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Abstract—K-Means (KM) is considered one of the major 

algorithms widely used in clustering. However, it still has some 
problems, and one of them is in its initialization step where it is 
normally done randomly. Another problem for KM is that it 
converges to local minima. Genetic algorithms are one of the 
evolutionary algorithms inspired from nature and utilized in the field 
of clustering. In this paper, we propose two algorithms to solve the 
initialization problem, Genetic Algorithm Initializes KM (GAIK) and 
KM Initializes Genetic Algorithm (KIGA). To show the effectiveness 
and efficiency of our algorithms, a comparative study was done 
among GAIK, KIGA, Genetic-based Clustering Algorithm (GCA), 
and FCM [19]. 
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I. INTRODUCTION 
LUSTERING is the process of grouping data into 
clusters, where objects within each cluster have high 

similarity, but are dissimilar to the objects in other clusters 
[11]. Similarities are assessed based on the attribute value(s) 
that best describes the object. Often distance measures are 
used for the purpose. Clustering has its roots in many areas, 
including data mining, statistics, biology, and machine 
learning. 

Among the various clustering algorithms, K-Means (KM) is 
one of the most popular methods used in data analysis due to 
its good computational performance [20]. However, it is well 
known that KM might converge to a local optimum, and its 
result depends on the initialization process, which randomly 
generates the initial clustering. In other words, different runs 
of KM on the same input data might produce different results. 

Genetic Algorithms attempt to incorporate the ideas of 
natural evolution. In general they start with an initial 
population, and then a new population is created based on the 
notion of survival of the fittest. Typically fitness is the 
measure for how good this population is and can be calculated 
depending on the nature of the application, where a distance 
measure is the most common [19]. Then a process called 
crossover is done over the new population where substrings 
from selected pairs are swapped. The selection depends on the  
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fitness of both pairs where the fittest pairs have the highest 
priority to crossover together. After that mutation may occur, 
where randomly selected points of each cluster are assigned to 
another cluster. This process continues until a generation 
where its fitness evolves to a pre-specified threshold or after a 
specific number of generations. A number of researchers have 
proposed genetic algorithms for clustering [16, 17, 19]. The 
basic idea is to simulate the evolution process of nature and 
evolve solutions from one generation to the next. In contrast 
to KM, which might converge to a local optimum, these 
genetic algorithms are insensitive to the initialization process 
and always converge to the global optimum eventually. 
However, these algorithms are usually computationally 
expensive. 

The main contribution of this paper is to show the 
feasibility of applying genetic algorithms as an initialization 
method for the KM clustering technique, and build a new 
model that enhances the quality of the clustering (reduces the 
upcoming error). 

This paper is organized as follows. Clustering is surveyed 
in section II. In section III genetic algorithms are explained. A 
description of our work is listed in section IV. Section V 
contains data description and result analysis. Finally, we 
conclude in Section VI. 

II. CLUSTERING 
One of the basic problems that arise in a variety of fields, 

including pattern recognition, machine learning and statistics, 
is clustering. The fundamental data clustering problem may be 
defined as discovering groups in data or grouping similar 
objects together. Each of these groups is called a cluster, a 
region in which density of objects is locally higher than in 
other regions [20, 13]. Each cluster is a collection of objects 
which are similar to each other and are dissimilar to the 
objects belonging to other clusters. The similarity mostly is 
measured with distance: two or more objects belong to the 
same cluster if they are close according to a given distance 
[6]. Sometimes similarity is measured referring to a concept 
representing a cluster. Two or more objects belong to the 
same cluster if it defines a concept common to all these 
objects. In other words, objects are grouped according to their 
fit to a descriptive concept. 

The goal of clustering is to find groups of similar objects 
based on a similarity metric. However, a similarity metric is 
mainly defined by the user to ensure it suits his needs. Until 
now, there is still no absolute measure that always fit all 
applications. 
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Some of the problems associated with current clustering 
algorithms are that they do not address all the requirements 
adequately, and need high time complexity when dealing with 
a large number of dimensions and large data sets. 
Effectiveness of a method depends on the definition of 
distance, meaning that if a distance measure is not defined we 
have to define it; even though it might be somehow 
impossible in high dimensional space. However, the result of 
the clustering algorithm can be interpreted in different ways 
[11]. 

A. K-Means Clustering 
K-Means [18] is one of the algorithms that solve the well 

known clustering problem. The algorithm classifies objects to 
a pre-defined number of clusters, which is given by the user 
(assume k clusters). The idea is to choose random cluster 
centers, one for each cluster. These centers are preferred to be 
as far as possible from each other. Starting points affect the 
clustering process and results. After that, each point will be 
taken into consideration to calculate similarity with all cluster 
centers through a distance measure, and it will be assigned to 
the most similar cluster, the nearest cluster center. When this 
assignment process is over, a new center will be calculated for 
each cluster using the points in it. For each cluster, the mean 
value will be calculated for the coordinates of all the points in 
that cluster and set as the coordinates of the new center. Once 
we have these k new centroids or center points, the assignment 
process must start over. As a result of this loop we may notice 
that the k centroids change their locations step by step until no 
more changes are made. When the centroids do not move any 
more or no more errors exist in the clusters, we call the 
clustering has reached a minima. Finally, this algorithm aims 
at minimizing an objective function, which is in this case a 
squared error function. The algorithm is expressed in Fig. 1. 

One drawback of KM is that it is sensitive to the initially 
selected points, and so it does not always produce the same 
output. Furthermore, this algorithm does not guarantee to find 
the global optimum, although it will always terminate. To 
reduce the effect of randomness, the user can run the 
algorithm many times before taking an average values for all 
runs, or at least take the median value. 

 
(1) Choose random k points and set as cluster centers. 
(2) Assign each object to the closest centroid's cluster. 
(3) When all objects have been assigned, recalculate 

the positions of the centroids. 
(4) go back to Steps 2 unless the centroids are not 

changing.  

Fig. 1 Pseudo-code for K-Means algorithm 

One popular way to start KM is to randomly choose k 
points from data. Initial starting points are important in the 
clustering process; however, the results mainly depend on the 
initial means. The standard solution is to try a number of 
different starting points. Moreover, the results also depend on 
the metric used to measure distance which is not always easy 
to implement especially in the high-dimensional space. 

Additionally, the results depend on the value of k, which in 
the real world are not always known or determined in advance 
[20]. 

Unfortunately, there is no general theoretical solution to 
find the optimal number of clusters for any given data set. A 
simple approach is to compare the results of multiple runs 
with different k clusters and choose the best one according to 
a given criterion. However, we need to be careful as 
increasing k results in smaller error-function values by 
definition, due to the few number of data points each center 
will represent, and thus it will lose its generalization ability, as 
well as increasing the risk of overfitting. 

B. Initialization for Clustering Techniques 
The main purpose of clustering algorithm modifications is 

to improve the performance of the underlying algorithms by 
fixing their weaknesses. And because randomness is one of 
the techniques used in initializing many of clustering 
techniques, and giving each point an equal opportunity to be 
an initial one, it is considered the main point of weakness that 
has to be solved. However, because of the sensitivity of K-
Means to its initial points, which is considered very high, we 
have to make them as near to global minima as possible in 
order to improve the clustering performance. [3, 5] 

III. GENETIC ALGORITHMS 
Genetic algorithms were inspired from Darwin’s theory of 

evolution and were pioneered by John Holland [12]. A genetic 
algorithm can be defined as a search algorithm based on the 
mechanics of natural selection and natural genetics [7], or as 
software and procedures modeled after genetics and evolution 
[1]. Genetic algorithms have at least the following elements in 
common: Populations of chromosomes, selection according to 
fitness, crossover to produce offspring, and random mutation 
of a new offspring [2]. 

In further details, the algorithm starts with a population of 
“individuals”, each representing a possible solution to a given 
problem. Each possible solution within the population of a 
biological individual is coded in a so-called chromosome. 
Each chromosome (sequences of genes) is assigned a “fitness” 
according to how good a solution is to the problem based on a 
given fitness function. The solutions (individuals) are selected 
into the process according to their fitness, specifically those 
that follow the principles first laid down by Charles Darwin of 
the survival of the fittest for reproduction by “cross breeding” 
with other individuals in the population and used to construct 
new individuals as offspring with a hope that the offspring 
will be fit better than the old individuals and a generation is 
complete [12]. This process is repeated until certain criteria 
are met. Fig. 2 shows the basic steps for GAs [7]. 

In Fig. 2, t represents the generation number, and P stands 
for population. The first population is initialized by coding it 
into a specific type of representation (i.e. binary, decimal, 
float, etc) then assigned to a cluster. Fitness is calculated in 
the evaluation step. While the termination condition is not 
met, which might be number of generations or a specific 
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t = 0; 
Initialize P(t);  
Evaluate P(t); 
While not (termination condition) 
begin 
t=t+1; 
Select P(t) from P(t - 1); 
Recombine pairs in P(t); 
Mutate P(t); 
Evaluate P(t); 
End 

Fig. 2 Goldberg's Pseudo-code of Genetic Algorithms 
 

fitness threshold, the processes of selection, recombination, 
mutations and fitness calculations are done. Selection process 
chooses individuals from population for the process of 
crossover. Recombination (or crossover) is done by 
exchanging a part (or some parts) between the chosen 
individuals, which is dependent on the type of crossover 
(Single point, Two points, Uniform, etc). Mutation is done 
after that by replacing few points among randomly chosen 
individuals. Then fitness has to be recalculated to be the basis 
for the next cycle. This is the general form for GAs.  

Utilizing GAs into clustering, an initial population of 
random clusters is set or accepted. At each generation, each 
individual is evaluated and recombined with others on the 
basis of its fitness. The expected number of times an 
individual is selected for recombination is proportional to its 
fitness relative to the rest of the population. New individuals 
are created using two main genetic recombination operators 
known as crossover and mutation. Crossover operates by 
selecting a random location in the genetic string of the parents 
(crossover point) and concatenating the initial part of one 
parent with the final part of the second parent to create a new 
child. A second child is simultaneously generated using the 
remaining parts of the two parents. Mutation is provided to 
occasional disturbances in the crossover operation by 
inverting one or more genetic elements during the 
reproduction process. This operation insures diversity in the 
genetic strings over long periods of time and prevents 
stagnation in the convergence of the optimization technique. 
In addition to fitness, generation crossover rate (or 
percentage) and mutation rate (or percentage) issues such as 
the size of the population (defines the crossover and mutation 
rates), coding and selection strategy (defines the fitness 
measure and type) are called configuration parameters [7]. 

Before a GA is run, a suitable encoding (or representation) 
for the problem must be devised. The coding is a population 
of strings, each of which represents a solution to the problem. 
GAs operate on a number of potential solutions, called a 
population, consisting of some encoding of the parameter, set 
simultaneously. Coding is the first step in GAs that translates 
the real problem into biological terms and describes it in a 
manner which is suitable for GAs. The format of a 
chromosome is called encoding. 

The population size is specified by the number of 
chromosomes in the population, where the best population 
size depends on both the application and the length of the 
chromosome. Longer chromosomes allow for larger 
population sizes and increased variety for the initial 
population and would result in better exploration of the search 
space at the expense of requiring more fitness evaluations. If 
there are too many chromosomes, GAs slow down. If there are 
too few chromosomes, however, GAs has only few 
possibilities to perform the crossover operation and only a 
small part of search space is explored. If the population loses 
diversity, it is said to have a premature convergence and little 
exploration is being done [14]. 

Next step is Crossover. Crossover or recombination is done 
independently without respect to the problem of encoding or 
the fitness scores. It takes two individuals and cuts their 
chromosome strings at some chosen position to produce two 
“head” segments and two “tail” segments. The tail segments 
are then swapped over to produce two new full length 
chromosomes. Each of the two offspring inherits some genes 
from each parent. Crossover is made with the hope that new 
chromosomes will contain good parts of old chromosomes. As 
a result, the new chromosomes are expected to be better. If 
crossover is performed, the genes between the parents are 
swapped, and the offspring is made from parts of both parents' 
chromosomes. If no crossover is performed, the offspring is 
an exact copy of its parents.  

The most common recombination is the uniform crossover 
method. In this method, a crossover point is selected along the 
chromosome, and the genes up to that point are swapped 
between the two parents. Mutation is applied to each child 
individually after the crossover that alters each gene with a 
low probability, typically in the range 0.001 and 0.01, and 
modifies elements in the chromosomes [8]. Mutation is often 
seen as providing a guarantee that the probability of searching 
any given string will never be zero, it acts as a safety net to 
recover the good genetic material that may be lost through the 
action of selection and crossover. Mutation prevents the GA 
from falling into local extremes and provides a small amount 
of random search that helps ensure that no point in the search 
space has a zero probability of being examined. If mutation is 
performed, one or more parts of a chromosome are changed, 
and if there is no mutation, the offspring is generated 
immediately after the crossover (or directly copied) without 
any change [8]. 

For every solution to our population, it is necessary to be 
able to judge the quality of that solution. This is referred to as 
measuring the fitness of the solution. The fitness function is 
the most crucial aspect of GAs that returns a single numerical 
“fitness”, which is supposed to be the proportional ability of 
the individual which that chromosome represents. Ideally, we 
want the fitness function to be smooth and regular, so that 
chromosomes with a reasonable fitness are close to 
chromosomes with slightly better fitness. [4] 

The general rule in constructing a fitness function is that it 
should reflect the value of the chromosome in some real way. 
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If the fitness function is excessively slow or complex to 
evaluate, an approximate function evaluation can sometimes 
be used. If a much faster function can be devised (which 
approximately gives the value of the true fitness function) the 
GA may find a better chromosome in a given amount of CPU 
time than when using the true fitness function. 

At the beginning of a run, the values of each gene for 
different members of the population are randomly distributed. 
Consequently, there is a wide spread of individual fitness. As 
the run progresses, particular values for each gene begin to 
predominate. As the population converges, the range of fitness 
in the population reduces. This variation in fitness range 
throughout a run often leads to the problems of premature 
convergence and slow finishing. Premature convergence is a 
classical problem with GAs is that the genes from a few 
comparatively highly fit (but not optimal) individual may 
rapidly come to dominate the population causing it to 
converge on a local maximum, and thus the ability of the GA 
to continue to search for better solutions is effectively 
eliminated. Mutation may be a factor that helps to explore new 
offspring, but still have a small effect, which makes the 
process of exploration slower. Another problem is Slow 
Finishing that is when termination is a matter of fitness not the 
number of generations and in a certain point in time where 
fitness for all individuals are almost the same, average fitness 
moves slowly to the maxima, but still very slow [4]. A 
common practice is to terminate the GA after a pre-specified 
number of generations and then test the quality of the best 
members of the population against the problem definition. If 
no acceptable solutions are found, the GA may be restarted, or 
a fresh search initiated [12]. 

IV. PROPOSED TECHNIQUES 
The proposed techniques considered in this paper are 

Genetic Algorithm Initializes K-means (GAIK) and K-means 
Initializes Genetic Algorithm (KIGA). GAIK is a combination 
of K-means and GKA, where GKA is executed first to give 
initial values to K-means to start with, rather than choosing 
random ones. This hybrid system is expected to minimize the 
number of iterations that K-means needs in order to converge 
to local minima. Besides, it solves the problem of blind search 
for this algorithm. However, it will increase the time needed 
for calculations because GA algorithm will need more time for 
distance calculations and crossovers in each generation than 
K-means needs in one iteration. On the other hand, another 
technique was experimented, KIGA, where K-means is used 
first to initialize the GA clustering technique. Two 
experiments were done in this part to show the effect of 
changing the number of K-means iterations in addition to the 
number of generations on the clustering efficiency. Good 
results are expected to be gained to solve the problem of blind 
search. However, the time of processing is also expected to 
increase. Testing parameters for selections, crossovers and 
mutations were considered the same as in [19]. 

V. DATE DESCRIPTION AND RESULT ANALYSIS 
Data files used in these experiments are chosen among a 

huge variety given by MATLAB©. Experiments were done 
over eight different datasets, however; we will present here 
the results of four of them as each has different characteristics 
over the others. We chose to do the tests over a 
mathematically generated 2D datasets. Fig. 3 shows the 
datasets’ distribution. Dataset 2, 3 and 4, shown in Fig. 3-a, 3-
b and 3-c respectively are made based on a mathematical 
model to form their clusters with small amount of points 
interleaving. On the contrary, Dataset 5 shown in Fig. 3-d is a 
random dataset with no clear topology and a uniform 
distribution. 

Dataset 2 consists of 100 points gathered around 3 clusters. 
The points are scattered with a radius of 0.2 around 3 specific 
points (0.2 ,0.6) , (0.6,0.2) and (0.8,0.8). The first two points’ 
clusters have some interleaving in their boundary points. This 
dataset is to be clustered into 3 clusters. 

Dataset 3 Consists of 100 points scattered around 4 specific 
points with a radius of 0.2. points are (0.125,0.25) , 
(0.625,0.25) , (0.375,0.75) , (0.875,0.75). The first two points’ 
clusters have horizontal interleaving on the boundary. In 
addition, points two and three have the same thing in 
common. This dataset is to be clustered into 4 clusters. 

Dataset 4 Consists of 100 points scattered around 4 points 
with a radius of 0.3 for the first 3 centers and radius 0.4 for 
the last center. Points are (0.2,0.2) , (0.2,0.5) , (0.2,0.8) , 
(0.8,0.5). The last point’s cluster seems to be clearly isolated 
except for the points between the cluster center and the other 
three; however, the first three clusters have common boundary 
points. This dataset is to be clustered into 4 clusters. 

Dataset 5 consists of 300 points chosen randomly with 
uniform distribution over the surface, no clear topology or 
clusters. This dataset is to be tested for two clusters. For each 
of the previously mentioned datasets the number of clusters is 
chosen based on our choice; moreover, choosing the number 
of clusters is still a wide research area that we are not going to 
discuss in our work. In addition, for each dataset we tested 
running K-means for 5 or 10 iterations only in addition to 
running it until it satisfies its original termination condition. 
Also, we fixed number of GA generations for testing to 1000 
generations at most, and then we considered the fittest 
generation as the error rate. Each dataset was tested for each 
algorithm for 20 times and then we calculated the average 
time and error as listed in Table I. 

As explained earlier and shown in Table 1, for each dataset 
we considered specific number of clusters shown beside the 
dataset name between brackets. Moreover, Average Error and 
Average Time is listed to show the trade-off between them. 
For K-Means, we tried to test the effect of number of 
iterations in the clustering process and on the initialization 
process as well. The table above shows the following: KM 
was always the fastest, but not the most accurate. In addition, 
initializing KM using GA will definitely lead it to fall early 
into a local minima. GA was not a good approach to solve the 
clustering problem due to its probabilistic nature. Even though  
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(a) (b) (c) (d) 
Fig. 3 Datasets distribution (a) dataset 2 (b) dataset 3 (c) dataset 4 (d) dataset 5 

 
TABLE I 

RESULTS COMPARISON BETWEEN THE DIFFERENT APPROACHES 

 KM KM (5) KM (10) GAIK KM (5) + GA KM (10) + GA GA 

Avg Error 36.389 38.491 36.660 40.257 35.848 34.891 48.485 Dataset2 (4) Avg Time 0.015 0.011 0.013 10.216 18.977 18.647 9.966 
Avg Error 44.128 44.635 44.554 62.328 43.646 43.047 76.352 Dataset3 (4) 
Avg Time 0.012 0.010 0.014 9.180 14.842 16.203 6.608 
Avg Error 35.094 35.588 35.554 62.848 33.606 33.769 70.711 Dataset4 (3) 
Avg Time 0.013 0.007 0.009 8.158 12.057 11.326 8.2729 
Avg Error 20.069 20.541 20.329 20.315 18.877 18.491 21.207 Dataset5 (2) 
Avg Time 0.004 0.004 0.008 3.728 4.186 4.326 3.865 

mutations help not to fall into local minimas, it still needs a lot 
of time and computations to find the global one. Finally, 
running KM as an initializer to GA definitely guides to the 
best solution among the group, this appears clearly from the 
results obtained after running it for 5 or 10 iterations before 
GA starts. 

VI. CONCLUSION 
Our experimental evaluation scheme was used to provide a 

common base of performance assessment and comparison 
with other methods. From the experiments on the eight data 
sets, we find that pre-initialized algorithms work well and 
yield meaningful and useful results in terms of finding good 
clustering configurations which contain interdependence 
information within clusters and discriminative information for 
clustering. In addition, it is more meaningful in selecting, 
from each cluster, significant centers, with high multiple 
interdependence with other points within each cluster. 

Finally, when comparing the experimental results of K-
Means, GKA, GAIK and KIGA we find that KIGA is better 
than the others. As shown by the results on all datasets KIGA 
is ready to achieve high clustering accuracy if compared to 
other algorithms. 
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