures constitute an important 
topic of research in the civil engineering under earthquake 
conditions. In the course of design, analysis, and reliability 
assessment of the retaining wall structure system, the most 
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important procedure is to obtain the values of active input to the 
system. Estimation of the responses of structural systems based 
on dynamic analysis is essential for the seismic design of civil 
structures on the seismic belt. According to the dynamic 
characteristics of building structure, the security of building 
structure can be evaluated. The reliability of structure security 
depends on the earthquake resistance design. It will influence 
the safety of civilian lives and properties directly. 

In recent years, the utilization of time histories of earthquake 
ground motion has grown considerably in the field of 
earthquake engineering. For example, the ground motion time 
histories are used in the design and analysis of civil structures. 
Hence, there is a need for efficient and accurate methods for the 
simulation of earthquake ground motion throughout a region 
that utilize ground motions from previous earthquakes and 
recorded motions from the earthquake that just occurred. The 
strong motion prediction model, EMPR (Earthquake Motion 
Prediction model on Rock surface), was developed by Sugito et 
al. [2]. A simple off-line correction procedure is an adequate 
application for producing reasonable reproductions of 
historical earthquakes [3]. Sato et al. developed a method based 
on the concept of wavelet transformation to simulate 
earthquake motion that uses phase spectra of earthquake 
motions [4]. The stochastic method for simulating ground 
motions is to combine parametric or functional descriptions of 
the ground motion’s amplitude spectrum with a random phase 
spectrum modified such that the motion is distributed over a 
duration related to the earthquake magnitude and to the 
distance from the source [5]. The simulated ground motion by 
the EMPR is adopted as the Green’s function for the inversion 
of the fault process [6]. The above researches used the off-line 
form to process the measurement data. The method is not an 
on-line procedure to estimate the unknown input. 

Reliable ground motions are essential for regional hazard 
and risk assessment and management purposes. However, in 
the practical engineering problem, there are always difficulties 
in installing the force transducers used to measure the input 
forces from the structure system. Besides, the ground motion 
accelerations caused by the earthquake is sometimes 
overwhelming and transient so that the measurements will not 
be easy to obtain. Hence, an on-line, inverse input estimation 
method is frequently employed to the structural dynamic 
problems. Ji et al.[7] used the Kalman filter with the recursive 
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least square method to estimate the input force of a plate. Liu 
and Ma [8-10] and Deng [11] as well used this method to 
estimate the force input to the structure system. Lee et al. [12] 
utilized the adaptive weighted input estimation method to 
inversely solve the burst load of the truss structure system. 
Chen et al. [13,14] investigated the adaptive input estimation 
method applied to the inverse estimation of load input in the 
multi-layer shearing stress structure and the identification of 
moving load in the bridge structure system. This method 
combines the Kalman Filter without the input term and the 
adaptive recursive least square estimator to form a real-time 
on-line estimation method. The input estimation method is 
using the recursive form to process the measurement data. As 
opposed to the batch process, using the recursive form is an 
on-line process and has higher efficiency. 

In this study, an efficient estimator to estimate the ground 
motion acceleration of the retaining structure system is 
presented. The estimator is weighted by the fuzzy weighting 
factor proposed based on the fuzzy logic inference system. By 
comparing the results with the actual Chi-Chi earthquake 
ground motion data, the precision of the present inverse method 
can be demonstrated. The rapider target tracking and more 
effective noise reduction capabilities of this method will be 
demonstrated through the simulation case study. 

II. PROBLEM FORMULATION  
The geometry and coordinates of a soil-wall system are 

shown in figure 1(a). The semi-infinite, homogeneous and 
viscoelastic medium of soil is retained by a vertical rigid 
retaining wall along one of its vertical boundaries, connected to 
a rigid base. The base of the soil layer is excited by the ground 
motion accelerations of the 921 Chi-Chi earthquake in Taiwan. 
The soil-wall system is modeled by a simple two-degree 
freedom (2-DOF) mass spring dashpot dynamic model as 
shown in figure 1(b). Considering the dynamic equilibrium of 
these two masses by using D'Alembert's principle, the basic 
dynamic equation can be written in matrix form [15]: 

( )gMU CU KU Mx t+ + =                                                   (1) 

where 1

2

0
0
m

M
m

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 is the diagonal mass matrix, 

( )1 2 2

2 2

c c c
C

c c
⎡ + − ⎤

= ⎢ ⎥−⎣ ⎦
 is the damping matrix and  

( )1 2 2

2 2

k k k
K

k k
⎡ + − ⎤

= ⎢ ⎥−⎣ ⎦
 is the restoring force vector. 

[ ]1 2
TU x x=  represents the displacements of the masses 

1m  and 2m . [ ]1 2
TU x x=  is the velocities of the masses 1m  

and 2m . [ ]1 2
TU x x=  is the accelerations of the masses 1m  

and 2m . ( )gx t  is the ground motion acceleration. 
The input estimation algorithm is a calculation method using 
the state space. Therefore, the state equation and the 
measurement equation have to be constructed before applying 

this method. In order to satisfy this situation, the equality, 

( )
T

X t U U⎡ ⎤= ⎣ ⎦  is used to transfer the movement equation to 

the state space form. The continuous-time state equation and 
measurement equation of the structure system can be presented 
as follows [16]:  

( ) ( ) ( ),X t AX t BG t= +                                                         (2) 
( ) ( ),Z t HX t=                                                                    (3) 

where ( ) ( ) ( ) ,
T

g gG t x t x t⎡ ⎤= ⎣ ⎦  

1 1

0
,

I
A

M K M C− −

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

 

1

0
,B

M M−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

[ ]1 0H =  
A and B are both constant matrices composed of the nth 

natural frequency and the inertia moment of the structure 
system. ( )X t  is the modal state vector. ( )U t  is the input 
dynamic loading. ( )Z t  is the observation vector, and H  is the 
measurement matrix. Generally speaking, there always exists 
the noise turbulence in the practical engineering environment. 
Nevertheless, equations (2) and (3) do not take the noise 
turbulence into account. In order to construct the statistic model 
of the system state characteristics, a noise disturbance term, 
which can reflect these statistical characteristics of the state, 
will need to be added into these two equations. For this reason, 
the continuous-time state equation (2) can be sampled with the 
sampling interval, tΔ , to obtain the discrete-time statistic 
model of the state equation shown as the following [16]:  

( 1) ( ) [ ( ) ( )]X k X k G k w k+ = Φ + Γ +                                         (4) 
where 

[ ]1 2( ) ( ) ( ) TX k x k x k=
 

 

exp( )A tΦ = Δ  

[ ]{ }
( 1)

exp ( 1)
k t

k t
A k t Bdτ τ

+ Δ

Δ
Γ = + Δ −∫  

( )X k  is the discrete state vector. Φ  is the state transition 

matrix. Γ is the input matrix. tΔ  is the sampling interval. ( )G k  
is the sequence of deterministic acceleration input, and ( )w k  is 
the processing error vector, which is assumed as the Gaussian 
white noise. In the equation (8), when describing the active 
characteristics of the structure system, the additional term, 

( )w k , can be used to represent the uncertainty in a numerical 
manner. The uncertainty could be the random disturbance, the 
uncertain parameters, or the error due to the over-simplified 
assumption of numerical models. Note that 

{ }( ) ( )T
kjE w k w k Qδ= , 2 2w n nQ Q I ×= × , Q  is the 

discrete-time processing noise covariance matrix. kjδ  is the 

Kronecker delta function.  
In order to additionally consider the measurement noise, 

Equation (3) is then expressed as  
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( ) ( ) ( )Z k HX k v k= +                                                            (5) 
( )Z k is the discrete observation vector. ( )v k  represents the 

measurement noise vector and is assumed as the Gaussian 
white noise with zero mean and the variance, 

{ }( ) ( )T
kjE v k v k Rδ= , 2 2v n nR R I ×= × , R  is the discrete-time 

measurement noise covariance matrix. 

 
Fig. 1:(a) Considered soil-wall system. (b) Proposed 2-DOF 
mathematical model [15]. 

III. THE INTELLIGENT FUZZY WEIGHTING FUNCTION IN THE 
RLS INPUT ESTIMATION METHOD  

This method is composed of the Kalman filter without the 
input term and the fuzzy weighting recursive least square 
estimator. Using the Kalman filter requires an exact knowledge 
of the process noise variance Q and measurement noise 
variance R, where R depends on the sensor measurements. The 
Kalmen filter is used to generate the residual innovation 
sequence. Meanwhile, the real-time recursive least square 
algorithm is derived by the residual sequence to compute the 
value of ground motion acceleration. The detailed formulation 
of this technique can be found in the research by Tuan et al 
[16]. 

The equations of the Kalman filter are as follows: 
The state prediction is 

( / 1) ( 1/ 1)X k k X k k− = Φ − −                                              (6) 
The prediction error covariance matrix is  

( / 1) ( 1/ 1) T TP k k P k k Q− = Φ − − Φ + Γ Γ                             (7) 
The covariance of residual is ( )S k  

( ) ( / 1) TS k HP k k H R= − +                                                 (8) 
The Kalman gain is 

1( ) ( / 1) ( )TK k P k k H S k−= −                                                 (9) 
The filter error covariance matrix is expressed by 

( )( / ) [ ] ( / 1)P k k I K k H P k k= − −                                       (10) 
The bias innovation produced by the measurement noise and 

input disturbance is expressed by 
( ) ( ) ( / 1)Z k Z k HX k k= − −                                               (11) 

And the state filter value is expressed as 
( / ) ( / 1) ( ) ( )X k k X k k K k Z k= − + .                                  (12) 

The equations of the recursive least square estimator are as 
follows: 
The sensitivity matrices are ( )B k  and ( )M k  

( ) [ ( 1) ]B k H M k I= Φ − + Γ                                                 (13) 
( ) [ ( ) ][ ( 1) ]M k I K k H M k I= − Φ − +                                   (14) 

The correction gain is expressed as 
111 1 1( ) (( ) ( ) ( ) ( ) ( ) )T T

b b bB B k BK P k k k k kk P Sγ γ
−− −⎡ ⎤⎣ ⎦= − − +    (15) 

where γ  is the weighting factor. The error covariance of the 
input estimation process is 

[ ] 1( ) 1( ) ( ) ( )b b bI K B k PP k k kγ −= − −                                   (16) 
The estimated earth motion acceleration is 

( ) ( 1) ( ) ( ) ( ) ( 1)bG k G k K k Z k B k G k
∧ ∧ ∧⎡ ⎤

= − + − −⎢ ⎥
⎣ ⎦

                 (17) 

The weighting factor can operate at each step based on the 
innovation produced from the Kalman filter. It also plays the 
role as an adjustable parameter to control the bandwidth of 
estimator or the gain magnitude of recursive least square 
estimator. Furthermore, the weighting factor ( )kγ  is employed 
to compromise between the tracking capability and the loss of 
estimation precision. The relation has been derived as follows 
by Tuan et al. in 1996 [17]: 

1 ( )

( )
( )

( )

Z k

k
Z k

Z k

σ

γ σ σ

⎧ ≤
⎪⎪= ⎨ >⎪
⎪⎩

                                              (18) 

According to Equation (18), the weighting factor can be 
adjusted according to the measurement noise and input bias. 
The error covariance of input estimation is increased by the 
weighting factor, ( )kγ , which is chosen in the interval, [ ]0,1 . 

In the industrial applications, the standard deviation σ  is 
assumed as a constant value. The magnitude of weighting 
factor is determined according to the modulus of bias 
innovation, ( )Z k . The unknown input prompt variation will 

cause the large modulus of bias innovation. In the meantime, 
the smaller weighting factor is obtained when the modulus of 
bias innovation is larger. Therefore, the estimator accelerates 
the tracking speed and produces larger vibration in the 
estimation process. On the contrary, the smaller variation of 
unknown input causes the smaller modulus of bias innovation. 
Meanwhile, the larger weighting factor is obtained according to 
the smaller modulus of bias innovation. The estimator is unable 
to estimate the unknown input effectively. For this reason, the 
intelligent fuzzy weighting factor for the inverse estimation 
method which efficiently and robustly estimates the 
time-varying unknown input will be constructed in this study to 
cope with this issue. The intelligent fuzzy weighting factor is 
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proposed based on the fuzzy logic inference system in this 
search. 

The Pythagorean theorem with the transverse axle (time, t) 
and the vertical axle (residual of predictor, Z ) can be used to 
solve the length of the hypotenuse. In other words, the length of 
the hypotenuse is the variation rate of the residual in the 
sampling interval. The dimensionless input variable, ( )kθ , is 
defined as the following: 

( )
22

( )

( )

( )

( ) f

Z k

Z k

Z k t

Z k t

kθ

Δ

Δ Δ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

=

+

                                             (19)                         

The basic configuration of the fuzzy logic system considered 
in this paper is illustrated as follows. The fuzzy logic system 
includes four basic components, which are the fuzzy rule base, 
fuzzy inference engine, fuzzier, and defuzzier. The proposed 
intelligent fuzzy weighting factor uses the input variable ( )kθ  

to self-adjust the factor ( )kγ  of the recursive least square 
estimator. Therefore, the fuzzy logic system consists of one 
input and one output variables. The range of input, ( )kθ , and 

output, ( )kγ , can be chosen in the interval, [ ]0,1 . The fuzzy 

sets for ( )kθ  and ( )kγ  are labeled in the linguistic terms of 
EP (extremely large positive), VP (very large positive), LP 
(large positive), MP (medium positive), SP (small positive), VS 
(very small positive), and ZE (zero). A fuzzy rule base is a 
collection of fuzzy IF-THEN rules:  

IF ( )kθ  is zero (ZE) THEN ( )kγ  is an extremely large 
positive (EP); 

IF ( )kθ  is a very small positive (VS) THEN ( )kγ  is a very 
large positive (VP); 

IF ( )kθ  is a small positive (SP) THEN ( )kγ  is a large 
positive (LP); 

IF ( )kθ  is a medium positive (MP) THEN ( )kγ  is a 
medium positive (MP); 

IF ( )kθ   is a large positive (LP) THEN ( )kγ  is a small 
positive (SP); 

IF ( )kθ  is a very large positive (VP) THEN ( )kγ  is a very 
small positive (VS); 

IF ( )kθ  is an extremely large positive (EP) THEN ( )kγ  is 
zero (ZE). 

In the above rules, ( )k Uθ ∈  and ( )k V Rγ ∈ ⊂  are the 
input and output of the fuzzy logic system, respectively. The 
fuzzier maps a crisp point ( )k Uθ ∈  into a fuzzy set A in U. 
Therefore, the nonsingleton fuzzier can be expressed as in 
Reference [18]: 

( )( )
( )( )

( )

2

2exp
2

l
i

A
l
i

k x
k

θ
θ

σ
μ

⎛ ⎞−⎜ ⎟
−⎜ ⎟

⎜ ⎟
⎝ ⎠

=                                    (20)                   

( )( )A kθμ  decreases from 1 as ( )kθ  moves away from l
ix . 

( )2l
iσ  is a parameter characterizing the shape of ( )( )A kθμ .   

The Mamdani maximum-minimum inference engine is used 
in this study. The max-min-operation rule of fuzzy implication 
is shown in Reference [18]: 

( )( )
( )( ) ( ) ( )( ){ }
1

1

max

min , ,j j j
i i

c
B j

d
i A A B

k

k k k

μ γ

μ θ μ θ γ

=

= →

=

⎡ ⎤
⎣ ⎦

                   (21) 

where c is the fuzzy rule, and d is the dimension of input 
variables. 

The defuzzier maps a fuzzy set B in V to a crisp point Vγ ∈ . 
The fuzzy logic system with the center of gravity is defined in 
Reference [18]: 

( )( )
( )( )

* 1

1

( )

n l l
Bl

n l
Bl

y k
k

k

μ γ
γ

μ γ
=

=

=
∑
∑

                                            (22)                   

n  is the number of outputs. ly  is the value of the lth  output. 

( )( )l
B kμ γ  represents the membership of ( )l kγ  in the fuzzy 

set B . Using ( )* kγ  in Equation (22) to replace γ  in 
Equations (15) and (16) allows us to configure an adaptive 
fuzzy weighting function for the recursive least square 
estimator (RLSE). A flow chart of the computation for the 
application of the proposed input estimation algorithm is shown 
in Figure 2.  

IV. RESULTS AND DISCUSSION  
In order to demonstrate the accuracy and efficiency of the 

presented method in estimating the unknown active earth 
acceleration, several numerical simulations of the retaining 
structure are investigated. The soil-wall system considered is 
shown in figure 1(a). The system is modeled by a simple 
two-degree freedom (2-DOF) mass spring dashpot dynamic 
model as shown in figure 1(b) [15]. The material of the wall and 
the soil layer is defined by the mass density, ρ , shear modulus 
of elasticity, G , Poisson's ratio, μ , and the material damping 
factor η  of concrete and dense sand respectively. The material 
data and dimensions of the soil-wall system are shown in Table 
1.  

For the estimation of the stiffness value for both soil and 
wall, the method was described by Veletsos and Younan [19]. 
It is determined such that the undamped natural frequency of 
the model equals the fundamental natural frequency of the 
medium idealized as a series of vertical shear-beams. The 
stiffness, k  of a particular system can be estimated as 

( )( )2 2/ 4 /k m H Gπ ρ=                                                    (23) 
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where m  is the mass of the system considered. This method 
is composed of the Kalman filter without the input term and the 
intelligent fuzzy weighted recursive least square estimator. The 
initial conditions and other parameters of simulation are shown 
as follows: 4(0 / 0) 10p diag ⎡ ⎤= ⎣ ⎦ . ˆ (0) 0G = . 8(0) 10bp = . 

(0)M  is set as a zero matrix. The weighting factor, γ , is an 
intelligent fuzzy weighting function. The sampling interval, 

0.005tΔ = s, and the total simulation time, 70ft s= . The earth 

motion accelerations of the 921 Chi-Chi earthquake in Taiwan 
was measured from the seismological station (TCU 056) in the 
Li-Ming elementary school [20]. The unknown earth motion 
acceleration can also be estimated from the dynamic responses 
of the wall. In this study, the precision of the estimation model 
was verified by the root mean square error (RMSE). The 
definition of the RMSE is described as Equation (23). 

( ) ( )
1

2
ˆn

real i ii
estimated

RMSE
n

G G
=

⎡ ⎤−⎢ ⎥⎣ ⎦
=

∑
                           (24) 

where n  is the total number of time steps. realG  is the real 

earth acceleration. ˆ
estimatedG  is the estimated earth acceleration. 

The process noise and measurement noise are both considered 
in the simulation process. The process noise covariance matrix, 

2 2w n nQ Q I ×= × , where 210wQ −= . The measurement noise 

covariance matrix, 2 2v n nR R I ×= × , where 2 1210vR σ −= = . 
σ  is the standard deviation of noise. Figure 3 shows the 
displacement, velocity and acceleration-time history responses 
of wall structure to the earth motion acceleration. Figure 4 
shows that the smaller weighting factor can be chosen in the 
fuzzy recursive least square method when the unknown system 
input is larger. Figure 5 shows the comparison between the 
intelligent fuzzy weighting and adaptive weighting estimation 
results of the earth motion acceleration with 210wQ −= , and 

1210vR −= . The simulation results in Figures 5~7 demonstrate 
that if the process noise variance wQ  decreases and the 
measurement error variance vR  increases, it will influence the 
estimation resolution. A smaller process noise variance and a 
larger measurement error variance will affect the capability of 
tracking the earth motion acceleration input. As a result, it will 
not be capable of reducing the effect caused by the 
measurement noise. The overall estimation efficiency will 
therefore degrade. The estimates of earth motion acceleration 
using the fuzzy weighting function and the constant weighting 
factor, 0.15γ = , are plotted in Figure 8. The similar simulation 
results of the earth motion acceleration with the fuzzy 
weighting function and the constant weighting factor, 

0.95γ = , are shown in Figures 9. The estimation results show 
that the tracking performance of estimators is not good enough, 
and they are not suitable in reducing the effect of the noise. 

In order to obtain a better estimation result, the constant 
weighting factor is chosen by the trial-and-error method. The 

adaptive weighted input estimator has better target tracking 
capability when the input variation is severe. However, the 
capability to reduce the effect caused by the noise is not 
sufficient. To resolve this situation, the method proposed in this 
research will be more efficient in tracking the unknown inputs 
and reducing the influence due to the measurement noise. The 
comparison of estimation results in terms of RMSEs using 
several different weighting functions are shown in Table 2. The 
RMSE is smaller when adopting the fuzzy weighted estimators. 

Fig. 2: Flowchart of the intelligent fuzzy weighted input estimation 
algorithm. 
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Fig. 3: The displacement, velocity and acceleration of the wall caused 
by the seismic force. 

 
Fig. 4: The variance of the fuzzy weighting factor ( )kγ . 

 

 
Fig. 5: Comparison of the estimation results using the fuzzy and 
adaptive weighting functions. ( 210wQ −= , 1210vR −= , 
(a)RMSE=3.18, (b)RMSE=3.71) 

 
Fig. 6: Comparison of the estimation results using the fuzzy and 
adaptive weighting functions. ( 410wQ −= , 1010vR −= , 
(a)RMSE=5.43, (b)RMSE=5.78) 

 
Fig. 7: Comparison of the estimation results using the fuzzy and 
adaptive weighting functions. ( 610wQ −= , 810vR −= , 
(a)RMSE=45.58, (b)RMSE=48.63) 

 
Fig. 8: Comparison of the estimation results using the fuzzy weighting 
function and the constant weighting factor ( 0.15γ = ). 

( 210wQ −= , 1210vR −= , (a)RMSE=3.18, (b)RMSE=3.41) 
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Fig. 9: Comparison of the estimation results using the fuzzy weighting 
function and the constant weighting factor ( 0.95γ = ). 

( 210wQ −= , 1210vR −= , (a)RMSE=3.18, (b)RMSE=20.13) 
TABLE I THE MATERIAL DATA AND DIMENSIONS OF THE SOIL-WALL SYSTEM 

[15] 
Wall height, H  5 ( m ) 
Unit weight of the concrete wall, concγ  24 ( 3/KN m ) 
Shear modulus of the concrete wall, 

concG  
3 29921 10 ( / )KN m×

 
Unit weight of the backfill soil, soilγ  18 ( 3/KN m ) 
Shear modulus of the backfill soil, soilG  25769( / )KN m  

 
TABLE II COMPARISON OF THE ESTIMATION RESULTS (RMSE) USING 4 

DIFFERENT WEIGHTING FUNCTIONS 

wQ  vR  0.15γ =  0.95γ = adaptiveγ =
 

Fuzzyγ =  

210−  
1210−

 
3.41 20.13 3.71 3.18 

410−
 

1010−

 
5.46 20.23 5.78 5.43 

610−  810−  46.19 30.03 48.63 45.58 

V. CONCLUSIONS  
This study presents the Kalman filter technology combined 

with the fuzzy weighting recursive least square method to 
estimate the active ground motion acceleration input of the 
retaining structure with the modeling and measurement noises. 
The fuzzy estimator has the properties of fast tracking 
capability and the efficiency against noises since it is weighted 
by the weighting factor, ( )kγ  of the presented method based 
on the fuzzy logic inference system. The excellent performance 
of this inverse method is demonstrated by solving the 
earthquake-excitation estimation problem, and the proposed 
algorithm is compared by alternating between the constant and 
adaptive weighting factors. The results reveal that this method 
has the properties of better target tracking capability and more 
effective noise reduction. 
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