
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:8, 2012

1012

Instability of a nonlinear differential equation of

fifth order with variable delay
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Abstract—In this paper, we study the instability of the zero
solution to a nonlinear differential equation with variable delay. By
using the Lyapunov functional approach, some sufficient conditions
for instability of the zero solution are obtained.
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I. INTRODUCTION

Study on the instability of fifth order non-linear differential

equations without delay is not a new topic. Significant results

in this direction have been obtained by Ezeilo ([2]-[4]), Li

and Duan [7], Li and Yu [8], Sadek [9], Sun and Hou

[10], Tiryaki [11], Tunç ([12], [13]), Tunç and Erdogan [19],

Tunç and Karta [20] and Tunç and Şevli [21] on instability

for some fifth order nonlinear differential equations without

delay. Throughout all of these papers, based on Krasovskii’s

properties (see Krasovskii [6]), the Lyapunov’s second (or

direct) method has been used as a basic tool to prove the results

established therein. This method is one of the powerful and

fruitful techniques that has over the years, gained increasing

significance in studying qualitative behavior of solutions of

differential equations. However, to the best of our knowledge

from the literature, an author has considered instability of

the solutions of fifth order non-linear differential equations

with varying time delays (see Tunç [14]-[18])). Thus, it is

worthwhile to continue to investigate the instability of the

solutions of fifth order non-linear differential equations with

varying time delays in this case.

It is worth mentioning that in 1979, Ezeilo [3] proved

an instability theorem to the fifth order nonlinear differential

equation without delay

x(5)+a1x
(4)+a2x

′′′+g(x′)x′′+h(x, x′, x′′, x′′, x(4))+f(x) = 0.

(1)

In this paper, instead of Eq. (1), we consider nonlinear

differential equation of the fifth order with variable deviating

argument τ(t) :

x(5) + a1x
(4) + a2x

′′′ + g(x′)x′′

+h(x(t − τ(t)), x′(t − τ(t)), ..., x(4)(t − τ(t)))
+f(x(t − τ(t))) = 0. (2)
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We write Eq. (2) in system form as follows

x′ = y,

y′ = z,

z′ = w,

w′ = u,

u′ = −a1u − a2w − g(y)z − h(x(t − τ(t)), ..., u(t − τ(t)))

−f(x) +

t∫
t−τ(t)

f ′(x(s))y(s)ds, (3)

where a1 and a2 are some positive constants, τ(t) is variable

delay, the primes in Eq. (2) denote differentiation with respect

to t, t ∈ �+ = [0,∞); g, h and f are continuous functions

in their arguments on �, �5 and �, respectively, and with

f(0) = 0. The continuity of these functions is a sufficient

condition for the existence of the solution of Eq. (2) (see

[1], pp.14). It is also assumed that g, h and f satisfy a

Lipschitz condition in their respective arguments so that the

uniqueness of solutions of Eq. (2) is guaranteed (see [1],

pp.15). We assume in what follows that f is also differen-

tiable, and x(t), y(t), z(t), w(t) and u(t) are abbreviated as

x, y, z, w and u, respectively.

The motivation for the current paper comes from the works

of Ezeilo [3] and Tunç ([14]-[18]). Our results extend and

improve the results obtained by Ezeilo [3] for the instability

of the zero solution of Eq. (2). Furthermore our result com-

plements existing results on qualitative behavior of solutions

of fifth order nonlinear differential equations.

In the following theorem, we give basic idea of the method

about the instability of solutions of ordinary differential equa-

tions. The following theorem, due to the Russian mathemati-

cian N. G. Cetaev’s (see LaSalle and Lefschetz [5]).

Theorem A (Instability Theorem of Cetaev’s). Let Ω be

a neighborhood of the origin. Let there be given a function

V (x) and region Ω1 in Ω with the following properties:

(i) V (x) has continuous first partial derivatives in Ω1.

(ii) V (x) and V̇ (x) are positive in Ω1.

(iii) At the boundary points of Ω1 inside Ω, V (x) = 0.

(iv) The origin is a boundary point of Ω1.

Under these conditions the origin is unstable.

Let r ≥ 0 be given, and let C = C([−r, 0], �n) with

‖φ‖ = max
−r≤s≤0

|φ(s)|, φ ∈ C.

For H > 0 define CH ⊂ C by

CH = {φ ∈ C : ‖φ‖ < H}.
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If x : [−r, A) → �n is continuous, 0 < A ≤ ∞, then, for

each t in [0, A), xt in C is defined by

xt(s) = x(t + s),−r ≤ s ≤ 0, t ≥ 0.

Let G be an open subset of C and consider the general

autonomous delay differential system with finite delay

ẋ = F (xt), xt = x(t + θ),−r ≤ θ ≤ 0, t ≥ 0,

where F : G → �n is a continuous and maps closed

and bounded sets into bounded sets. It follows from these

conditions on F that each initial value problem

ẋ = F (xt), x0 = φ ∈ G

has a unique solution defined on some interval [0, A), 0 <

A ≤ ∞. This solution will be denoted by x(φ)(.) so that

x0(φ) = φ.

Definition. The zero solution, x = 0, of ẋ = F (xt) is stable

if for each ε > 0 there exists δ = δ(ε) > 0 such that ‖φ‖ < δ

implies that |x(φ)(t)| < ε for all t ≥ 0. The zero solution is

said to be unstable if it is not stable.

II. MAIN RESULTS

Our main result is the following theorem.

Theorem. In addition to the basic assumptions imposed on

the functions g, h and f that appear in Eq. (2), we assume

that there exist non-zero constants a2, a4, a5, M0 and M such

that the following conditions hold:

a4 >
1
4
a2
2, f(0) = 0, f(x) 
= 0 when x 
= 0, |f ′(x)| ≤ |a5| ,

h(x(t − τ(t)), 0, ..., u(t − τ(t))) = 0,

yh(x(t − τ(t)), ..., u(t − τ(t))) ≥ a4y
2.

If

sup
0≤t<∞

τ(t) <
1

4M0M |a5|
,

then the zero solution of Eq. (2) is unstable for all arbitrary

a1.

Proof. We define a Lyapunov functional V =

V (xt, yt, zt, wt, ut) by

V = 1
2M [a1z

2 − 2
y∫
0

g(η)ηdη]

+[yz − M{a1yw + yu − zw +
x∫
0

f(s)ds}]

−λ
0∫

−τ(t)

t∫
t+s

y2(θ)dθds, (4)

where s is a real variable such that the integral
0∫

−τ(t)

t∫
t+s

y2(θ)dθds is non-negative, and λ is a positive con-

stant which will be determined later in the proof.

It is clear that

V (0, 0, ε2, ε, 0)= M(
1
2
a1ε

4 + ε3) > 0

for all sufficiently small ε > 0, which verifies the property

(K1) of Krasovskii [6].

Using the Lyapunov functional V and (3), the time deriv-

ative of V yields that

V̇ = Myh(x(t − τ(t)), ..., u(t − τ(t))) + Mw2

+(a2M + 1)yw + z2 − My
t∫

t−τ(t)

f ′(x(s))y(s)ds

−λτ(t)y2 + λ(1 − τ ′(t))
t∫

t−τ(t)

y2(s)ds.

(5)

Using the assumptions of the theorem and applying the

estimate 2 |mn| ≤ m2 + n2, we get the following estimates

for some terms included in (5):

yh(x(t − τ(t)), ..., u(t − τ(t))) ≥ a4y
2,

−My
t∫

t−τ(t)

f ′(x(s))y(s)ds

≥ −M |y|
t∫

t−τ(t)

|f ′(x(s))| |y(s)| ds

≥ −1
2M |a5| τ(t)y2 − 1

2M |a5|
t∫

t−τ(t)

y2(s)ds.

Then, we have

V̇ ≥ Ma2y
2 + Mw2 + (a2M + 1)yw + z2

− 1
2M |a5| τ(t)y2 − λτ(t)y2 + {λ(1 − τ ′(t)) − 1

2M |a5|}

×
t∫

t−τ(t)

y2(s)ds

= M
[
w + 1

2M−1(Ma2 + 1)y
]2

+ 1
4M−1{(4a4 − a2

2)M
2 − 2Ma2 − 1}y2 + z2

− 1
2M |a5| τ(t)y2 − λτ(t)y2 + {λ(1 − τ ′(t)) − 1

2M |a5|}

×
t∫

t−τ(t)

y2(s)ds.

Let 1 − τ ′(t) ≥ 1
2 and λ = 1

2 |a5|M. Hence

V̇ ≥ M

[
w +

1
2
M−1(Ma2 + 1)y

]2
1
4
M−1{(4a4 − a2

2)M
2 − 2Ma2 − 1}y2

+z2 − M |a5| τ(t)y2.

It follows that the coefficient (4a4 − a2
2) of M2 is positive.

We can also assert that

(4a4 − a2
2)M

2 − 2Ma2 − 1 ≥ 1
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when M > M0 for sufficiently large M0 ≡ M0(a2, a4) > 0
so that

V̇ ≥ M0

[
w +

1
2
M−1

0 (M0a2 + 1)y
]2

+{
1
4
M−1

0 − M |a5| τ(t)}y2 + z2.

If

sup
0≤t<∞

τ(t) <
1

4M0M |a5|
,

then

V̇ ≥ M0

[
w +

1
2
M−1

0 (M0a2 + 1)y
]2

+ δy2 + z2 > 0 (6)

for some positive constant δ, which verifies the property (K2)
of Krasovskii [6].

Indeed, because of (6), V̇ = 0 necessarily implies that

y = 0 = z = w. (7)

This fact in turn leads to

x(t) = ξ (constant) u = w′ = 0, u′ = 0. (8)

The substitutions of (7) and (8) in (3) gives that f(ξ) = 0
which by the assumptions f(0) = 0, f(x) 
= 0 when x 
= 0
and h(x(t − τ(t)), 0, ..., u(t − τ(t))) = 0, implies that ξ = 0.

Thus V̇ = 0 implies necessarily that

x = 0 = y = z = w = u,

which verifies the remaining property (K3) of Krasovskii [6].

By this discussion, we conclude that the zero solution of Eq.

(2) is unstable. The theorem is established.
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[18] Tunç, C., Instability result of a fifth order non-linear delay system.
Optoelectronics and Advanced Materials-Rapid Communications. 5 (
2011), no. 9, 891-894.
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