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Instability of soliton solutions to the

Schamel-nonlinear Schrödinger equation
Sarun Phibanchon, and Michael A. Allen

Abstract—A variational method is used to obtain the growth rate
of a transverse long-wavelength perturbation applied to the soliton
solution of a nonlinear Schrödinger equation with a three-half order
potential. We demonstrate numerically that this unstable perturbed
soliton will eventually transform into a cylindrical soliton.
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I. INTRODUCTION

A solitary wave or soliton is an aperiodic wave which can

occur in continuous media such as water or plasma. Solitary

waves retain their shape as a result of the balance between

nonlinearity and dispersion. One of the most important equa-

tions which describes such waves is the Korteweg-de Vries

(KdV) equation,

φt + φφx + φxxx = 0,

in which the subscripts x and t denote differentiation with

respect to space and time, respectively (see e.g. [1] for

further details). Although originally derived for water, the KdV

equation occurs in many other contexts. It governs weakly

nonlinear ion-acoustic waves in plasma when the electrons

have a Maxwellian distribution [2]. In that case φ is the

electrostatic potential. Schamel proposed allowing for the

trapping of some of the electrons on ion-acoustic waves [3].

The free and trapped electrons have different temperatures,

although both still have Maxwellian distributions. This leads

a modified equation for ion-acoustic waves,

φt + φ1/2φx + φxxx = 0,

now known as the Schamel equation.

Solitons also occur in other contexts such as fibre optics [4]

and laser physics [5]. The equation governing solitons in

these applications is the cubic nonlinear Schrödinger (cNLS)

equation,

iφt + φxx + |φ|2φ = 0.

A connection between the KdV and cNLS equations can be

made within the context of Madelung’s fluid [6]. If one applies

the same approach to the Schamel equation one obtains the

Schamel-nonlinear Schrödinger (SNLS) equation,

iφt + φxx + |φ|1/2φ = 0. (1)
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where the real part of φ is the electrostatic potential. The

soliton solution of (1) is

φ(x, t) = 400η4ei{
1

2
V x+(16η

2
−V

2
/4)t} sech4 η(x− V t− x0)

(2)

where V is the wave speed and η and x0 are real constants.

As (1) is not integrable and thus does not have analytical N -

soliton solutions, an investigation of the collisions of these

solitons in one-dimension was performed numerically by the

authors [7]. Like the solitons in the integrable cNLS equa-

tion, they were found to pass through one another and thus

demonstrated their stability with respect to perturbations in the

direction of propagation.

Here we consider the two-dimensional form of the SNLS

equation,

iφt + φxx + φyy + |φ|1/2φ = 0. (3)

In the next section we use a variational method applied to this

equation to determine the growth rate of transverse instabilities

of the 1-d soliton solution (2). As the SNLS equation is not

integrable, there is no possibility of an analytical solution for

describing the subsequent behaviour of the unstable perturbed

solitons. In section III we therefore use a numerical method

to determine the fate of the solitons.

II. GROWTH RATE OF INSTABILITIES

Large-wavelength perturbations to solitons in plasmas were

studied by Rowlands [8]. For small t, the perturbed soliton

can be written as

φ(x, y, t) = φ0 + ǫ(u+ iv)eγt+iky (4)

in which u, v are functions of x only, ǫ is a small parameter,

φ0 is the soliton solution at t = 0, k is the wavenumber of

the perturbation, and γ is the growth rate of the perturbation.

After substituting (4) into (3) and neglecting O(ǫ2) terms, we

obtain the coupled differential equations,

uxx +
(

3

2
φ
1/2

0
− 16η2 − k2

)

u = γv,

vxx +
(

φ
1/2

0
− 16η2 − k2

)

v = −γu.
(5)

Following the application of the variational method given in

[9] to the cNLS equation, we start with the integral of the

Lagrangian density for (5),

S =

∫

∞

−∞

L(u, ux, v, vx;x) dx (6)
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Fig. 1. The growth rate curve for large-wavelength perturbations of solitons
as determined by a variational method.

where

L =
u2

x

2
−

v2x
2

+

(

16 + k2 −
3φ

1/2

0

2

)

u2

2

+
(

φ
1/2

0
− 16η2 − k2

) v2

2
+ γuv.

As trial functions we use the k = 0 solutions to (5), namely,

u = α sech5 x and v = β sech4 x, where α and β are

constants. To obtain expressions for α and β, we substitute

the trial functions into (6) to obtain

S =
128

315
α2
(

k2 − 9
)

−
16

35
β2k2 +

35π

128
αβγ.

We then use δS = 0 to obtain

∂S

∂α
=

∂S

∂β
= 0.

These give coupled equations for α and β, and after eliminat-

ing these constants we obtain the growth rate

γ2 =
134217728

13505625π2
k2(9− k2).

The growth rate is thus real for 0 ≤ k ≤ 3. The maximum

growth rate of 4.52 occurs at k = 2.12 (Fig. 1).

III. EVOLUTION OF PERTURBED SOLITONS

To study the evolution of the perturbed soliton, we express

the SNLS equation in the form

dφ

dt
= −i

(

F−1
((

ξ2 + χ2
)

F (φ)
)

− |φ|1/2φ
)

where F and F−1 denote the Fourier and inverse Fourier

transforms, respectively. These are obtained in the numerical

scheme using the discrete Fourier transform

[F (φ)]p,q =

Nx−1
∑

l=0

Ny−1
∑

m=0

φl,mei(ξpxl+χqym)

where Nx and Ny are the number of mesh points in the x

and y directions, (xl, ym) = (lLx/Nx,mLy/Ny), Lx and Ly

are the lengths of the domain in the x and y directions, and

(ξp, χq) = 2π(p/Lx, q/Ly) for p = 0, . . . , Nx − 1 and q =
0, . . . , Ny−1. The Runge-Kutta method [10] was used for the

time derivative.

The initial conditions used were

φ0(x) = 400η4[1 + ǫ cos(2πy/Ly)]e
iV x/2 sech4 η(x− x0)

where x0 denotes a starting point. In Fig. 2 we show the results

for the case Lx = 120, Ly = 25, η = 0.25, ǫ = 0.01, ∆t =
0.001, Nx = 128, Ny = 64, V = 2. The perturbed plane

soliton initial condition is shown in Fig. 2a. Fig. 2b–f show

how the unstable soliton is transformed into a single cylindrical

soliton.
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Fig. 2. Contour plot of |φ| showing the time evolution of a perturbed plane
soliton with V = 2.0, η = 0.25: (a) t = 0.0, (b) t = 0.002, (c) t = 0.0025,
(d) t = 0.004, (e) t = 0.0175, (f) t = 0.019.
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IV. DISCUSSION

The decay of unstable perturbed 1-d solitons into higher-

dimensional solitons has been observed for a number of other

equations including generalizations of the KdV equation [11],

[12]. In future work it would be of interest to further study the

nature of the cylindrical solitons seen here, and in particular

find out what happens when they collide.
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