
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2220

1

Information Retrieval in the SemanticLIFE Personal
Digital Memory Framework

Hanh Huu Hoang, Tho Manh Nguyen

(Invited Paper)

Abstract— Ever increasing capacities of contemporary storage de-
vices inspire the vision to accumulate (personal) information without
the need of deleting old data over a long time-span. Hence the target
of SemanticLIFE project is to create a Personal Information Manage-
ment system for a human lifetime data. One of the most important
characteristics of the system is its dedication to retrieve information
in a very efficient way. By adopting user demands regarding the
reduction of ambiguities, our approach aims at a user-oriented and
yet powerful enough system with a satisfactory query performance.
We introduce the query system of SemanticLIFE, the Virtual Query
System, which uses emerging Semantic Web technologies to fulfill
users’ requirements.

Keywords— Ontology-based Information Retrieval, Digital Mem-
ories, SemanticLIFE.

I. INTRODUCTION

TOWARDS the goals of personal information storage
and retrieval of all one’s data throughout a lifetime,

researchers consider continuous archival and retrieval of all
media relating to personal experiences including emails, con-
tacts, appointments, web browsing, documents, phone calls,
etc. The challenging issues are how to extract useful knowl-
edge from this rich library of information; and how to use this
knowledge effectively, how to effectively retrieve memories
and knowledge to different kinds of users. The grand challenge
is to manage this data, the digital memories, for the benefit of
human life and for a life time [8].

The SemanticLIFE project [2] is an effort to come a step
closer to a solution for mentioned issues and Vanevar Bush’s
vision of Memex [5] by providing a general semantic Personal
Information Management (PIM) system. The SemanticLIFE
user is supported in issuing imprecise queries to retrieve the
rich semantic information from his/her historical personal data.

The similar systems focus on back-end issues, i.e. captur-
ing all data sources, integrate and then store them in huge
repositories. For this purpose it is necessary to map the
ontologies of the various data sources into a common ontology
of the system. However, users are confronted with the lack
of knowledge concerning the stored information inside the
system, and they would formulate ambiguous requests, so that
many barriers have to be overcome before the system could
deliver the demanded results.

H. H. Hoang is a Doctoral researcher at the Institute of Software
Technology and Interactive Systems, Vienna University of Technology, Fa-
voritenstrasse 9-11/188, A-1040 Vienna, Austria (phone: +43.1.58801-18861,
fax: +43.1.58801-18861, email: hanh@ifs.tuwien.ac.at).

T. M. Nguyen is a Post-Doctoral researcher at the Institute of Software
Technology and Interactive Systems, Vienna University of Technology, Fa-
voritenstrasse 9-11/188, A-1040 Vienna, Austria (email: tho@ifs.tuwien.ac.at)

Beside of presenting the motivation and overview of the
SemanticLIFE framework, this paper is aiming at its query
system, the Virtual Query System with innovative features
focused on user query formulation. This query system is based
on a front-end approach allowing the user to retrieve infor-
mation from huge ontology-based repositories in an efficient
way. The conception of this query system which is primarily
based on the reduction of semantic ambiguities of user query
specifications at the very early stage of the retrieving process;
and continually guide the user in query process with the user
context-based mechanism.

The remainder of this paper is organized as follows: a
range of projects is currently addressing similar issues are
briefly presented in section II. Section III introduces the
SemanticLIFE framework and the relevant issues. Details of its
‘virtual query system’ are pointed out in sections IV. Section V
presents the query language for the VQS and an innovative
query formulation feature is discussed in section VI.

II. THE STATE OF THE ART

In the area of digital memories research, a lot of work has
already been carried out in some major projects. In this section
we highlight some of their significant features.

A. MyLifeBits (Microsoft Research)

It is a system for storing all of one’s lifetime data on a PC.
The guiding principles are: (a) collections and search must
replace hierarchy for organization, (b) multiple visualizations,
(c) easy annotations (d) the authoring tool should support
reuse of external references [11]. As an experiment, G. Bell
has captured all his articles, books, cards, etc, and stored
them digitally. He is now paperless, and is beginning to
capture phone calls, instant message (IM) logs, television,
and radio [10]. They have successfully incorporated multiple
annotation types, and creation of stories which are helpful for
the short term memory.

They are still trying to explore features such as versioning,
document similarity ranking and faceted classification. Until
now, they were more concerned with functionality, but now
the future work is related with user interface (UI), advanced
visualization techniques, data mining for search, new capture
mode and devices, shared usage, security, privacy and social
issues.

B. Haystack (MIT)

Haystack uses ontologies for information management [13].
Its ultimate goal is to provide high-quality retrieval. Primarily



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2221

2

it is designed as a single machine single user tool so as to
give a psychological illusion of privacy and security. The
guiding design principles are: (a) generic handling of all types
of information, (b) flexibility to define additional information
types by the user, (c) ability to define the interaction objects
and associated operations directly by the user and (d) ability
to delegate certain information processing tasks to the agents.

Haystack has a typical three tier architecture [1], i.e., a
database layer, service layer and client layer. They have also
done some implementation at the Trust layer of Semantic
Web by using reification mechanism for RDF1 storage, and
identifier strings as digital signatures during storage of RDF
statements. The future developments include ontology con-
version, enhanced query mechanisms using machine learning
tools to improve retrieval, provide better interface for hybrid
search, recommender system based upon user’s interests.

C. e-Person (HP)

Developed by HP, an ePerson is a personal representative
on the net that is trusted by a user to store personal infor-
mation, and make it available under appropriate controls for
shared working environments. HP’s approach is focused on
three principals, i.e., social filtering of information by the
users themselves, structured knowledge in terms of ontologies
mutually agreed upon by the communities, and person-centric
instead of being corporate-centric in terms of ownership,
vocabularies and scaling [3].

The ePerson infrastructure is designed as a series of layers,
transport layer (TCP/UDP and Jabber transports), knowledge-
base access layer (remote access to RDF stores and ser-
vices), Structure layer (modeling of RDF vocabularies us-
ing DAML2), Knowledge sources layer (provides specific
knowledge services such as classification servers, importing
profiles from the history server and a discovery server), and
Applications layer (reusable UI components, viewing tools
for knowledge based access during development and the
SnippetManager application itself).

D. Lifestreams (Yale University)

Lifestreams [9], is an academic project from Yale Univer-
sity. It is a personal store that uses a simple organizational
metaphor, a time-ordered stream of documents combined with
several powerful operators that replaces many conventional
computer constructs (such as named files, directories, and
explicit storage). Their work on the client side includes an
X-Window client, command line interface and a PDA client.

The motivating ideas were, (a) storage should be transpar-
ent, (b) directories are inadequate as an organizing device, (c)
archiving should be automatic, (d) the system should provide
sophisticated logic for summarizing or compressing a large
group of related documents on one screen, (e) reminding
should be made more convenient, and (f) personal data should
be accessible anywhere and compatibility should be automatic.

1Resource Description Framework, http://www.w3.org/RDF/
2DARPA Agent Markup Language, http://www.daml.org/

III. SEMANTICLIFE: DIGITAL MEMORY FRAMEWORK

A. ‘SemanticLIFE’

Living systems have different characteristics like self-
regulation of processes, reproduction and growth [15]. Nev-
ertheless, the relevant characteristics could be envisioned in a
semantic way in personal knowledge management. Ontologies
of personal life items grow and reproduce new ones with
processes and services. These ontologies include information
about our life objects such as documents, persons, places,
organizations, events and tasks.

In the physical world, entities are usually interconnected,
either by physical or by semantic means; in the latter case,
the semantic meaning is added by human interaction (in
an abstract sense) with the physical world. Life items in
the system proposed in this paper can be understood as
information entities (in some cases they are representations
of such physical entities) stored according to ontologies in a
semantic database, which are connected to other information
entities according to their semantic meaning. Also ontologies
‘live’ in a way, as they develop and modify permanently during
the system- and user- lifetime.

Current (Web-) technologies are highly efficient in pro-
cessing data for human reception; that is, the transformation
from data to information, the ‘generation of meaning’ is up
to the human. A great deal of effort has already been made,
and work is still going on to represent semantics explicitly
on the Web. This is required to give computer systems the
capability to enhance preprocessing of huge amounts of data
for the user. It becomes more important as the ‘awareness
radius’ of the contemporary knowledge worker and consumer
is continuously increasing. This results from the observation,
that users do not limit their information search to specific
data repositories, like searching for an address or an event
in a calendar any longer. The availability of databases under
common or similar interfaces (like web-pages) creates the
demand to express more complex queries demanding informa-
tion aggregated from many different systems using different
semantic concepts.

The proposed PIM Systems can contribute significantly in
overcoming the common inherent human problems such as
limited short term memory, memory loss, forgetfulness, high
complexity of data etc. Therefore, it is useful for the system
to be able to define and capture the user’s life-related events
and takes or triggers appropriate action(s) for it. This process
involves the following sub-processes:

1) Capture events and associated information
2) Process action associated with events (e.g., in the sense

of an active database system)
3) Extract Metadata from the event, or allow the user to

enrich the data manually with semantic meaning
4) Store the data including semantic context as ontology in

an efficient manner
5) Allow the user to query the data or support the user

directly or via associated applications and tools with
context-sensitive information or action

The typical usage of such a PIM can be illustrated with
two examples: A student searches a book written by a specific



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2222

3

person knowing only a part of the title and the fact, that the
author is a graduate of a specific university. The desired result
is, e.g., a link to the book provided by an online bookstore,
where the student is customer.

A second example: Consider scientists, who work in a
specific domain. They might be interested to get into contact
with other researchers in the scientific community that (1)
share the same interests or have similar problems (2) are
publishing in similar conferences and (3) were recently active
in the specific field of research (4) and speak a common
language. The result of such a query could be the web pages
and email addresses of the researchers coming into question.

It is clear that such problems can only be solved by
querying a multitude of information resources like web pages,
conference journals, scientific databases, email repositories,
newsgroups and the like. Moreover, the system needs to
‘understand’ that entities differently labeled are identical in
a semantic sense and also need to be able to ‘understand’ and
solve specific issues like the fact, that some results are only
valid in a specific interval of time or in a specific language
and so on.

Additionally as described in [7], the system must be able
to adjust to new user features derived from user interactions
with the system or from the information being fed. Thus each
user may have individual views and navigational possibilities
for working with the system. From the technology perspective,
new technologies emerge and older ones fade out. If a system
has a too tight coupling with some technology, it may become
obsolete with the change in technology. A layered approach
that provides some extent of separation from the technology
is more suitable, making the overall structure still working
if there is a change in the technology or even in case of
replacement by the newer ones.

B. SemanticLIFE’s Architecture

The SemanticLIFE framework is developed on a highly
modular architecture provides the basic components for the
VQS modules that will be discussed in later sections. Semanti-
cLIFE stores, manages and retrieves the lifetime’s information
entities of individuals. It enables the acquisition and storage
of data while giving annotations to emails, browsed webpages,
phone calls, images, contacts, life events and other resources.
It also provides intuitive and effective search mechanism based
upon the stored semantics.

An overview of the system architecture is depicted in Fig. 1.
The whole SemanticLIFE system has been designed as a set of
interactive plug-ins that fit into the main application and this
guarantees flexibility and extensibility of the SemanticLIFE
platform. Communication within the system is based on a
service-oriented design with the advantage of its loosely
coupled characteristics. To compose complex solutions and
scenarios from atomic services from SemanticLIFE plug-ins,
the Service Oriented Pipeline Architecture (SOPA)3 has been
introduced. SOPA provides a paradigm to describe the system-
wide service compositions and also external web services as

3JAX Innovation Award 2006 Proposal, http://www.jax-award.com/.

Fig. 1. The SemanticLIFE Framework Architecture

pipelines. SOPA provides some mechanisms for orchestration
of services and transformation of results.

Data with user annotation is fed into the system using a
number of dedicated plug-ins from variety of data sources
like Google Desktop4 captured data, communication logs, and
other application’s metadata. The data objects are passed on
by the message handler to the analysis plug-in. This plug-
in contains a number of specific analysis plug-ins providing
semantic mark-up by applying a bunch of feature extraction
methods and indexing techniques in a cascaded manner. The
semi-structured and semantically enriched information objects
are forwarded to the repository plug-in for an ontologically
structured storage, so-called the metastore. A set of query pro-
cessing and information visualization tools provides the means
for information exploration and report generation. The analysis
module and metadata extraction capabilities make associations
among the lifetime items and lifetime events based on user
annotation, user profile and the system ontologies.

C. Information Retrieval in SemanticLIFE

In SemanticLIFE, it is uneasy to define highly structured
queries when a multitude of information systems are addressed
or the information is only semi-structured. Hence the system
must be capable to support user-queries which are formulated
with an “imprecise search” terminology by automatically
transforming them into more specific queries.

In the SemanticLIFE metastore, the data is already stored
in a semantically enriched manner, it provides more powerful
imprecise searches. Here, the term “imprecise” has two mean-
ings: firstly, the query processing system has to satisfy im-
precisely defined user information needs. Secondly, the target
of the user-query is well specified but there are ambiguities
in processing the query because of the heterogeneity of the
different data sources. Therefore, the system solves these
problems during query generation by exploring the system
database and ontology. A part of the query module uses system
metadata and ontology to provide the user a better awareness
of stored data.

The querying process in SemanticLIFE is supported by
our Virtual Query System. This mediator system is not only

4Google Desktop, http://desktop.google.com/.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2223

4

capable to deal with the discussed issues above but also
reduces the imprecision of the user’s requests by offering the
user an overview of the relevant stored information. As a
result, the user will significantly specify more precise queries
on information and data stored in the system.

IV. THE VIRTUAL QUERY SYSTEM

A. Goals

Formulating unambiguous queries is always a demanding
task to users as they do not have the overview on the semantics
of stored data. The principle of the Virtual Query System
(VQS) is to provide an ontology-based virtual information
view of the system data. Hereby, the virtual information are
the metadata extracted from the metastore and delivered to
the user after a well-organizing process. The user can clearly
specify queries on the “real” data in the repositories when
he/she can “be aware of” what is inside of the system.

The VQS also provides predefined query patterns which will
be matched with users’ query space and the matched ones
then will be recommended to the users. In addition, based
on a common ontology and the internal analysis (inference,
detecting ambiguity and fuzziness of user queries), the VQS
refines the user’s queries and generates “real” queries against
data sources in the metastore.

B. Components

The Virtual Query System consists of six modules, pre-
sented in Fig. 2, to deal with the challenging task of a complete
Semantic Web query system.

Fig. 2. The Components of the Virtual Query System

1) Virtual Data Component: The virtual data component
(VDC) is a VQS’s crucial part. It contains the metadata of
storage sources. This module acts as a virtual data source
to be offered to the user. It enables the user to be aware of
the semantics of the data sources stored and to specify more
precise queries.

The VQS harvests metadata from data sources in the
metadata repository of the SemanticLIFE system. An analysis
process and statistical computation are carried out on these
meta-data sources to get the semantic information. Then the
processed information is stored in this module as a context
ontology and will be delivered. The features of VQS are very
similar to those of a recommender system. Furthermore, this
part is also referred as an “image” of the system database in
further query processing, so-called the context-based querying.

A query languages is developed for querying the virtual data
from this component [12].

The VDC is the main different point of our system in
compared with mentioned systems. The behind idea is that
when the user is aware of his/her data then he/she could
generate more unambiguous requests. This ultimately leads
to the reduction of the query refinement process complexity.
Additionally, this virtual data component plays as a context
ontology. This makes the SemanticLIFE system very flexible
because the system can adapt a new scenario by simply
changing the context ontology.

2) The Ontology Repository: The second part of the system
is the ontology repository which builds up the core of the VQS.
The repository contains the ontologies used in the VQS system
such as the global ontology or inference ontology. Follow-
ing [6] an ontology-driven approach to data integration relies
on the alignment of the concepts of a global ontology that
describe the domain, with the concepts of the ontologies that
describe the data in the local databases. Once the alignment
between the global ontology and each of the local ontologies is
established, users can potentially query hundreds of databases
using a single query that hides the underlying heterogeneities.

3) Sub-Query Formulation: Sub-queries formulation is an-
other essential part of the VQS. From the user’s initial virtual
query, this part parses it into the sub queries (Qi in the
Fig. 2) based on the global ontology for specific data sources.
This module does not only transform the virtual query to
sub-queries for specific data sources but additionally perform
inference on the user’s request in order to create more possible
sub-queries afterward. After this process, the ‘real’ queries
(RDF queries) for each of the data sources will be generated.

4) The VQS Services:
a) Ontology Mapping: Mapping service is a mechanism

to map local ontologies into a global one. This service deals
with new data sources added with their respective ontologies,
so that these ontologies are mapped or integrated to the global
ontology. In our approach, we do not reinvest to develop
a new ontology mapping framework. We use the MAFRA
framework [14] for our mapping tasks.

b) Query Caching: This service improves the perfor-
mance of the VQS by caching the queries in a period of
time. We distinguish two kinds of caching mechanisms: query
caching and result caching. The first addresses the process of
generating sub-queries; and the second covers the caching of
query results. Both caching types will use the semantic query
caching methodology proposed in [18].

c) Ontology-based Inference: The inference service pro-
vides a basis for the deduction process on the relationships
(rules) of concepts of the ontologies specified. Inference tasks
are performed on the foundation of the ontologies and the
data described by them. This service helps the system to
analyze and evaluate the user’s virtual queries in the process
of generating sub-queries based-on the inference ontology.

5) Query Refinement: Query refinement is another impor-
tant service for our query processing. This is the interactive
way for the VQS dealing with user’s ambiguous queries based
on incrementally and interactively (step-by-step) tailoring a
query to the current information needs of a user [17]. VQS’s



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2224

5

query refinement service is a semi-automated process: in the
refinement process, the user is provided with a ranked list
of refinements, which leads to a decrease of some of these
ambiguities. In another hand, by exploiting the user’s profile,
the ontology background, and as well as user’s annotation on
data, this VQS service supports finding related results.

6) The Virtual Query User Interface (VQUI): The VQUI
delivers the virtual data to the user and helps the user to
define virtual queries. A set of query patterns is offered to the
user. If these patterns do not match the demands, the user can
use a query-by-example tool alternatively to write the virtual
queries. The VQUI also acts as query results composition
which performs the integration and aggregation of the sub-
query results and show to the user.

V. THE VIRTUAL QUERY LANGUAGE

A. VQL Aims

Virtual Query Language (VQL) [12] is designed for the
VQS. The VQL is used to model the query patterns and
generate the virtual queries. The VQL is intended to be a sim-
ple query language which supports “semantic” manner from
the user’s queries. In context of the VQS and SemanticLIFE
system:

- VQL helps clients making queries without knowledge of
RDF query languages.

- VQL assists users in navigating the system via semantic
links or associations, categorized context queries provided in
the powerful query operators based-on ontologies.

- VQL simplifies the communication between Query module
and other parts as the components asking for information do
not need to issues the RDF query statement. This keeps the
SemanticLIFE’s components more independent.

- VQL enables the portability of the system. The
SemanticLIFE and VQS choose a specific RDF query lan-
guage for the its back-end database. In the future, they
probably could be shifted to use another query language, and
this change does not affect to the system’s parts.

Fig. 3 presents a screenshot of a VQL querying session
with the results are displayed in a XML-based form according
to [19] which is similar to SPARQL5 XML results format [4].

Fig. 3. An example of a VQL query

5Simple Protocol And RDF Query Language [16]

B. VQL Operators

The VQL aims at supporting the user in generating queries
according to their nature: minimum of words, maximum of
information. The VQL defines the virtual query operators and
they allow the user to simplify the complex queries:

1) GetInstances retrieves the appropriate information ac-
cording to the criteria of the specific query.

2) GetInstanceMetadata assists the user easily retrieve
all metadata properties with result instances.

3) GetRelatedData provides the accessible related infor-
mation to the current found information, i.e. finding
relevant or associated information.

4) GetLinks operates using the system’s ontology and
RDF graph pattern to find out the associations/links
between the instances and the objects.

By providing these operators6, VQL offers a powerful
feature of navigating the system by browsing data source by
data source, instances by instances based on found semantic
associations. More details of the VQL are discussed in [12].

VI. AN INNOVATIVE QUERY FORMULATION

Users are confronting with the query formulation not only
in the initial phase but during the querying process when the
new information and knowledge come to them. Guiding them
formulate the new queries in a correct manner is our aim with
the innovative query formulation which bases on the user’s
querying context, predefined query patterns, and the analysis
of resources used in the user’s knowledge discovery.

A. Query Templates and Query Maps

The query templates are query patterns defined to assist the
user in formulating unambiguous queries. The query templates
are associated with the appropriate queries, and they have
parameters and the related data sources. The templates are
classified on the concepts of the VDC’s context ontology
and the data sources which they are involved with. When a
template is in use, the associated virtual query will be loaded
and its variables are then replaced by the values. The virtual
query is continually edited by the user afterward dependent
on the interest of the user.

With the associated data sources and the VDC’s context
ontology, the query templates create a query map to make
the connection of them and underlined resources. A query
map contains the query templates network which the nodes
are the templates and the edges are the relevant concepts and
their properties. According to the connections between the
templates, when a query template is chosen for making the
new queries, the system also recommend the linked templates.
Besides, when the user selects properties to formulate his/her
query, the system would recommend the relevant templates
based on the query map. The connections in the query map
are used to determine which templates could be used.

6VQL Operators, http://www.ifs.tuwien.ac.at/∼hhhanh/VQL/samples/



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:6, 2008

2225

6

B. Context-based Querying

With VDC, the user is supported during the query process
by the “context-based” querying feature. According to the
context where the user is in, the appropriate query patterns
will be proposed by the system. A user’s query context not
only contains the queried objects and the querying concepts
but they are also associated to each other based on the context
ontology.

For example, the context query being applied is
about project management which contains the concepts of
Project, Person, Document, Publication, Partner,
Time, Location and so on. The user’s query context could
be a graph of Person, Location, Web search for Project. In
this case a query template such as “finding a person I have
contacted in Vienna in a related project found by Google
search engine” will be proposed.

This feature is applied in the VQS’s interactive interface, in
which the user can right clicks on the results objects, instances
or virtual data objects and the system will show dedicated
templates based on his/her context.

VII. CONCLUSION

In this paper we have presented the SemanticLIFE frame-
work briefly and its query system, the Virtual Query System.
SemanticLIFE project aims at building a personal digital diary
closely to the Memex’s vision.

The Virtual Query System is an approach of building a
complete Semantic Web query system based on a front-end ap-
proach. Besides applying current Semantic Web technologies
known in the area such as ontology mapping, user annotation
and semantic query caching for RDF data, we have designed a
query system which aims at a significant complexity reduction
in formulating semantic meaningful queries and at the same
time aims at a considerable reduction of the number of
ambiguous user queries.

ACKNOWLEDGMENT

We are dedicated to all members of the SemanticLIFE team
for their excellent contribution to the success of the project.

REFERENCES

[1] E. Adar, D. Karger, and L. A. Stein, “Haystack: Per-user information
environments,” in Proceedings of the 8th International Conference on
Information and Knowledge Management., 1999.

[2] M. Ahmed, H. H. Hoang, S. Karim, S. Khusro, M. Lanzenberger,
K. Latif, E. Michlmayr, K. Mustofa, T. H. Nguyen, A. Rauber, A. Schat-
ten, T. M. Nguyen, and A. M. Tjoa, “Semanticlife - a framework for
managing information of a human lifetime,” in Proceedings of the 6th
International Conference on Information Integration and Web-based
Applications and Services, September 2004.

[3] D. Banks, S. Cayzer, I. Dickinson, and R. Dave, “The ePerson Snippet
Manager: A Semantic Web Application,” HP Laboratories Bristol, Tech.
Rep., 2002.

[4] D. Beckett, “Sparql query results xml format,” W3C
Working Draft, Tech. Rep., August 2005. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-XMLres/

[5] V. Bush, “As we may think,” The Atlantic, vol. 176, no. 1, pp. 101–108,
July 1945.

[6] I. F. Cruz, W. Sunna, and A. Chaudhry, “Ontology alignment for real-
world applications,” in Proceedings of The National Conference on
Digital Government - DG.O 2004, 2004.

[7] P. Dolog, N. Henze, W. Nejdl, and M. Sintek, “Towards the adaptive
semantic web,” in Proceedings of the International Workshop on Princi-
ples and Practice of Semantic Web Reasoning. LNCS-2901, Springer-
Verlag, 2003, pp. 51–68.

[8] A. Fitzgibbon and E. Reiter, “Memories for life - managing information
over a human lifetime,” Grand Challenges in Computing Workshop, UK
Computing Research Committee, Tech. Rep., May 2003.

[9] E. Freeman and D. Gelernter, “Lifestreams: A storage model for personal
data,” in ACM SIGMOD Record, Bulletin 25,1, March 1996, pp. 80–86.

[10] J. Gemmel, G. Bell, and R. Lueder, “Mylifebits: Living with a lifetime
store,” in ATR Workshop on Ubiquitous Experience Media, September
2003.

[11] J. Gemmel, G. Bell, R. Lueder, S. Drucker, and C. Wong, “Mylifebits:
Fulfilling the memex vision,” in ACM Multimedia ’02, December 2002,
pp. 235–238.

[12] H. H. Hoang and A. M. Tjoa, “The virtual query language for infor-
mation retrieval in the semanticlife framework,” in Proceedings of the
International Workshop on Web Information Systems Modeling - CAiSE
06, June 2006, pp. 1062–1076.

[13] D. Huynh, D. Karger, and D. Quan, “Haystack: A platform for creating,
organizing and visualizing information using rdf,” in Proceedings of
International Workshop on the Semantic Web, 7 2002.

[14] A. Maedche, B. Motik, N. Silva, and R. Volz, “Mafra - an ontology
mapping framework in the semantic web,” in Proceedings of the 12th
International Workshop on Knowledge Transformation, July 2002.

[15] J. M. Nicolau, “On thoughts about the brain,” Brain Processes, Theories
and Models, pp. 71–77, 1996.

[16] E. Prud’hommeaux and A. Seaborne., “Sparql query language for
rdf,” W3C Working Draft, November 2005. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/

[17] N. Stojanovic, R. Studer, and L. Stojanovic, “An approach for step-by-
step query refinement in the ontology-based information retrieval,” in
Prococeedings of the IEEE International Conference on Web Intelligence
(WI’04), 2004, pp. 36–43.

[18] H. Stuckenschmidt, “Similarity-based query caching,” in Proceedings
of the 6th International Confonference on Flexible Query Answering
Systems, 2004.

[19] D. Wood, P. Gearon, and T. Adams, “Kowari: A platform for semantic
web storage and analysis,” in Proceedings of the 14th International
WWW Conference, 2005.


