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Abstract—Information theory and Statistics play an important 

role in Biological Sciences when we use information measures for 
the study of diversity and equitability. In this communication, we 
develop the link among the three disciplines and prove that sampling 
distributions can be used to develop new information measures. Our 
study will be an interdisciplinary and will find its applications in 
Biological systems. 
 

Keywords—Entropy; concavity; symmetry; arithmetic mean; 
diversity; equitability  

I. INTRODUCTION 
NFORMATION theory has found extensive usage in 
measurement of diversity of communities. Since the species 

content and the proportion abundance of species keeps on 
changing in the communities, diversity indices can be used 
effectively to study the landscape analysis and development of 
communities in time and space [1, 2]. There are several 
measures of diversity [3-6], out of which the most commonly 
used are due to Shannon [16], Havrada and Charvat [8], 
Simpson [17] and Renyi [15]. Recently, Parkash and Thukral 
[7] proved that measures of central tendency and dispersion 
can be used as information measures. The present work 
extends the concept developed by the authors to well known 
sampling distributions.  

It is well known that Shannon’s [16] mathematical theory 
of information entropy was introduced to analyze the 
information carrying capacity of communication channels, 
serving as a measure of the degree of uncertainty or the extent 
of ignorance. Information entropy is an extremely important 
mathematical tool in data compression, signal processing, and 
communication processes. Entropy is a basic physical quantity 
that has led to various, and sometimes apparently conflicting, 
interpretations. It has been successively assimilated to 
different concepts such as disorder and information. The path-
breaking work of well known American Mathematician 
Shannon [16] who published his first paper “a mathematical 
theory of communication” is the Magna Carta of the 
information age.  In this paper Shannon [16] introduced the 
concept of information theoretic entropy by associating 
uncertainty with every probability distribution  

 
Dr. Om Prakash is working with Department of Mathematics, Guru Nanak 

Dev University, Amritsar143005,India.  E-mail: omparkash777@yahoo.co.in.  
Dr. A. K. Thukral is with Department of Botanical & Environmental 

Sciences, Guru Nanak Dev University, Amritsar 143005 , India, Email: 
akthukral@rediffmail.com. 

C. P. Gandhi is with Department of Mathematics, Guru Nanak Dev 
University, Amritsar143005, India. Email: cchanderr@gmail.com 

( )npppP ....,,, 21=  and found that there is a unique 
function that can measure the uncertainty, is given by  
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The probabilistic measure of entropy shown in equation (1) 
possesses a number of interesting properties. Immediately, 
after Shannon gave his measure, research workers in many 
fields saw the potential of the application of this expression 
and a large number of other measures of information theoretic 
entropies were derived. Renyi [15] defined entropy of order α  
as: 
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which includes Shannon’s [16] entropy as a limiting case as  

α→1 Zyczkowski [18] explored the relationships between the 
Shannon’s [16] entropy and Renyi’s [15] entropies of integer 
order. The author established a lower and an upper bound for 
Shannon entropy in terms of Renyi entropies of order 2 and 3. 

Havrada and Charvat [8] introduced first non-additive 
entropy, given by:  
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Lavenda’s [9] study is an in-depth analysis of mean 
entropies, particularly Shannon’s [16] and Renyi’s [15] 
entropies, which are expressed as negative logarithms of some 
means. The functional forms of these entropies follow from 
the multiplicative law of means. Nanda and Paul [10] derived 
some ordering results for their own entropy and discussed the 
properties of the aging classes based on their generalized 
entropy. The same is shown for Cox’s proportional hazard 
rate model. Rao, Yunmei and Wang [14] used the cumulative 
distribution of a random variable to define its information 
content and thereby developed an alternative measure of 
uncertainty that extends Shannon’s [16] entropy to random 
variables with continuous distributions. Many other 
developments regarding different measures of entropy have 
been made by various researchers. 
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II. NEW INFORMATION MEASURES BASED UPON SAMPLING 
DISTRIBUTIONS  

A. Measure of entropy based upon 2χ -distribution 

We know that 2χ variate is defined as: 

2χ =
{ }2

1

n
i

i

x M
M=

−
∑                                                        (4) 

Where M is the arithmetic mean of a probability distribution. 

The equation (4) can be written as 
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The R.H.S. of equation (5) is a standard measure of information 
known as measure of energy and has been introduced by Onicescu 
[11].Thus, we conclude that measure of information can be 

calculated for known values of 2χ variate and arithmetic mean and 
consequently, we have  

( )1H P =
2

2
nM

n M
χ +                                     (6) 

which is a new measure of information. 

 

B. Measure of entropy based upon t-distribution 
We know that t-statistic is defined as 
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Using (8) in (7), we get  
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Taking logarithm both sides, we get 
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Hence, we observe that for different values of 2n > , the information 

model for t-distribution becomes 
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x
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= .                        
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x x xμ− < − < 0
2
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Without any loss of generality, we can  assume that 
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Now, we show that the R.H.S. of equation (9) is a theoretical 

measure of information. For this purpose, we have studied the 

following properties: 
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(i) Obviously ( )nI P 0≥ as 0C< and 
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(ii)       ( )nI P is a continuous function of ip . 

(iii)      ( )nI P is permutationally  symmetric function of ip . 

(iv)    Concavity: To study its concavity, we proceed as follows: 
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2

1

( )                   

1

n i
ni

i
i

I P np
p

n p
=

∂
=

∂
−∑

 

Also
2

2 2
2 2

12

1

( ) n 2 1                   

1

n
n

i i
ni i

i
i

I P n p np
p

n p
=

=

⎡ ⎤∂ ⎢ ⎥= − −
⎢ ⎥∂ ⎧ ⎫ ⎣ ⎦⎪ ⎪−⎨ ⎬

⎪ ⎪⎩ ⎭

∑
∑

 

It has been verified numerically that  
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which shows that ( )nI P is a concave function of ip  .  

(v) For obtaining maximum value, we consider the Lagrange 

function given by 
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For maximum value, putting  
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arises when the distribution is uniform. 

Under the above properties, we see that ( )nI P will be an information 

measure and consequently, we conclude that if t  is any t -statistic, 

then 
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  will act as an information measure. 

C. Measure of entropy based upon F-distribution. 

The F-statistic is given by  
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 Taking logarithm both sides, we get 
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We, now propose a new measure of information based on F-

distribution, given by  
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Now, we show that the R.H.S. of equation (10) is a theoretical 

measure of information. For this purpose, we study the following 

properties: 
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(ii)       ( )n Pψ is a continuous function of ip and jp . 

(iii)      ( )n Pψ is a symmetric function of ip and jp . 

(i) Concavity: To study its concavity, we have 
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Hence, 2( )n Pψ is a concave function of jp . As difference of two 

concave functions is also a concave function, we conclude that 

( )n Pψ  is a concave function. 

(v) For obtaining maximum value,we consider the Lagrange 

function: 
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Thus, we see that the maximum value arises when the distribution 

is uniform. 

Under the above properties, we see that ( )n Pψ introduced above is 

an information theoretic measure and consequently, we conclude that 

if F is any F-statistic, then will act as an information measure. 

III. DISCUSSION  
The literature of information theory deals with the 

development of information theoretic measures- probabilistic 
as well fuzzy. We observe that there has been redundancy and 
overlapping in similar situations, which, if removed, can 
increase the efficiency of the system. The development of new 
probabilistic and fuzzy measures will definitely reduce 
uncertainty, which will help to increase the efficiency and 
remove uncertainty for the betterment of mankind.  Some of 
the fuzzy measures have recently been developed by Parkash, 
Sharma and Mahajan [12, 13] and have successfully been 
applied for the study of maximum entropy principles.  But, 
there are a variety of Mathematical, Statistical and  Biological 
disciplines where we need a variety of information measures 
to extend the scope of their applications. Keeping this idea in 
mind, we have developed some measures of information and 
concluded that for the known values of 2χ variate, arithmetic 
mean,  t -statistic and F-statistic, the information content of a 

discrete frequency distribution can be calculated and 
consequently, new information measures can be developed.   
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