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Influence of Intermediate Principal Stress on Solution
of Planar Stability Problems

M. Jahanandish, M. B. Zeydabadinejad

Abstract—In this paper, von Mises and Drucker-Prager yield
criteria, as typical ones that consider the effect of intermediate
principal stress ©2, have been selected and employed for
investigating the influence of 62 on the solution of a typical stability
problem. The bearing capacity factors have been calculated under
plane strain condition (strip footing) and axisymmetric condition
(circular footing) using the method of stress characteristics together
with the criteria mentioned. Different levels of 62 relative to the other
two principal stresses have been considered. While a higher 62 entry
in yield criterion gives a higher bearing capacity; its entry in
equilibrium equations (axisymmetric) causes substantial reduction.

Keywords—Intermediate
axisymmetric, yield criteria.

principal  stress, plane strain,

1. INTRODUCTION

ANY stability problems in geotechnical engineering are

in plane strain or axisymmetric conditions. An example
would be the strip and circular footings on the surface of
ground. At the failure state in these problems; the soil flows in
planes in which the displacements develop. In plane strain
condition; these are planes in which the strains develop. In
axisymmetric problems; they are redial planes (Fig. 1).
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Fig. 1 Planes of flow in a) Plane strain b) axisymmetric cases

The failure state is represented by the Mohr circle having
the largest diameter, i.e., oy-03. The failure function is
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obtained by the envelope of such circles in 7o diagram as
shown in Fig. 2. Any failure criterion suggested for soil, as
applied to plane strain or axisymmetric conditions should
appear as a functional relationship t = f(g,,) or R = F(0) in
this diagram. Here, 7 and o, are the shear and normal stresses
on the failure plane at failure. R and o are the radius of such
circle and the distance of its center from the origin,
respectively.
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failure states \ Mohr circles
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failure states

Fig. 2 Failure envelope obtained by pushing the greatest Mohr circle

As seen; the intermediate principal stress o3, can take any
value between o3 and o7 when point B moves from C to A in
Fig. 2. The effect of o, and its variation on the solution have
not been studied before. In triaxial test for example; o5 is
either assumed to be equal to o3 (compression) or o
(extension). The ambiguity about the value of o, and its
effects have made the researchers to develop the true triaxial
device [1]. The ratio b is usually used to represent its effects.
This ratio is defined as:

0, —0:
b= (1)

Increase in o from o3 to oy is equivalent to increase in b
from 0 to 1. It is noteworthy that there is a unique relation
between the Lode angle 6, and the stress ratio b, as [2]:

20,—-0,—03 __ 2-b (2)

tanf = —V3(0,—03) —_\/§b

Related values of 6 and b are typically given in Table I.
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TABLEI
APPROPRIATE VALUES OF B AND 6
[ b
-30 1
-60 0.5
-90 0

II. STRESS LEVEL INDEPENDENT YIELD CRITERIA

We begin with criteria that do not depend on stress level
first. This is helpful in realizing the elaboration that is added
due to stress level dependency later. The simplest form is that
suggested by Tresca [3] in 1864; which is relevant to
undrained shearing of saturated clay soils. It can be considered
as a special case of M-C criterion when ¢= 0. This is usually
written as:

01— 03 =y €))

where g, is the soil strength in uniaxial compression
(unconfined compressive strength).
Writing this criterion in the form of R = F(o) will result in:

R=c¢, = qz—“ = constant “)

where ¢, is the undrained shear strength. As seen; there is no
dependency on the intermediate principal stress oy, as is the
case with its parent M-C criterion.

The other criterion is the one suggested by von Mises [4] in
1913. For saturated clay with strength @, in undrained
condition it would be in the following form:

Toct = %\/(01 —03)% + (07 — 03)2+ (0, — 03)2 = \/3_Ek 5

where k is the von Mises constant that takes different values
depending on the condition of the problem.

In contrast to that of Tresca; the von Mises criterion
depends on o,. Writing it in the form of R = F (o) using b
defined above, we get:

_ K
R= 2,/1-b(1-b) ©)

The von Mises constant kK, is usually obtained from uniaxial
compression test. In such a test; g, and g5 are taken equal to
zero. The value of b is zero and the constant k would be equal
to the unconfined compressive strength, ,. If these two
criteria are set equal at uniaxial compression as it is usual (Fig.
3); envelops of both appear as straight lines parallel to o-axis
on the 7-o diagram.

While the radius of Mohr circle at failure given by Tresca is
independent of o3 and b; the radius given by von Mises is
function of b. The ratio of the radii of these two failure criteria
in Mohr diagram would be a function of b so that:

Ryonmises _ 1 (7)

Rrresca \/l_b(l_b)

This function is drawn vs. b in Fig. 4.

Fig. 3 Comparison between Tresca and von Mises at uniaxial
compression
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Fig. 4 The ratio of strengths by von Mises to that of Tresca as
function of o3 and b.

As mentioned; it is customary in the axisymmetric case to
assume o0>,=03 when the flow of soil is away from the axis of
symmetry and to assume o,=07 when it is toward it. These are
known as von Karman regime. It may be rational to assume o,
to be the average of o3 and oy in plane strain condition
because, in this case, the flow neither can be considered
outward nor inward. But let us assume it is a factor K of the
average of the other two principal stresses so that:

0, = K2 (8)

Accordingly we can write:

b= 0.5K(0,+03)—03 (9)

0,03

If the material is linear elastic; K=2v; and if the Poisson’s
ratio v; is 0.5; K would be 1. The value of b relevant to this
condition would be 0.5.

In general; we can say K is a reasonable assumption for K
in plane strain condition. This is consistent with the condition
#=0 relevant to undrained behavior of saturated clay which
gives K=1 and b=0.5; i.e.; the intermediate principal stress
would be equal to the average of the other two principal
stresses.

If we assume associated flow rule and take the plastic
potential function g the same as von Mises yield function, we
can investigate the plane strain condition &=g~0, by setting
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dg/do, equal to zero [5], [6]. The following will result from
this operation on (5):

2b-1
o] - 0 (10)

This gives b=0.5 and = -60°; where there is maximum
deviation of von Mises from Tresca (Fig. 3). Therefore; if the
soil behavior obeys associated flow rule and the yield criterion
is von Mises; b should be 0.5 (Fig. 5). Substituting this value
of b in (6) gives R = k/+/3. If we compare this with that of
Tresca, we can conclude that if these two criteria are to be
matched in plane strain condition; k should be equal to v3c,,.
We should remember that this result has been obtained
assuming associativity. But the soil behavior is usually not
associated and the value of b in this case may be different
from 0.5. It is interesting to see the effect of this deviation on
the solution of typical plane strain problems. The bearing
capacity of strip footing shown in Fig. 1 on a saturated clay in
undrained condition can be considered as an example. The
amount the value of b is different from 0.5 can be considered
as the degree of nonassociativity of soil behavior. The solution
is obtained using the rigorous method of characteristics [2],
[7], [8]. For the associated case; the value of bearing capacity
factor N is 5.14. The solution for nonassociative cases is
obtained when different values of b are put in (6) using
k =+3c,. The result is shown in Fig. 6 and this figure
indicates reduction in bearing capacity with increase in degree
of nonassociativity of soil.

The axisymmetric case is not as straight forward as plane
strain. The principal strain &=g is not zero in this case to help
finding the proper path. The b value can vary with distance
from the axis of symmetry. Another important point is that the
intermediate principal stress enters the equilibrium equations
in this case. Therefore; in contrast to the plane strain case; the
effect of o3 and b in this case is debatable even if the yield
criterion dos not include o,. Fig. 7 shows the variation of N
for a circular footing with b as predicted by Tresca and von
Mises criteria. The starting point of all curves is
approximately N.=5.7. As (3) indicates; Tresca yield criterion
does not depend on o,. Therefore; the curve related to Tresca
in Fig. 7 indicates that entry of higher values of b in
equilibrium equations causes reduction in bearing capacity.
This is also clear when we compare the curves related to von
Mises. The dashed line curve indicates that the entry of higher
values of b in yield criterion has an increasing effect on N;
but when their effect in equilibrium equations is also allowed;
their increasing effect is substantially ceased (full line curve).
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Fig. 5 Comparison between Tresca and von Mises at plane strain
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Fig. 6 Effect of variation of b on N; factor of a saturated clay
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Fig. 7 Effect of b on N, via yield and equilibrium egs.

III. STRESS LEVEL DEPENDENT YIELD CRITERIA

We have selected Mohr-Coulomb (M-C) and Drucker-
Prager (D-P) yield criteria for our investigation in this part [9];
but the discussion can be extended to Lade-Duncan, Masuoka-
Nakai and others as well. Here, the M-C can be considered as
an extension of Tresca because it does not depend on . D-P
is stress level dependent form of von Mises and considers o.
For the sake of clarity; we limit our discussion to frictional
soil. The M-C in this case can be written as:
(11)

o, — 03 = sing (o1 + 03)

which can be easily written in R = F (o) form as:
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R = osing

The D-P criterion in the absence of cohesion can be written
as [9], [10]:

\/(01 —03)2 + (01— 03)2+ (0, — 03)2 = al; (12)

where |, is the first invariant of stress tensor and « is the D-P
parameter. It can be easily shown that the R = F (o) form of
D-P in this case, is:

3a (13)

R= 2v2,/1-b(1-b)-a(2b-1) o
Comparison with similar form of M-C, indicates that:

= (14
which gives the D-P parameter a, for matching with M-C in
general.

Assuming the behavior to be associated; we again set
dg/d0, equal to zero [3], [4] to get the matching in plane
strain condition. This operation on (12) will result in:

2b-1

N (15)

Applying the requirement for general matching expressed
by (14) to this equation results in:

p =1t (16)
which gives the value of b in terms of ¢ for matching of D-P
with M-C in plane strain condition. In other words; both
criteria predict the same strength for the soil if the value of b is
assumed to be that given by (16). Fig. 8 shows the matching of
D-P and M-C in plane strain condition.

A
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Plane strain D-P

(- Triaxial compression D-P

Fig. 8 Matching of Drucker-Prager and Mohr-Coulomb criteria

The actual value of b can be different from what is given by
(16) due to nonassociativity in soil behavior. To investigate
the effect of variation of b on the solution of plane strain
problems like bearing capacity; we can assume we have found

the D-P parameter ¢, on the basis of (15). We then substitute
this value of « in (14) and find an equivalent value for ¢ in
terms of b. In this way; the variation of b affects the material
equivalent strength parameter ¢. Values of b different from
what is given by (16) will result in equivalent friction angles
less than the original. This is clear from Fig. 8 as we see that
the D-P circle lies inside of M-C hexagon. Fig. 9 shows the
variation of bearing capacity factors Ng and N, for smooth strip
footing with b when ¢=30. The value of b relevant to
associative behavior in this case is 0.75 and the figure
indicates lower bearing capacity factors when the behavior of
soil is nonassociated; i.e.; when b is different from 0.75.
Therefore; it is not conservative to go with the usual bearing
capacity factors if the soil behavior is really nonassociated.
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Fig. 9 Effect of variation of b on (a) Ny and (b) N, for strip footing (¢
=30°)

As mentioned before; the intermediate principal stress
participates in the equilibrium equations in case of axial
symmetry. In order to see the effect of its entry in equilibrium
equations on bearing capacity calculations; we have chosen
the M-C criterion because it does not include o». It is usual to
assume o»=03 in this condition i.e.; b=0. But this is merely an
assumption and it is interesting to see if o is really greater
than o3; how are the values of N, and N, influenced by this
matter. The result of investigation for ¢ = 30° is demonstrated
by the curve drawn for M-C in Fig. 10. The curve indicates
entry of higher values of b in equilibrium equations results in
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lower values for bearing capacity factors, Ny and N,. Matching
of other yield criteria like D-P with M-C under axial
compression relevant to bearing capacity problem of circular
footings is made at the top point of Fig. 8, where b is zero. For
other points; the D-P circles lies outside of the M-C hexagon.
This indicates higher strength with increase in b. This effect is
demonstrated by the dashed line curve in Fig. 10. When the
effect of o, being greater than o3 is considered both in
equilibrium and yield equations; the full line curve of Fig. 10
is obtained. Comparison of these two curves indicates again,
the reduction in Ny and N, due to participation of o, in
equilibrium equations. The full line curve indicates the net
effect has been increase in bearing capacity factors in case of
$=30°
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Fig. 10 Effect of variation of b on (a) Ngand (b) N, for circular
footing

IV. CONCLUSION

Tresca and Mohr-Coulomb yield criteria have long been
criticized for not considering the effect of intermediate
principal stress. As typical stress level- dependent and
independent yield criteria that consider the effect of o»; von
Mises and Drucker-Prager were selected for investigating the
effect of 0> on solution of bearing capacity problem under

plane strain and axisymmetric conditions. It was found that in
plane strain condition; the value of o; may be different from
what is usually assumed and this may be due to non-
associativity in soil behavior. It was shown that under such a
condition, a lower bearing capacity is obtained. Therefore; the
usual solution to bearing capacity of strip footings would not
be conservative.

In the axisymmetric conditions however, o, enters the
equilibrium equations as well; and if the Mohr-Coulomb
criterion is employed for bearing capacity calculation of
circular footings; increase in o relative to other principal
stresses results in decrease in bearing capacity. Therefore; if in
reality, o, is greater than o3; this effect should be considered
in calculations. If other criteria that include o3 are used instead
of Mohr-Coulomb; the calculated bearing capacity may be less
or more than what is usually calculated, depending on the
criterion used, and the amount o, has been taken more than o3.
In case of Drucker-Prager for example; the net effect has been
shown here to be a little increase in the calculated bearing

capacity.
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