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Intuitionistic Fuzzy Multisets And Its Application in
Medical Diagnosis
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Abstract—In this paper a new concept named Intuitionistic Fuzzy
Multiset is introduced. The basic operations on Intuitionistic Fuzzy
Multisets such as union, intersection, addition, multiplication etc. are
discussed. An application of Intuitionistic Fuzzy Multiset in Medical
diagnosis problem using a distance function is discussed in detail.
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I. INTRODUCTION

MODERN set theory formulated by George Cantor is
fundamental for the whole Mathematics. One issue

associated with the notion of a set is the concept of vagueness.
Mathematics requires that all mathematical notions including
set must be exact. This vagueness or the representation of
imperfect knowledge has been a problem for a long time for
philosophers, logicians and mathematicians. However, recently
it became a crucial issue for computer scientists, particularly in
the area of artificial intelligence. To handle situations like this,
many tools were suggested. They include Fuzzy sets, Multi
sets, Rough sets, Soft sets and many more.

Considering the uncertainty factor, Lofti Zadeh [1] intro-
duced Fuzzy sets in 1965, in which a membership function
assigns to each element of the universe of discourse, a number
from the unit interval [0, 1] to indicate the degree of belong-
ingness to the set under consideration. In 1983, Krassimir. T.
Atanassov [2, 3] introduced the concept of Intuitionistic Fuzzy
sets (IFS) by introducing a non-membership fuction together
with the membership function of the fuzzy set. Among the
various notions of higher-order Fuzzy sets, Intuitionistic Fuzzy
sets proposed by Atanassov provide a flexible framework
to explain uncertainity and vagueness. IFS reflect better the
aspects of human behavior.

A human being who expresses the degree of belongingness
of a given element to a set, does not often expresses the
corresponding degree of non-belongingness as the comple-
ment. This psychological fact states that linguistic negation
does not always coincides with logical negation. This idea of
Intuitionistic fuzzy sets, which is a natural generalization of
a standard Fuzzy set, seems to be useful in modelling many
real life situations, like negotiation processes, psychological
investigations, reasoning etc. The relation between Intuition-
istic Fuzzy sets and other theories modelling imprecision can
be seen in [5].
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Many fields of modern mathematics have been emerged by
violating a basic principle of a given theory only because
useful structures could be defined this way. Set is a well-
defined collection of distinct objects, that is, the elements of
a set are pair wise different. If we relax this restriction and
allow repeated occurrences of any element, then we can get a
mathematical structure that is known as Multisets or Bags.
For example, the prime factorization of an integer n > 0
is a Multiset whose elements are primes. The number 120
has the prime factorization 120 = 233151 which gives the
Multiset {2, 2, 2, 3, 5}. A complete account of the development
of multiset theory can be seen in [7]. As a generalization of
multiset, Yager [8] introduced the concept of Fuzzy Multiset
(FMS). An element of a Fuzzy Multiset can occur more than
once with possibly the same or different membership values.

This paper is an attempt to combine the two concepts:
Intuitionistic Fuzzy sets and Fuzzy Multisets together by in-
troducing a new concept called Intuitionistic Fuzzy Multisets.

II. PRELIMINARIES

Definition 2.1: [1] Let X be a nonempty set. A Fuzzy set
A drawn from X is defined as A = {< x : μA(x) >: x ∈ X}.
Where : X → [0, 1] is the membership function of the Fuzzy
Set A.

Definition 2.2: [8] Let X be a nonempty set. A Fuzzy
Multiset (FMS) A drawn from X is characterized by a
function, ‘count membership’ of A denoted by CMA such
that CMA : X → Q where Q is the set of all crisp multisets
drawn from the unit interval [0, 1]. Then for any x ∈ X ,
the value CMA(x) is a crisp multiset drawn from [0, 1]. For
each x ∈ X , the membership sequence is defined as the
decreasingly ordered sequence of elements in CMA(x). It
is denoted by

(
μ1
A(x), μ

2
A(x), . . . , μ

P
A(x)

)
where μ1

A(x) ≥
μ2
A(x) ≥, . . . ,≥ μP

A(x).
A complete account of the applications of Fuzzy Multisets

in various fields can be seen in [9].
Definition 2.3: [3] Let X be a nonempty set. An Intu-

itionistic Fuzzy Set (IFS) A is an object having the form
A = {< x : μA(x), νA(x) >: x ∈ X}, where the functions
μA : X → [0, 1] and νA : X → [0, 1] define respectively the
degree of membership and the degree of non membership of
the element x ∈ X to the set A with 0 ≤ μA(x)+ νA(x) ≤ 1
for each x ∈ X .

Remark 2.4: Every Fuzzy set A on a nonempty set X is
obviously an IFS having the form

A = {< x : μA(x), 1− μA(x) >: x ∈ X}.
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Using the definition of FMS and IFS, a new generalized
concept can be defined as follows:

III. INTUITIONISTIC FUZZY MULTISET

Definition 3.1: Let X be a nonempty set. An Intuitionistic
Fuzzy Multiset A denoted by IFMS drawn from X is char-
acterized by two functions: ‘count membership’ of A(CMA)
and ‘count non membership’ of A(CNA) given respectively
by CMA : X → Q and CNA : X → Q where Q is the set
of all crisp multisets drawn from the unit interval [0, 1] such
that for each x ∈ X , the membership sequence is defined as a
decreasingly ordered sequence of elements in CMA(x) which
is denoted by (μ1

A(x), μ
2
A(x), . . . , μ

P
A(x)) where (μ1

A(x) ≥
μ2
A(x) ≥, . . . ≥, μP

A(x) and the corresponding non member-
ship sequence will be denoted by (ν1A(x), ν

2
A(x), . . . , ν

P
A (x))

such that 0 ≤ μi
A(x) + νiA(x) ≤ 1 for every x ∈ X and

i = 1, 2, . . . , p.
An IFMS A is denoted by

A = {< x :
(
μ1
A(x), μ

2
A(x), . . . , μ

P
A(x)

)
,(

ν1A(x), ν
2
A(x), . . . , ν

P
A (x)

)
>: x ∈ X}.

Remark 3.2: We arrange the membership sequence in de-
creasing order but the corresponding non membership se-
quence may not be in decreasing or increasing order.

Definition 3.3: Length of an element x in an IFMS A is
defined as the Cardinality of CMA(x) or CNA(x) for which
0 ≤ μj

A(x) + νjA(x) ≤ 1 and it is denoted by L(x : A). That
is

L(x : A) = |CMA(x)| = |CNA(x)| .

Definition 3.4: If A and B are IFMSs drawn from X then
L(x : A,B) = Max{L(x : A), L(x : B)}. Alternatively we
use L(x) for L(x : A,B).

Example 3.5: Consider the set X = {x, y, x, w} with

A = {< x : (0.3, 0.2), (0.4, 0.5) >,

< y : (1, 0.5, 0.5), (0.0.5, 0.2) >,

< z : (0.5, 0.4, 0.3, 0.2), (0.4, 0.6, 0.6, 0.7) >},
B = {< x : (0.4), (0.2) >,

< y : (1, 0.3, 0.2), (0, 0.4, 0.5) >,

< w : (0.2, 0.1), (0.7, 0.8) >}.

Here
L(x : A) = 2, L(y : A) = 3, L(z : A) = 4, L(w : A) = 0
L(x : B) = 1, L(y : B) = 3, L(z : B) = 0, L(w : B) = 2
L(x : A,B) = 2, L(y : A,B) = 3, L(x : A,B) = 4,
L(w : A,B) = 2.

Now we define basic operations on IFMS. Note that we can
make L(x : A) = L(x : B) by appending sufficient number of
0s and 1s with the membership and non membership values
respectively.

Definition 3.6: Let A and B be two IFMS. The distance
function is defined as

d(A,B) =
1

2

(∑
i

((
μi
A(x)− μi

B(x)
)2

+
((
νiA(x)− μi

B(x)
)2

+
(
Πi

A(x)−Πi
B(x)

)2) 1
2

.

where Πi
A = 1 − μi

A(x) − νiA(x) called the IFMS index or
hesitation margin.

Definition 3.7: For any two IFMSs A and B drawn
from a set X , the following operations and relations will
hold. Let A = {< x :

(
μ1
A(x), μ

2
A(x), . . . , μ

P
A(x)

)
,(

ν1A(x), ν
2
A(x), . . . , ν

P
A (x)

)
>: x ∈ X} and B = {< x :(

μ1
B(x), μ

2
B(x), . . . , μ

P
B(x)

)
,
(
ν1B(x), ν

2
B(x), . . . , ν

P
B (x)

)
>:

x ∈ X} then
1.
1) Inclusion

A ⊂ B ⇔ μj
A(x) ≤ μj

A(x) and νjA(x) ≤ νjB(x);

j = 1, 2, . . . , L(x), x ∈ X

A = B ⇔ A ⊂ B and B ⊂ A
2) Complement

A = {< x :
(
ν1A(x), . . . , ν

P
A (x)

)
,(

μ1
A(x), . . . , μ

P
A(x)

)
>: x ∈ X}.

3) Union (A ∪B)
In A ∪ B the membership and non membership values
are obtained as follows.

μj
A∪B(x) = μj

A(x) ∨ μj
B(x)

νjA∪B(x) = νjA(x) ∧ νjB(x)
j = 1, 2, . . . , L(x), x ∈ X .

4) Intersection (A ∩B)
In A ∩ B the membership and non membership values
are obtained as follows.

μj
A∩B(x) = μj

A(x) ∨ μj
B(x)

νjA∩B(x) = νjA(x) ∧ νjB(x)
j = 1, 2, . . . , L(x), x ∈ X .

5) Addition (A⊕B)
In A⊕ B the membership and non membership values
are obtained as follows.

μj
A⊕B(x) = μj

A(x) + μj
B(x)− μj

A(x) · μj
B(x)

νjA⊕B(x) = νjA(x) · νjB(x)
j = 1, 2, . . . , L(x), x ∈ X .

6) Multiplication (A⊗B)
In A ⊗ B the membership and nonmembership values
are obtained as follows.

μj
A⊗B(x) = μj

A(x) · μj
B(x)

νjA⊗B(x) = νjA(x) + νjB(x)− νjA(x) · νjB(x)
j = 1, 2, . . . , L(x), x ∈ X .

here ∧, ·,+,− denotes maximum, minimum, multiplication,
addition, subtraction of real numbers respectively.
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IV. MEDICAL DIAGNOSIS VIA IFMS THEORY

Most of human reasoning involves the use of variables
whose values are fuzzy sets. This is the basis for the concept of
a linguistic variable, that is, a variable whose values are words
rather than numbers. But in some situations like decision
making problems (such as Medical diagnosis, Sales analysis,
Marketing etc.) the description by a linguistic variable in terms
of membership function only is not adequate. There is chance
of existing a non-null complement. IFS can be used in this
context as a proper tool for representing both membership
and non-membership of an element to a set. Such situations
are explained in [10]. But there are situations that each element
has different membership values. In such situations IFMS is
more adequate. Here we present IFMS as a tool for reasoning
such a situation.

An example of a medical diagnosis will be presented.
Let P = {P1, P2, P3, P4} be a set of patients,

D = {Viral Fever, Tuberculosis, Typhoid, Throat disease} be
a set of diseases and S = {Temperature, cough, throat pain,
headache, body pain} be a set of symptoms.

One of the question arises is, whether only by taking one
time inspection we can arrive a conclusion that a particular
person has a particular decease or not? Sometimes it may show
symptoms of different diseases also. Then how can we arrive
at a proper conclusion? One solution is to examine the patient
at different time intervals (it can be two or three times a day).
For the analysis purpose we take some main symptoms of each
disease given in D.
For this we have to take 3 different samples in 3 different times
in a day. The details of a typical example are given below.

In Table I each symptom Si is described by three numbers:
Membership μ, non-membership ν and hesitation margin Π.

TABLE I
SYMPTOMS VS DISEASES

Viral Tuberculosis Typhoid Throat
Fever disease

Temperature (0.8,0.1,0.1) (0.2,0.7,0.1) (0.5,0.3,0.2) (0.1,0.7,0.2)
Cough (0.2,0.7,0.1) (0.9,0,0.1) (0.3,0.5,0.2) (0.3,0.6,0.1)
Throat Pain (0.3,0.5,0.2) (0.7,0.2,0.1) (0.2,0.7,0.1) (0.8,0.1,0.1)
Headache (0.5,0.3,0.2) (0.6,0.3,0.1) (0.2,0.6,0.2) (0.1,0.8,0.1)
Body Pain (0.5,0.4,0.1) (0.7,0.2,0.1) (0.4,0.4,0.2) (0.1,0.8,0.1)

The objective is to make a proper diagnosis for each patient.
Here we use Euclidean distance function defined in Definition
3.6.

Let the sample be taken at three different timings in a day;
7 AM, 1 PM and 7 PM.

Here the distance function calculate the distance of each
patient Pi from the set of symptoms Si for each diagnosis
dk : k = 1, 2, 3, 4.

Here the first set represents the membership values obtained
at 7 AM, 1 PM and 7 PM respectively. The second and
third sets represents the corresponding non-membership and
hesitation margin.

Table II is constructed by using the Definition 3.1.
Table III gives the distances for each patient from the set

of diseases considered.

TABLE II
PATIENTS VS SYMPTOMS

Temperature Cough Throat Pain Headache Body Pain

P1 (0.6,0.7, 0.5) (0.4,0.3, 0.4) (0.1,0.2, 0) (0.5,0.6, 0.7) (0.2,0.3, 0.4)

(0.2, 0.1, 0.4) (0.3, 0.6, 0.4) (0.7, 0.7, 0.8) (0.4, 0.3, 0.2) (0.6, 0.4, 0.4)

(0.2, 0.2, 0.1) (0.3, 0.1, 0.2) (0.2, 0.1, 0.2) (0.1, 0.1, 0.1) (0.2, 0.3, 0.2)

P2 (0.4,0.3, 0.5) (0.7,0.6, 0.8) (0.6,0.5, 0.4) (0.3,0.6, 0.2) (0.8,0.7, 0.5)

(0.5, 0.4, 0.4) (0.2, 0.2, 0.1) (0.3, 0.3, 0.4) (0.7, 0.3, 0.7) (0.1, 0.2, 0.3)

(0.1, 0.3, 0.1) (0.1, 0.2, 0.1) (0.1, 0.2, 0.2) (0, 0.1, 0.1) (0.1, 0.1, 0.2)

P3 (0.1,0.2, 0.1) (0.3,0.2, 0.1) (0.8,0.7, 0.8) (0.3,0.2, 0.2) (0.4,0.3, 0.2)

(0.7, 0.6, 0.9) (0.6, 0, 0.7) (0, 0.1, 0.1) (0.6, 0.7, 0.6) (0.4, 0.7, 0.7)

(0.2, 0.2, 0.0) (0.1, 0.8, 0.2) (0.2, 0.2, 0.1) (0.1, 0.1, 0.2) (0.2, 0, 0.1)

P4 (0.5,0.4, 0.5) (0.4,0.3, 0.4) (0.2,0.1, 0) (0.5,0.6, 0.3) (0.4,0.5, 0.4)

(0.4, 0.4, 0.3) (0.5, 0.3, 0.5) (0.7, 0.6, 0.7) (0.4, 0.3, 0.6) (0.6, 0.4, 0.3)

(0.1, 0.2, 0.2) (0.1, 0.4, 0.1) (0.1, 0.3, 0.3) (0.1, 0.1, 0.1) (0, 0.1, 0.3)

TABLE III
DISTANCE BETWEEN PATIENTS & DISEASES

Viral Fever Tuberculosis Typhoid Throat
disease

P1 0.49 0.96 0.45 1.04

P2 0.79 0.50 0.64 0.90

P3 0.98 0.89 0.85 0.49
P4 0.51 0.89 0.36 0.93

In the above table the lowest distance point gives the proper
diagnosis. Patient P1 suffers from Typhoid, Patient P2 suffers
from Tuberculosis, P3 suffers from Throat disease and Patient
P4 also from Typhoid.

V. CONCLUSIONS

In this paper, we have introduced a new concept called
Intuitionistic Fuzzy Multiset and discussed its various basic
operations and definitions. Finally an application of IFMS
in medical diagnosis is discussed. In the proposed method,
we measured the distances of each patient from each disease
by considering the symptoms of that particular disease. The
concept of multiness is incorporated by taking the samples
from the same patient at different times.
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