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Abstract—A new, rapidly convergent, numerical procedure for 

internal loading distribution computation in statically loaded, single-
row, angular-contact ball bearings, subjected to a known combined 
radial and thrust load, which must be applied so that to avoid tilting 
between inner and outer rings, is used to find the load distribution 
differences between a loaded unfitted bearing at room temperature, 
and the same loaded bearing with interference fits that might 
experience radial temperature gradients between inner and outer 
rings. For each step of the procedure it is required the iterative 
solution of Z + 2 simultaneous nonlinear equations – where Z is the 
number of the balls – to yield exact solution for axial and radial 
deflections, and contact angles. 
 

Keywords—Ball, Bearing, Static, Load, Iterative, Numerical, 
Method, Temperature, Fit.  

I. INTRODUCTION 
ALL and roller bearings, generically called rolling 
bearings, are commonly used machine elements. They are 

employed to permit rotary motions of, or about, shafts in 
simple commercial devices such as bicycles, roller skates, and 
electric motors. They are also used in complex engineering 
mechanisms such as aircraft gas turbines, rolling mils, dental 
drills, gyroscopes, and power transmissions. 

The standardized forms of ball or roller bearings permit 
rotary motion between two machine elements and always 
include a complement of ball or rollers that maintain the shaft 
and a usually stationary supporting structure, frequently called 
a housing, in a radially or axially spaced-apart relationship. 
Usually, a bearing may be obtained as a unit, which includes 
two steel rings each of which has a hardened raceway on 
which hardened balls or rollers roll. The balls or rollers, also 
called rolling elements, are usually held in an angularly 
spaced relationship by a cage, also called a separator or 
retainer. 

There are many different kinds of rolling bearings. This 
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work is concerned with single-row angular-contact ball 
bearings (Fig. 1) that are designed to support combined radial 
and thrust loads or heavy thrust loads depending on the 
contact angle magnitude. The bearings having large contact 
angle can support heavier thrust loads. Fig. 1 shows bearings 
having small and large contact angles. The bearings generally 
have groove curvature radii in the range of 52-53% of the ball 
diameter. The contact angle does not usually exceed 40o.  
 

 

 

 

 

 

 

 
Fig. 1 Angular-contact ball bearing 

 
This work is devoted to study of the internal loading 

distribution in statically loaded ball bearings. Several 
researchers have studied the subject as, for example, Stribeck 
[1], Sjoväll [2], Jones [3] and Rumbarger [4]. The methods 
developed by them to calculate distribution of load among the 
balls and rollers of rolling bearings can be used in most 
bearing applications because rotational speeds are usually 
slow to moderate. Under these speed conditions, the effects of 
rolling element centrifugal forces and gyroscopic moments are 
negligible. At high speeds of rotation these body forces 
become significant, tending to alter contact angles and 
clearance. Thus, they can affect the static load distribution to a 
great extension. 

Harris [5] described methods for internal loading 
distribution in statically loaded bearings addressing pure 
radial; pure thrust (centric and eccentric loads); combined 
radial and thrust load, which uses radial and thrust integrals 
introduced by Sjoväll; and for ball bearings under combined 
radial, thrust, and moment load, initially due to Jones. 

There are many works describing the parameters variation 

Internal Loading Distribution in Statically 
Loaded Ball Bearings, Subjected to a Combined 
Radial and Thrust Load, Including the Effects of 

Temperature and Fit 
Mário C. Ricci 

B 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:9, 2009

1072

 

 

models under static loads but few demonstrate such variations 
in practice, even under simple static loadings. The author 
believes that the lack of practical examples is mainly due to 
the inherent difficulties of the numerical procedures that, in 
general, deal with the resolution of several non-linear 
algebraic equations that must to be solved simultaneously. 

In an attempt to cover this gap studies are being developed 
in parallel [6], [7], [8]. Particularly in this work a new, precise 
numerical procedure, described in [7], for internal load 
distribution computation in statically loaded, single-row, 
angular-contact ball bearings subjected to a known external 
combined radial and thrust load, so that no tilt is allowed 
between inner and outer rings, is used to find the load 
distribution differences between a loaded bearing with 
clearance fits at room temperature, and the same loaded 
bearing with interference fits, such might experience radial 
temperature gradients between inner and outer rings. 

In the most usual situation, angular contact bearings would 
first be fitted, with interference or clearance defined at room 
temperature, to their respective shaft and housing; then a 
defined axial “hard” preload would be applied and 
subsequently in operation the bearings might experience radial 
temperature gradients between inner and outer rings. 

Generally, ball bearings and other radial rolling bearings 
such as cylindrical roller bearings are designed to have a 
diametral clearance in the no-load state. Due to this radial 
clearance the bearing also can experience an axial play. 
Removal of this axial freedom causes the ball-raceway contact 
line to assume an oblique angle with respect to the radial 
plane; hence, a contact angle different from zero will occur. 
This angle is called free contact angle and is a function of 
clearance built into the unloaded bearing and the raceway 
groove curvatures. 

Press or shrink fitting of the inner ring on the shaft causes 
the inner ring to expand slightly. Similarly, press fitting of the 
outer ring in the housing causes the former member to shrink 
slightly. Thus, the bearing’s diametral clearance will tend to 
decrease. Large amounts of interference in fitting practice can 
cause bearing clearance to vanish and even produce negative 
clearance or interference in the bearing. 

Thermal conditions of bearing operation can also affect the 
diametral clearance. Heat generated by friction causes internal 
temperatures to rise. This in turn causes expansion of the 
shaft, housing, and bearing components. Depending on the 
shaft and housing materials and on the magnitude of thermal 
gradients across the bearing and these supporting structures, 
clearance can tend to increase or decrease. It is also apparent 
that the thermal environment in which a bearing operates may 
have a significant effect on clearance. 

II. SYMBOLS 
a Semimajor axis of the projected contact, m 
A Distance between raceway groove curvature centers, m 
b Semiminor axis of the projected contact, m 
B fo + fi – 1, total curvature 

d Raceway diameter, m 
da Bearing outer diameter, m 
db Bearing inner diameter, m 
de Bearing pitch diameter, m 
d1 Housing outside diameter, m 
d2 Shaft hole diameter, m 
D Ball diameter, m 
E Modulus of elasticity, N/m2 

E´ Effective elastic modulus, N/m2 
E Elliptic integral of second kind 
f Raceway groove radius ÷ D 
F Applied load, N 
I Diametral interference, m 
k a/b 
K Load-deflection factor, N/m3/2 
K Elliptic integral of first kind 
M Sum of the ball loads moments about inner ring center of 

mass, Nm 
Pd Diametral clearance, m 
Pe Free endplay, m 
Q Ball-raceway normal load, N 
r Raceway groove curvature radius; solids curvature radius, 

m 
s Distance between loci of inner and outer raceway groove 

curvature centers, m 
R Curvature radius; radius of locus of raceway groove 

curvature centers, m 
T Temperature, oC 
Z Number of rolling elements 
β Contact angle, rad, o 
βf Free contact angle, rad, o 
γ D cos β / de 
Γ Curvature difference or coefficient of linear expansion, 

m/m/oC 
δ Deflection or contact deformation, m 
Δ Variation or Clearance reduction due to press fitting, m 
Δψ Angular spacing between rolling elements, rad,o 
υ Poisson’s ratio 
φ Auxiliary angle 
ψ Azimuth angle, rad, o 
 
Subscripts: 
 
a Refers to solid a, axial direction or ambient temperature 
b Refers to solid b or bearing 
x,y Refers to coordinate system 
h Refers to housing 
i Refers to inner raceway 
j Refers to rolling element position 
n Refers to direction collinear with normal load; integer 

number 
o Refers to outer raceway 
r Refers to radial direction 
s Refers to shaft 
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III. GEOMETRY OF BALL BEARINGS 
In this section, the principal geometrical relationships for an 

unloaded ball bearing are summarized. The radial cross 
section of a single-row ball bearing shown in Fig. 2 depicts 
the diametral clearance and various diameters. The pitch 
diameter, de, is the mean of the inner- and outer-race 
diameters, di and do, respectively, and is given by 

 

( )oie ddd +=
2
1 .               (1) 

 
Fig. 2 Radial cross section of a single-row ball bearing 

 
The diametral clearance, Pd, can be written as 
 

DddP iod 2−−= .                   (2) 
 

Race conformity is a measure of the geometrical conformity 
of the race and the ball in a plane passing through the bearing 
axis (also named center line or rotation axis), which is a line 
passing through the center of the bearing perpendicular to its 
plane and transverse to the race. Fig. 3 depicts a cross section 
of a ball bearing showing race conformity, expressed as 

 

Drf /= .                       (3) 

 
Fig. 3 Cross section of a ball and an outer race showing race 

conformity 
 
Radial bearings have some axial play since they are 

generally designed to have a diametral clearance, as shown in 
Fig. 4(a). Fig. 4(b) shows a radial bearing with contact due to 
the axial shift of the inner and outer rings when no measurable 
force is applied. The radial distance between the curvature 

centers of the two races are the same in the Figs. 4(a) and (b). 
Denoting quantities referred to the inner and outer races by 
subscripts i and o, respectively, this radial distance value can 
be expressed as A – Pd/2, where A = ro + ri – D is the 
curvature centers distance in the shifted position given by Fig. 
4(b). Using (3) we can write A as 

 
A = BD,                  (4) 

 
where B = fo + fi – 1 is known as the total conformity ratio and 
is a measure of the combined conformity of both the outer and 
inner races to the ball. 

The contact angle, β, is defined as the angle made by a line, 
which passes through the curvature centers of both the outer 
and inner raceways and that lies in a plane passing through the 
bearing rotation axis, with a plane perpendicular to the bearing 
axis of rotation. The free-contact angle, βf, (Fig. 4(b)) is the 
contact angle when the line also passes through the points of 
contact of the ball and both raceways and no measurable force 
is applied. From Fig. 4(b), the expression for the free-contact 
angle can be written as 

A
PA d

f
2/cos −

=β .                  (5) 

 
(a)            (b) 

 

Fig. 4 Cross section of a radial ball bearing showing ball-race 
contact due to axial shift of inner and outer rings. (a) Initial position. 

(b) Shifted position 
 
From (5), the diametral clearance, Pd, can be written as 
 

( )fd AP βcos12 −= .           (6) 

 
Free endplay, Pe, is the maximum axial movement of the 

inner race with respect to the outer when both races are 
coaxially centered and no measurable force is applied. Free 
endplay depends on total curvature and contact angle, as 
shown in Fig. 4(b), and can be written as 

 
fe AP βsin2= .              (7) 

 
Considering the geometry of two contacting solids 

(ellipsoids a and b) in a ball bearing we can arrive at the two 
quantities of some importance in the analysis of contact 
stresses and deformations: The curvature sum, 1/R, and 
curvature difference, Γ, which are defined as: 
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R 11 , 

where 

bxaxx rrR
111

+= , 

byayy rrR
111

+= , 

 
with rax, rbx, ray and rby, being the radii of curvature for the 
ball-race contact. 

A cross section of a ball bearing operating at a contact 
angle β is shown in Fig. 5. Equivalent radii of curvature for 
both inner- and outer-race contacts in, and normal to, the 
direction of rolling can be calculated from this figure. 
Considering x the direction of the motion and y the transverse 
direction, the radii of curvature for the ball-inner-race contact 
are 

 

2/Drr ayax == , 

β
β

cos2
cosDdr e

bx
−

= , 

iiby rDfr −=−= . 

 
Fig. 5 Cross section of a ball bearing 

 
The radii of curvature for the ball-outer-race contact are 
 

2/Drr ayax == , 

β
β

cos2
cosDdr e

bx
+

= , 

ooby rDfr −=−= . 

Let 

ed
D βγ cos

= . 

Then 

γ
γ−

=
1
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for the ball-inner-race contact, and 
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for the ball-outer-race contact. 

IV. EFFECTS OF INTERFERENCE FITTING, THERMAL 

GRADIENTS, AND SURFACE FINISH ON CLEARANCE 
In this section, the principal relationships between 

interference fittings, thermal gradients, surface finish and 
changes in diametral clearance are summarized. As described 
in [5], the increase in di due a press fitting between a bearing 
inner ring and a shaft of hole diameter d2, is given by 

 

( )[ ] ( )
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  (12) 

 
If the bearing inner ring and shaft are both fabricated from 

the same material, then 
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For a bearing inner ring mounted on a solid shaft of the 

same material, diameter d2 is zero and 
 

ibs dId /=Δ .               (14) 
 
Similarly, the decrease in do due a press fitting between a 

bearing outer ring and a housing of outside diameter d1, is 
given by 
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If the bearing outer ring and housing are both fabricated 

from the same material, then 
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h dd

dd
d
dI .             (16) 

 
For a bearing outer ring mounted inside a solid housing of 

the same material, diameter d1 approaches infinity and 
 

aoh dId /=Δ .            (17) 
 
A reduction in I due to surface finish must be taking into 

account [5]. 
Now, considering bearing outer and inner rings at 

temperatures To – Ta and Ti – Ta above ambient, respectively, 
the approximate increases in do and di are Γbdo(To – Ta) and 
Γbdi(Ti – Ta), respectively. Thus the diametral clearance 
increase due to thermal expansion is 

 
( ) ( )aiibaoobT TTdTTd −Γ+−Γ=Δ .        (18) 

 
When the housing and shaft are not fabricated from the 

same material (usually steel) as the bearing, an increase in the 
interference can be wait, that are given by (Γb – Γh)da(To – Ta) 
and (Γs – Γb)db(Ti – Ta), respectively. 

Considering a bearing having a clearance Pd prior to 
mounting at room temperature, the change in clearance, after 
mounting with bearing outer and inner rings at temperatures 
To and Ti, respectively, is given by 

 
hsTdP Δ−Δ−Δ=Δ .          (19) 

V. CONTACT STRESS AND DEFORMATIONS 
When two elastic solids are brought together under a load, a 

contact area develops, the shape and size of which depend on 
the applied load, the elastic properties of the materials, and the 
curvatures of the surfaces. For two ellipsoids in contact the 
shape of the contact area is elliptical, with a being the semi-
major axis in the y direction (transverse direction) and b being 
the semi-minor axis in the x direction (direction of motion). 

The elliptical eccentricity parameter, k, is defined as? 
 

k = a/b. 
 
From [5], k can be written in terms of the curvature 

difference, Γ, and the elliptical integrals of the first and 
second kind, K and Ε, as 

 

( ) ( )
( )Γ−

Γ+−
=

1
12

E
EKkJ , 
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A one-point iteration method, which has been used 

successfully in the past [9], is used here, where 
 

kn+1 = J(kn). 
 
When the ellipticity parameter, k, the elliptic integrals of 

the first and second kinds, K and Ε, respectively, the normal 
applied load, Q, Poisson’s ratio, ν, and the modulus of 
elasticity, E, of the contacting solids are known, we can write 
the semi-major and -minor axes of the contact ellipse and the 
maximum deformation at the center of the contact, from the 
analysis of Hertz [10], as 
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where 

b

b

a

a

EE

E 22 11
2

υυ −
+

−
=′ . 

VI. STATIC LOAD DISTRIBUTION UNDER COMBINED RADIAL 
AND THRUST LOAD 

Methods to calculate distribution of load among the balls 
and rollers of rolling bearings statically loaded can be found in 
various papers, [11]. The methods have been limited to, at 
most, three degrees of freedom in loading and demand the 
solution of a simultaneous nonlinear system of algebraic 
equations for higher degrees of freedom. Solution of such 
equations generally necessitates the use of a digital computer. 
In certain cases, however – for example, applications with 
pure radial, pure thrust or radial and thrust loading with 
nominal clearance – the simplified methods will probably 
provide sufficiently accurate calculational results. 

Having defined a simple analytical expression for the 
deformation in terms of load in the previous section, it is 
possible to consider how the bearing load is distributed among 
the rolling elements. Most rolling-element bearing 
applications involve steady-state rotation of either the inner or 
outer race or both; however, the speeds of rotation are usually 
not so great as to cause ball or roller centrifugal forces or 
gyroscopic moments of significant magnitudes. In analyzing 
the loading distribution on the rolling elements, it is usually 
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satisfactory to ignore these effects in most applications. In this 
section the load deflection relationships for ball bearings are 
given, along with a specific load distribution consisting of a 
combined radial and thrust load, which must be applied to the 
inner ring of a statically loaded ball bearing, so that no tilt is 
allowed between inner and outer rings.  

A. Load-Deflection Relationships for Ball Bearings 
From (22) it can be seen that for a given ball-raceway 

contact (point loading) 
 

2/3δKQ = ,         (23) 
where 

39
2
K
EREkK ′= π . 

 
The total normal approach between two raceways under 

load separated by a rolling element is the sum of the 
approaches between the rolling element and each raceway. 
Hence 

oin δδδ += . 
Therefore, 

2/3

3/23/2 /1/1
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

oi
n KK

K  

and 
2/3

nnKQ δ= .             (24) 

B. Ball Bearings under Combined Radial and Thrust Load 
According [7], let a ball bearing with a number of balls, Z, 

symmetrically distributed about a pitch circle according to 
Fig. 6, to be subjected to a combined radial and thrust load, so 
that a relative axial displacement, δa, and a relative radial 
displacement, δr, between the inner and outer ring raceways 
may be expected. Let ψ = 0 to be the angular position of the 
maximum loaded ball. 

Fig. 7 shows the initial and final curvature centers positions 
at angular position ψ, before and after loading, considering 
that the centers of curvature of the raceway grooves are fixed 
with respect to the corresponding raceway. If δa and δr are 
known, the contact angle at angular position ψ, after the 
combined load has been applied, is given by 

 

( ) 1 cos cos
cos f r

n

A
A

β δ ψ
β ψ

δ
− +⎛ ⎞

= ⎜ ⎟+⎝ ⎠
.        (25) 

 
Also, from Fig. 7,  
 

    ( ) ( ) fna AA ββδψδ sinsin −+= ,             (26) 

 
and we can arrive in the expression for the extend of the 
loading zone, that is given by: 
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Fig. 6 Ball angular positions in the radial plane that is perpendicular 

to the bearing’s axis of rotation, Δψ = 2π/Z, ψj = 2π/Z(j−1) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7 Initial and final curvature centers positions at angular position 
ψ, with and without applied load 

 
From (25), the total normal approach between two 

raceways at angular position ψ, after the combined load has 
been applied, can be written as 

 

( )
β
ψδ

β
β

ψδ
cos
cos1

cos
cos rf

n A +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= .          (28) 

 
From Fig. 7 and (28) it can be determined that s, the 

distance between the centers of the curvature of the inner and 
outer ring raceway grooves at any rolling element position ψ, 
is given by: 

Outer raceway 
groove 
curvature center 
fixed 

βf 

Initial position, 
inner raceway 
groove 
curvature center 

A

Final position, 
inner raceway 
groove 
curvature 
center 

δa  

s = A + δn 
β A cos βf 

δrcosψ  
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From (26) and (29) yields, for ψ = ψj, 
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0

cos
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costan =
−

−−
j

fj
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β
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From (24) and (28) yields, for ψ = ψj, 
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j

f
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If a thrust load, Fa, and a radial load, Fr, are applied then, 

for static equilibrium to exist 
 

    ∑
=

=
Z

j
jja QF

1

sin β ,           (32) 

    
j

Z

j
jjr QF ψβ coscos

1
∑

=

= .          (33) 

 
Additionally, each of the normal ball load components 

produces a moment about of the inner ring center of mass, in 
the plan, which passes through the bearing rotation axis and 
contains the external radial load (moments about the other two 
perpendicular plans are self-equilibrating). For static 
equilibrium, the thrust load, Fa, and/or the radial load, Fr, 
must exert a moment, M, about of the inner ring center of 
mass, which must be equal the sum of the moments of each 
rolling element load, that is, 

 

( )[ ]∑
=

−+−=
Z

j
rjjrijj RQM

1
coscossin δψψδβ ,       (34) 

where 
( ) fiei DfdR βcos5.02/ −+=  

 
expresses the locus of the centers of the inner ring raceway 
groove curvature radii. 

Substitution of (31) into (32) yields 
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Equations (30), (35) and (36) are Z + 2 simultaneous 

nonlinear equations with unknowns δa, δr, and βj, j = 1,…, Z. 
Since Knj are functions of contact angle, βj, the equations must 
be solved iteratively to yield an exact solution for δa, δr and βj. 

VII. NUMERICAL RESULTS 
To show an application of the theory developed in this 

work a numerical example is presented, which uses the 
Newton-Rhapson method to solve the simultaneous nonlinear 
equations (30), (35) and (36). 

218 angular-contact ball bearing as example, which was 
also used by [5] have been chosen. The 218 angular-contact 
ball bearing has a 0.09 m bore, a 0.16 m o.d. and is 
manufactured to ABEC 7 tolerance limits. The bearing is 
mounted on a hollow steel shaft of 0.0635 m bore with a k6 fit 
and in a titanium housing having a effective o.d. of 0.2032 m 
with an M6 fit. Considers that the inner ring operates at a 
mean temperature of 148.9oC, that the outer ring is at 121.1oC 
and that the bearing was assembled at 21.1oC. 

There are three steps in the numerical procedure. The first, 
considering the bearing unfitted at assembling temperature; 
the second, considering the fits above at assembling 
temperature; and the third, considering the fits above at 
operational temperatures for the inner and outer rings. Before 
each step the geometry of the bearing is obtained from which, 
the nonlinear equations are solved simultaneously to obtain 
radial and axial deflections and contact angles. 

Figs. 8 to 17 show some parameters, as functions of the 
applied thrust load, for the three steps of the procedure and for 
some values of the applied radial load. 

Figs. 8 and 9 show the normal ball loads for the maximum 
and minimum loaded ball, respectively. There is a better 
loading distribution with the increase of thrust load; and there 
are slight decreases (increases) in normal ball load, for the 
maximum (minimum) loaded ball, when it passes from first to 
second, and from second to third steps. Similar behavior is 
also observed for other parameters and will not be mentioned 
here. For this loading range, the ball at angular position ψ = 0 
is always loaded. This is not the case for the ball at angular 
position ψ = 180o. For zero applied radial load the normal ball 
load is the same for the maximum and minimum loaded ball. 
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Fig. 8 Normal ball load for the maximum loaded ball, Q(ψ = 0), as a 

function of the thrust load, Fa 
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Figs. 10 and 11 show the contact angle for the maximum 
and minimum loaded ball, respectively. The straight lines 
represent the free contact angles for the three steps of the 
procedure. For zero applied radial load the contact angle is 
always greater than the free contact angle. In this case, the 
bearing is under thrust loading and all balls have the same 
load and contact angles. If the contact angle falls below the 
free contact angle the balls are unloaded. With the increase in 
applied radial load the free contact angle ceases to be a 
reference for unload. In this case, the contact angle may drop 
to values much lower than the free contact angle value - as 
low as 3o - for a loaded ball, or may rise to values greater than 
the free contact angle value, for an unloaded ball. 
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Fig. 9 Normal ball load for the minimum loaded ball, Q(ψ = 180o), as 

a function of the thrust load, Fa 
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Fig. 10 Contact Angle for the maximum loaded ball, β(ψ = 0), as a 

function of the thrust load, Fa 
 
Figs. 12 and 13 show the distance between the curvature 

centers for the maximum and minimum loaded ball, s, 
respectively. The straight lines represent the curvature centers 
distance in the shifted (unload) position, A. Simply remove A 
from s for total deformation along the contact line. If s falls 
below A is an indication of unloading. 

Fig. 14 shows the loading zone. The straight lines represent 

the angular ball positions. With the increase of thrust load 
there is an increase of the loading angle, whose maximum 
value is 180o. 

Figs. 15 and 16 show the axial and radial deflections, 
respectively. 
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Fig. 11 Contact Angle for the minimum loaded ball, β(ψ = 180o), as a 

function of the thrust load, Fa 
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Fig. 12 Distance between the curvature centers for the maximum 

loaded ball, s(ψ = 0), as a function of the thrust load, Fa 
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Fig. 13 Distance between the curvature centers for the minimum 

loaded ball, s(ψ = 180o), as a function of the thrust load, Fa 
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VIII. CONCLUSION 
The importance of this work lies in the fact that it uses a 

new procedure for get numerically, accurately and quickly, the 
static load distribution of a ball bearing under axial and radial 
loading, taking into account the influence of fits and thermal 
gradients. Precise applications, as for example, space 
applications, require a precise determination of the static 
loading. Models available in literature are approximate and 
often are not compatible with the desired degree of accuracy. 
This work can be extended to determine the loading on high-
speed bearings where centrifugal and gyroscopic forces do not 
be discarded. The results of this work can be used in the 
accurate determination of the friction torque of the ball 
bearings, under any operating condition of temperature and 
speed. 
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Fig. 14 Loading zone, ψl, as a function of the thrust load, Fa 
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Fig. 15 Axial deflection, δa, as a function of the thrust load, Fa 
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Fig. 16 Radial deflection, δr, as a function of the thrust load, Fa 
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