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Abstract—In this paper we propose an intelligent agent approach 
to control the electric power grid at a smaller granularity in order to 
give it self-healing capabilities. We develop a method using the 
influence model to transform transmission substations into 
information processing, analyzing and decision making (intelligent 
behavior) units. We also develop a wireless communication method 
to deliver real-time uncorrupted information to an intelligent 
controller in a power system environment. A combined networking 
and information theoretic approach is adopted in meeting both the 
delay and error probability requirements. We use a mobile agent 
approach in optimizing the achievable information rate vector and in 
the distribution of rates to users (sensors). We developed the concept 
and the quantitative tools require in the creation of cooperating semi-
autonomous subsystems which puts the electric grid on the path 
towards intelligent and self-healing system. 
 

Keywords—Mobile agent, power system operation and control, 
real time, wireless communication. 
 
 

I.  INTRODUCTION 
RITICAL infrastructure networks are a set of 
indispensable networks which include water supply, oil 

and gas, telecommunications, electrical power, and 
transportation networks. These important networks span all 
sectors of the economy of a nation and are therefore the 
backbone of a nation’s economy. The power grid is the 
network which glues together these critical networks and a 
high security and reliability is required of it. The power grid, 
however, is impacted by numerous dynamic disturbances.  

Deregulation and other factors such as lack of infrastructure 
investment due to financial and environmental factors and 
surging demand of electricity compel the system to be 
operated close to its thermal and stability limits. The 
deregulated system therefore has the problem of frequent 
spread of local disturbances into high impact system wide 
disturbance which is economically and socially costly. This is 
seen in recent major grid blackouts in North America and 
Europe [1]. 

The complexity of the dynamics and the uncertainties of 
disturbances in the power grid necessitate the use of semi - 
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autonomous systems and computational intelligence in its 
operation and control [2]. Currently, the network is controlled 
in a central fashion where data is collected from local 
transmission substations to a central control center. Control 
decisions are then taken and actuation signals sent to actuators 
in the local substations. The operator’s experience is critical in 
the analysis of information and the choice of action. This 
approach has the disadvantage of actuation delay, lack of 
scalability and robustness.  

The goal of this study is to develop alternative control 
architecture where the power network could be efficiently 
controlled at the transmission substation level with some 
upper level oversight. In [3], [4], Amin argue that decision 
making should be close to the process as possible. The key 
requirement of this new architecture is to exchange 
information in a reliable, timely and secure manner among the 
various decision units.  

We propose the spatial decomposition of the network into 
subsystems (substations and power plants) which have their 
own sensors, actuators and intelligent controller (semi-
autonomous agents). 

 

             
 

Fig. 1 A generic distributed local level with upper level 
control 

 
 

Above this level, intelligent agents are also distributed at 
regional and system levels (see Fig. 1). The intelligent agent in 
each subsystem can sense its environment in real time, process 
the information gathered, take local actions and can cooperate 
with other subsystems and have higher level supervisory 
control if necessary. The intelligent agent control concept is 
thus a notion where the operator’s experience is taken out of 
the control loop and distinct computational units in the 
decomposed system coordinate to perform control tasks of the 
electric grid. 

The use of dynamic agent-based architecture for power 
system operation and control was discussed in [5], [6]. 
However, no specific architecture was proposed. In [7], the 
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authors proposed the use of a network of distributed 
cooperating autonomous agents in solving the global problem 
of eliminating voltage and current violations with a minimum 
cost of load and generation shedding before protective relays 
trip. Each agent controls only its local control variable and is 
allowed to gather measurements from a limited portion of the 
power system through communication networks. The agent 
solves a local version of the global problem using model 
predictive control and cooperation. A very high level of 
confidence in the method used in predicting system level 
behavior is required before autonomous agents can be used in 
high consequence applications such as the control of 
cascading failures. The objective of shedding load and 
generation before relays trip seems over ambitious. Our 
approach incorporates higher level oversight and we consider 
the action of cooperating semi autonomous agents as a time 
buying mechanism if substation level agents cannot resolve a 
problem. 

 The remainder of the paper is presented in the following 
order: wireless embedded sensing, substation level state 
assessment, validation of concept and algorithms and 
conclusions. 

 
II.  WIRELESS EMBEDDED SENSING 

Fundamental to the power grid achieving self healing 
capabilities, is its ability to make available reliable real time 
system information to decision units. We propose the use of a 
wireless communication system to interface the intelligent 
controller, the sensors and the actuators due to their low cost 
and easy installation compared to their wired alternatives. The 
purpose of this section is to provide a real time 
communication medium for transmission substation agents to 
perceive their environment. Wireless communication in power 
system environment is impacted by joint AWGN and impulse 
noise which severely affect achievable information rates. 
 

                                
                      

Fig. 2 Wireless embedded sensing 
 

We therefore investigated the general operational impact of 
impulse noise on multi-user access channel in a power system 
environment.  The key requirements, of any communication 
network used for sensing and control in power systems are: 
packet loss constraint, data rate and packet delay guarantees. 
We adopt a combined networking and information theoretic 
approach to satisfy these requirements. We seek to maximize 
rates at which information could be reliably transferred. The 
classical formulation of this problem is: For a given impulse 
noise state the maximum rate vector achievable is given by 
                                                                  

pFp∈
max R 

                 subject to: E [P i (n)]≤  
−

ip    
 
The average power usage for user i  is  

E [P i (n)] and is constraint by
−

ip , the average transmit power 
of user i .                                                             

We adopt a mobile agent approach rather than the classical 
approach in optimizing the achievable information rate vector 
by decomposing the optimization problem where each user 
has this quantity to maximize.   
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where ih is the signal attenuation factor, ip the transmit 

power, μ  the probability of appearance and )(kβ the 
amplitude of  impulse noise.   Thus we assumed that each 
transmitter has a perfect knowledge of the impulse noise 
information and has an efficient method of controlling its 
transmit power level.  Each user based on the impulse noise 
condition selects appropriate power level to maintain a 
predetermined iγ . The computational unit (Intelligent 
controller) has a mobile agent which continually visits all 
users and get their optimized signal to noise ( )(kiγ ) value 
which is then used in computing the maximum achievable 
information rate.  

 Two notions of achievable rates were considered; one 
where no transmission outage is allowed over all impulse 
noise states; the second where transmission outage is allowed 
over subset of the impulse noise states. The former is referred 
to as the delay limited (zero-outage) capacity and the later the 
outage capacity.  Delay limited (zero-outage) and outage 
capacity regions are rates achievable with finite coding delay. 
We quantify the delay limited and outage capacity regions of 
the impulse noise multiple access channel. The delay limited 
capacity is the set of rates which satisfy:     
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The impulse outage capacity is the rate vector which satisfies: 
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The outage probability ε  may be defined as the fraction of 
time that the transmission rate is higher than the instantaneous 
mutual information.                                        

Using queuing theory we develop an equation which can 
estimate the service speed required by a user when its delay 
requirement and the queuing state are known. A mobile agent 
from the intelligent controller continually visits the users and 
gets their queue state information and application delay 
requirements. This information is used by our estimator 
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equation in computing user require rates.  For user i at time k  
if the system average delay iD is specified and the queuing 
state of its buffer is known, the encoding rate can be estimated 
by  
 

                               
( )

i

i
i D

kN
kR

2
1)(

)(
+

=               

                                                                
We develop an algorithm to use the characterized zero outage 
and outage rate regions to provide reliable real time 
communication service. The allocated rates are distributed by 
the mobile agent to the users. The following procedures are 
performed 
 
     Steps   
                    

1. From the queue state and delay requirement of users, 
estimate their respective rates ir  

2. Compute the sum rate ∑
∈Si

ir  

3. For a given impulse state and power constraint determine 
the maximum rate vector achievable when no transmission 

outage is allowed i.e. )(kR
Si

i∑
∈

 

4. Repeat step 3 for all values of k  

5. Determine the smallest sum rate zeroC  over all impulse 

noise states  
6. All set of rates such that their sum rate is less or equal to 

zeroC  is the zero-outage capacity 

7. Is the sum rate in step 2 less or equal to zeroC ? 
8. If yes then the specified rates in step 1 could be provisioned 

without any transmission outage (deterministic QoS) 
9. If no 
10. Determine the maximum rate vector that can be maintained 

over all impulse noise states except over a subset of 
impulse noise states with transmission outage probability 
ofε . This is the outage capacity outageC  

11.  Is the sum rate in step 2 less or equal to outageC  

12. If yes then the specified rates in step 1 could be provisioned 
with transmission outage probability ε  (Statistical QoS) 

13. If no increase the outage probability and repeat steps 10 to 
12 

 
III. SUBSTATION LEVEL STATE ASSESSMENT 

In this section we develop a method of transforming 
transmission substations from mere supplier of raw data into 
information processing, analyzing and decision making unit. 
Thus we model the activities in a substation and its vicinity in 
a way to let it exhibit intelligent behavior. The 
interdependency of activities of components in the substation 
and its vicinity are captured using the influence model. 

The influence model, A)t(CS)1t(P =+ , describes the 
interaction among several Markov chains and generates a 
Markov process that models propagation on networks [8]. In 

the context of power system transmission networks the 
operating condition of transmission lines and transformers at 
any given time are assumed to be either in a ‘normal’ or 
‘tripped’ state as shown in Fig. 3.  

The next state of each chain depends on both its own 
current state and the state of its neighbors. The influence 
model is used to describe the influence each chain has on the 
other and can thus capture the propagation of cascading 
dynamics in the network. Agents at the substation level would 
be capable of knowing how the status of components evolves 
after a failure if   both the network influence matrix C  and 
the local transition probability matrix A are known. 
 

                      
 

Fig. 3 Transmission component modes 
 

We develop an algorithm to estimate the network influence 
matrix C  using hidden failure as the main source of influence 
among transmission components. The method of maximum 
likelihood is used to estimate the parameters of the local 
transition probability matrix A. Our method allows substations 
to do their own state assessment instead of just providing raw 
data. 

For any given transmission network the network influence 
matrix can be determined by performing the following 
procedural steps: 
 
     Steps 

1. For line i determine its neighbors by finding all lines j, that 
share bus with it   

2. Determine the influence of line j on line i  by removing 
line j from the circuit and run a load flow to measure the 
percentage overload induced in i as a result of the removal 
of line j 

3. For a given hidden failure probability p and the 
percentage overload obtained in 2, the probability of 
exposed line i  tripping incorrectly is estimated from Fig. 
4.  

 
 

                                  
 

Fig. 4 Probability of exposed line tripping 
incorrectly [9], [10] 
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4. For the )( jiN +− non-neighbors, determine if they 

have any influence on i  by repeating steps 2 and 3 
5. Repeat steps 1 to 4 until Ni =  where N  is the total 

number of sites 
6. Use the estimated probabilities to form the network 

influence matrix C  
                       
The one-step transition probability of component i (changing 
from time t  to time 1+t ) can be figured out using 
 

          Atsctp
N

j
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1
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where ijc  is an element of the network influence 

matrix, )(ts j is the status of component j  at time t, and  
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]1[' +tpi  is a mx1  vector and m  is the possible number of 

statuses a component can reside in. Let each element of  
]1[' +tpi  be denoted by ivp  where ],..........2,1[ mv =  

Using the evolution equations of the influence model observe 
a sequence of network states, TSSS ,,........., 21 .We use 
maximum likelihood method [11], [12] in estimating the 
parameters α  and β   of the local transition probability 
matrix. On knowing the network influence matrix our aim is to 
estimate the parameters α  and β  which maximize the 
likelihood of the observed sequence of network states. The 
probability of the observed network state changes can be 
computed by multiplying the various one-step network state 
change probabilities over the entire time space. The likelihood 
function is thus 
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where ][tsv  is the proportion of components in status v  at 
time t . 
 

IV. VALIDATION OF CONCEPT AND ALGORITHMS 
We characterize the impulse noise delay limited and outage 

capacities for two users using MATLAB. The two users’ 
communications are impacted by independent random impulse 
noise. We first determine their individual and sum achievable 
rates as depicted in Fig. 6 and Fig. 7. From Fig. 7, it is seen 
that the minimum achievable rate that could be shared by the 
two users over all impulse conditions is 261 kbps.  Multiple 
access techniques such as time division, frequency division or 
coding techniques could be used to share the sum rate. The 
point (261, 0) in Fig. 8 is the achievable rate vector when only 

user one is transmitting. The opposite situation is the point (0, 
261). Time sharing gives the minimum rate region and we use 
it as the service rate that we can guarantee. Time sharing gives 
the rate vectors bounded by the straight line. A rate of 271 
kbps is achievable if we allow some transmission outage. The 
second curve corresponds to an outage probability of 0.17. 
The zero-outage region is thus 0AB and the outage region is 
0CD for two users. As the outage probability increases the 
achievable sum rate increases as seen in Fig. 8. With the 
appropriate outage probability, any rate vector selected in 
these regions would satisfy both the delay and reliability 
requirements of users. 

A 5-bus system as shown in Fig. 5 was used to demonstrate 
how a substation can exhibit intelligent behavior. The system 
parameters are chosen such that all lines are loaded close to 
their limits. The contingency overloads of the test system were 
obtained using power world simulator and the probability of 
transmission lines tripping incorrectly due to hidden failure 
estimated. 

We assumed that removal of system components lead to 
only overloading problem. 
 

                   
 

Fig. 5   A 5-bus test system 
 

The network influence matrix of the test system for a worse 
case load scenario is  
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We assumed each transmission line has the same local 
transition probability matrix 
 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

6.04.0
3.07.0

1
1

αα
ββ

A  

Since m is 2 in this case the second element of ]1[' +tpi  is 

in the range )1(2 αβ −≤< ip  

G
G

1

2

3 

4

5

6 

7 

1

2

3

4

5



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:3, 2008

466

 i.e.    6.03.0 2 ≤< ip   

Thus 3.02 ≤ip  implies line i  is not in the tripped state  and 

6.02 =ip means line i  is in the tripped state. The values of 

2ip in between these two extremes may be used as an 
indication of how close a line is to tripping. 
  

If an agent at bus 2 receives a disturbance information that 
lines 1 and 4 are off and another agent at bus 3 receives an 
information that lines 1, 4 and 7 are tripped they both can have 
a sense of how the status of transmission lines in their 
perceived environments evolve in the next time step as shown 
in the Tables I and II. 
 

TABLE I 
TRIP PROBABILITY COMPUTED BY AGENT AT BUS 2  

Line i  2 3 5 6 7 

2ip  0.55 0.42 0.50 0.31 0.42 

 
 

       TABLE II 
TRIP PROBABILITY COMPUTED BY AGENT AT BUS 3 

Line i  2 3 5 6 

2ip  0.55 0.46 0.56 0.32 

 
The semi autonomous agents would use their calculated trip 

probabilities to determine their local control actions. In a real 
power system we would have many agents which would have 
to coordinate among themselves to achieve the global control 
objective of the system.  

We next used 4.0=α and 3.0=β to generate complete 
system state of the test network over 4 time steps. We 
assumed α and β are not known and used the sequence of 
observed states to estimate the values ofα and β  which gives 
the maximum likelihood of the observed states. 

We compute the value of ( )βα ,L  for several pairs of 

( )βα ,  and the plot is shown in Fig. 9. The shape of the curve 

in Fig. 9 shows that there is a value of ( )βα ,  pair for which 
the likelihood of the observed sequence of states is a 
maximum. The maximum likelihood for our observed states 
occurred at 36.0=α and 3.0=β  which are much close to 

4.0=α and 3.0=β  we used in generating the observed 
states.  

 

          
Fig. 6 Individual achievable rates 

        
 

Fig. 7 Achievable sum rate 
 

         
 

Fig. 8 Zero and non zero outage capacities 
 

              
Fig. 9 Plot of likelihood function 

 
 

V.  CONCLUSION 
We developed the concept and quantitative tools 

architecture which could transform the electric grid into an 
intelligent infrastructure thereby improving system security 
and reliability. We presented quantitatively how real time 
communication of system information and control actions 
could be achieved through a combined queuing and 
information theoretic approach. The physical layer 
consideration is important since communication in wireless 
medium is not reliable. 

 We developed a method which equipped transmission 
substations with the capability of making intelligent decisions 
instead of just acting as a mere source of raw data. 
We are in the process of developing a mobile agent based 
coordination scheme to coordinate local and system level 
decisions to improve overall security and reliability. 
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