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Abstract—The principal purpose of this paper is to find the
influence of maximum fatigue load on the probabilistic aspect of
fatigue crack propagation life at a specified grown crack in magnesium
alloys. The experiments of fatigue crack propagation are carried out in
laboratory air under different conditions of the maximum fatigue loads
to obtain the fatigue crack propagation data for the statistical analysis.
In order to analyze the probabilistic aspect of fatigue crack
propagation life, the goodness-of fit test for probability distribution of
the fatigue crack propagation life at a specified grown crack is
implemented through Anderson-Darling test. The good probability
distribution of the fatigue crack propagation life is also verified under
the conditions of the maximum fatigue loads.
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1. INTRODUCTION

AGNESIUM alloy is one of the lightest materials in all

metals used in structural parts. Magnesium alloys are
increasingly adopted in automotive industry owing to the
requirement of a weight reduction for an emission regulation.
The uncertainty is essential in the behavior of the structure. It is
necessary to consider the probabilistic aspect of the fatigue
crack propagation (FCP) life at a specified grown crack for an
estimation of structural integrity.

There are some studies on FCP behavior of a magnesium
alloy. Xu et al. [1] investigated the FCP behavior of a forged
Mg-Zn-Y-Zr alloy, and Zeng et al. [2] studied the FCP behavior
of an extruded magnesium alloy. Tokaji et al. [3] investigated
also the FCP and fracture mechanisms of wrought magnesium
alloy in different environment and concluded that the
relationship between FCP rate and stress intensity factor range
for large cracks consisted of two sections with different slope,
which became much more remarkable in the FCP behavior after
allowing for crack closure, and so on. However, the study for
stochastic FCP characteristic of a wrought magnesium alloy
has been rarely reported [4]-[8].

In the present paper, the probabilistic FCP behaviors are
investigated through the experiments and the statistical
analyses to verify the influence of the maximum fatigue load on
the probabilistic aspect of the FCP life at a specified crack.
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II. EXPERIMENTAL METHODS

A. Test Specimen

The material of the specimen is a commercial wrought AZ31
magnesium alloy with the principal chemical components of Al
3.29% and Zn 0.95%. Its mechanical properties are yield
strength of 198.3 MPa, tensile strength of 264.4 MPa, and
elongation of 21.95%.

The specimens with a width of 50 mm and a thickness of
6.60 mm are prepared for three experimental cases of the
maximum fatigue loads in as-rolled condition. The specimen
type is Compact Tension (CT) complied with ASTM E647 [9].

B. FCP Experiment

The statistical FCP data have been obtained at a load ratio of
0.2 using servo-hydraulic test equipment operating at a
frequency of 10 Hz with a wave form of sine. The FCP
experiments have been performed on CT specimens of about 20
duplicates for three cases of the maximum fatigue loads,
respectively. The conditions of the maximum fatigue loads are
three cases of 2000 N, 2250 N, and 2500 N. The crack size is
automatically calculated by the compliance method after
measuring the crack opening length on the loading line through
COD gauge.

III. STATISTICAL ANALYSIS

To find the influence of the maximum fatigue load on the
probabilistic aspect of the FCP life at a specified grown crack,
the statistical analysis is carried out for the probability density
of the FCP life and its probability distribution.

In order to evaluate the goodness-of-fit for the probability
distribution of the FCP life under different maximum fatigue
loads, Anderson-Darling (A-D) test has been applied to the
statistical analysis in this paper. A-D test statistics, A% of
goodness-of-fit is obtained from the expression

e :_i{&n*l) [In(F (%)) +1n0 - F(X,.y ))]}—n
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where, | is a rank of observation, n is a number of
observation and F()is a cumulative distribution function. The

statistical package software of MINITAB 17 is used to analyze
the probabilistic aspects of the FCP life.
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IV. RESULTS AND DISCUSSIONS

A. Goodness-of-Fit Test of Probability Distribution of FCP
Life at Specified Crack

The A-D test has been used for a goodness-of-fit test of the
probability distribution of the FCP life under the maximum
fatigue load conditions. There are two criteria for a
goodness-of-fit of a probability distribution. One is to compare
A-D statistics, A%, calculated to its critical value. Its critical
value is 0.744 in case of 5% significant level and 20
observations [10]. The other one is to verify an existence of an
experimental data in confidence interval (CI) bounds of a
probability distribution plot. The straight line in a probability

distribution plot represents a goodness-of-fit line and the curves
on both sides of it indicate the CI level. Although the
experimental data deviate from goodness-of-fit line, the
probability distribution having those plotted in CI bounds is
accepted as available.

Fig. 1 shows the goodness-of-fit test for the probability
distribution of the FCP life at a specified crack, depending on
each maximum fatigue load through A-D test. The
goodness-of-fit test in Fig. 1 has been implemented for a
3-parameter Weibull distribution and in 95% CI level. Because
the FCP life data of each crack propagation exist in CI bounds
of 3-parameter Weibull distribution, this distribution is able to
be used for a probabilistic prediction of the FCP life.
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B. Statistical Aspects

Figs. 2 and 3 show the statistical aspects of the FCP life for
each maximum fatigue load condition, depending on the

specified grown crack size.
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In Fig. 2, the dispersion of the FCP life becomes larger as
crack grows and becomes largest in failure stage. It means that
the prediction of the FCP life is not easy because of its

statistical uncertainty. Especially, the dispersion of the FCP life
becomes large in the smaller maximum fatigue load. It is
considered that the small maximum fatigue load condition has
small mean stress and stress amplitude. It is found that the
maximum fatigue load condition has a reasonable influence on

the statistical aspect of the FCP life.
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Fig. 3 Statistical behavior of FCP life between maximum fatigue load conditions

The symbol of a; in Fig. 3 is the grown crack size of failure Molecular, Nuclear, Materials and Metallurgical Engineering, Vol.9,
; . . e . No. 8, pp. 1002-1005, 2015.

stage. Fig. 3 shows that the dlspers1on‘0fthe FCP .hfe 1§ smau " [9] ASTM E647-00, Standard Test Method of Fatigue Crack Growth Rates.

early stage of the crack propagation. But, its dispersion Pennsylvania: ASTM International, 2000.

becomes large toward the failure stage. This tendency is similar ~ [10] B. Dodson, the Weibull Analysis Handbook. Wisconsin: ASQ Quality
in all cases of the maximum fatigue loads. Owing to the Press, pp. 115-117.

statistical dispersion of the FCP life in each crack propagation

stage, the probabilistic method is necessary to predict the FCP

life at a specified grown crack.

V.CONCLUSION

The study of the influence of the maximum fatigue load on
the FCP life reveals that the maximum fatigue load condition
has a reasonable influence on the probabilistic aspects of the
FCP life in magnesium alloy. Because the FCP life at a
specified grown crack has a stochastic behavior under the
maximum fatigue load condition, the probabilistic method
using the 3-parameter Weibull distribution is necessary to
predict the FCP life.
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