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Inferring the Dynamics of “Hidden” Neurons from
Electrophysiological Recordings
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Abstract— Statistical analysis of electrophysiological recordings
obtained under, e.g. tactile, stimulation frequently suggests partici-
pation in the network dynamics of experimentally unobserved “hid-
den” neurons. Such interneurons making synapses to experimentally
recorded neurons may strongly alter their dynamical responses to
the stimuli. We propose a mathematical method that formalizes this
possibility and provides an algorithm for inferring on the presence
and dynamics of hidden neurons based on fitting of the experimental
data to spike trains generated by the network model. The model
makes use of Integrate and Fire neurons “chemically” coupled
through exponentially decaying synaptic currents. We test the method
on simulated data and also provide an example of its application to
the experimental recording from the Dorsal Column Nuclei neurons
of the rat under tactile stimulation of a hind limb.

Keywords— Integrate and fire neuron, neural network models,
spike trains.

I. INTRODUCTION

Computational availability of the nervous system relies
both on the properties of single neurons and importantly on
their interactions, where a complex dynamical information
processing unobservable on the single cell level emerges.
Accordingly, the study of connectivity patterns and arising
functional characteristics of the neural microcircuits is a must
for understanding how the external world sensory information
is processed in the brain [1]-[3]. Although any behavior of a
neural network is based on the whole anatomical architecture,
as a matter of fact, we usually have an access only to a small
part of the network whose properties we aim capturing. Conse-
quently, inferring the functionality of the whole from the study
of the functional architecture (connectivity) and characteristics
of sub-networks becomes fundamental for investigation of the
information processing by the brain.

Common electrophysiological extracellular experimental
data provide spike trains generated by a group of neurons,
and no more direct information on the network structure,
intrinsic neuron dynamics, type and characteristics of synaptic
connections etc. is usually available. Accordingly, the use of
indirect (model based) methods for inferring synaptic, single
neuron and neural network properties frequently is only way of
inferring the network dynamics. Thus we are obligated to build
up, test and study mathematical models all the time standing
on the basis of experimental data.
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To succeed in a biophysical study it is desirable to start
with a relatively simply organized system, where the properties
of individual cells are not extremely complex and the cell
diversity is limited. A good candidate for studying the neural
dynamics on the network level and its role in the stimulus
processing is the Dorsal Column Nuclei (DCN) of the rat,
the first relay station in the lemniscal pathway of the tactile
information. Electrophysiological experiments show that most
of the neurons in the DCN do not significantly differ in their
electrical properties [4]-[6]; however, the neural assemblies
they form do carry out different functional tasks, e.g. the DCN
output depends strongly on the spatiotemporal and intensity
characteristic of the tactile stimulus.

Despite of existing extensive electrophysiological and
anatomical studies of the DCN little is known on exact
functional mechanisms building the fundament of the precise
and robust tactile information handling. Here we propose a dif-
ferent but complimentary approach. We assume that the DCN
neuron ensembles perform like dedicated processing devices
whose output is conditioned not by a complex intrinsic neural
dynamics but by the sophisticated connectivity patterns made
of individual afferent and efferent connections. Further on we
shall refer to the functional (or effective) couplings among
neurons rather than to anatomical connections. The former are
given by the simplest circuit able to produce the same temporal
relation between neurons in an ensemble [7]-[9]. Then we can
use electrophysiological data and physical theory to develop
a mathematical model of the system and shed light on the
problem of processing of the tactile information.

In our recent work [10] we have been able to show that
spike trains simultaneously recorded from several neurons
can be used for deducing the effective connectivity among
them. Although this tool has been shown [11] to be very
reliable and valuable in studies of the architecture of neural
networks, in conditions of tactile stimulation the dynamics of
experimentally observed neurons can be strongly altered by
“hidden”, experimentally unobservable neurons. In this paper
we propose and test a novel mathematical method allowing
to infer on the presence and dynamics of experimentally
unobservable neurons using experimentally recorded spike
trains.

II. EXPERIMENTAL PROCEDURE AND MOTIVATION

We study neural responses elicited by stimulation of the
hind limbs of a rat and manifested in spiking activity in the
DCN. Figure 1 sketches the experimental procedure.



International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:2, No:3, 2008

99

A. Stimulation Protocol

We mechanically stimulated the hind limb of a rat and
recorded extracellularly the response activity in the corre-
sponding Gracilis nucleus. The tactile stimuli lasting 200 ms
were delivered by a thin metallic stick (tip area 1 mm2) driven
forward and backward by a solenoid with 1.4 s inter-stimulus
interval. The same stimulation has been repeated 30 times.
Specialized skin receptors (with fast adaptation) are excited
by that movement and then generated electrical signals travel
along the sciatic nerve toward the brain stem where they
bifurcate and synapse to neurons in the DCN.

Mechanical

stimulator

Skin

Receptor

Spinal cord

Dorsal

Column

Nuclei

Digit

surface

Electrode

Time

200ms

Fig. 1. Sketch of the experimental procedure. We stimulate mechanically
the skin of a digit of hind limb of the rat. Touching events lasting 200 ms
are repeated 30 times with 1.4 s intervals. The stimulus events excite skin
receptors producing spike trains propagating over sensory fibers to the DCN
where the fibers bifurcate and make synapses to neurons.

B. Electrophysiological Recordings

Female adult Wistar rats (200 – 300 g) were anesthetized
with urethane (1.6 g/kg, i.p.). Supplementary doses were
administered when necessary during long surgical procedure
and the body temperature was maintained at 37◦C. Rats were
placed in a stereotaxic frame and artificially ventilated under
control of the end-tidal concentration of CO2. To get an access
to the DCN we made a cut at the dorsal midline at the level of
the neck, separated the musculature and opened the cisterna
magna. During the experiments the DCN were covered with
mineral oil. We record extracellularly spiking activity in the
Gracilis nucleus using PCI-6071E E Series data acquisition
card from National Instruments with multi-channel Michigan
acute probes organized in 2x2 tetrodes (tip area 312 μm2,
distance between tips 25 μm, distance between tetrodes and
shanks 150 μm).

C. Statistical Analysis

Recorded spikes have been sorted off-line with a custom
package based on Principal Component and Wavelet Analyses
[12]. The collected recordings provide spike trains of up to
five simultaneously recorded neurons in different stimulation
conditions (Fig. 2A).
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Fig. 2. A representative example of statistical analysis of experimental
data. A) Spike trains corresponding to stimulus “On” and “Off” events and
response of two neurons. B) Peristimulus and auto-correlation histograms
obtained for neurons N2 and N3 under mechanical stimulation of digit #2.
C) Hypothesized network constructed on the basis of the PSTHs and ACHs.
Neurons numbered by 1, 2, and 3 are experimentally observed (recorded).
Neurons marked by letters a – d are experimentally unobserved but essential
to explain the properties showing up in PSTHs and ACHs of the observed
neurons.

The experimental spike events were compiled into PeriS-
timulus Time Histograms (PSTHs) and Auto-Correlation His-
tograms (ACHs) in order to study statistical properties of the
spike trains. Figure 2B shows a representative example of the
histograms. Both neurons strongly respond to the stimulation
with latencies about 25ms and 19ms for N2 and N3, respec-
tively, after which the neurons suffer an inhibition. Neuron
#2 also has rhythmic component practically uncoupled from
the stimulus phase. Neuron #3 exhibits even more prominent
rhythmic firing with phase resetting provoked by stimulation
events.

Careful analysis of the structure of firing activity and
histograms suggests that the dynamics of the neurons can
be influenced by other experimentally unobserved neurons.
However a rigorous prove of this statement based solely on
the histograms is impossible. Nevertheless, on the basis of our
experience we drew a possible inter-neuron connections shown
in Fig. 2C. The obtained hypothetical network incorporates
observable and unobservable neurons. For instance we suppose
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that neuron number 3 can receive a direct excitation and
indirect inhibition mediated by the hidden neuron “c”.

In the next section we present a mathematical method that
formalizes the above described possibility of the presence of
hidden neurons and provides an algorithm for their identifica-
tion.

III. INFERRING MATHEMATICAL NEURAL NETWORK
MODELS FROM EXPERIMENTAL DATA

A. Original INCAM Method

Let us first briefly recall the main points of INCAM method
[10]. It has been shown [13] that a physiologically detailed
conductance-based neuron model (Hodgkin-Huxley type) can
be well fitted by single-variable integrate-and-fire models.
Accordingly, to describe the neuron dynamics we use the
single-compartment leaky integrate-and-fire model (e.g. [14],
[15]):

du

dt
= −u

τ
+ i0 + isyn (t) , (1)

where u accounts for the neural membrane potential, τ and
i0 are constants defining the intrinsic neural dynamics and
isyn (t) is the synaptic current induced by the spikes from the
other neurons and/or sensory fibers. A rather accurate model
of the synaptic current is given by:

isyn
x (t) =

wxy

λxy

∑
i

H(t − si)exp
(
− t − si

λxy

)
. (2)

where H(·) is the Heaviside function, si are the time instances
of incoming spikes. The pair (wxy, λxy) describes strength and
time scale of the synapse with the subindex defining the post
(x) and pre (y) – synaptic element (e.g. “es” means the synapse
to the Experimental neuron from the Sensory fiber, see below).
In the case of multiple synapses the total synaptic current is
given by a sum of individual currents (2).

The method relies on the spiking activity of experimentally
observed neurons. Then the connectivity pattern and the basic
characteristics of the neural microcircuit are deduced by fitting
the model (1), (2) into the available data (Fig. 3).

The original direct INCAM algorithm performs by search-
ing, in the parameter space Pdirect =

{
i0, τ, wxy, λxy

}
, the

set of parameters minimizing the cost function given by:

C(P ) =
∑

k

(
ISIexp

k − ISI mod
k (P )

)2

, (3)

where ISIexp, mod
k are experimentally observed and model

predicted k-th Inter-Spike-Interval. The parameter set P ∗

minimizing the cost function provides the best fit of the model
to the experimental data and gives all basic characteristics of
the network (e.g. type and relative strength of synapses).

B. INCAMh Method Including the Dynamics of Hidden Neu-
rons

Let us now assume that a sensory fibre leaves collaterals on
both observed and hidden neurons and excites both of them
(Fig. 4; see also Fig. 2C). In turn the hidden neuron excites or
inhibits the experimentally observed neuron. Then to provide a
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Fig. 3. Example illustrating the dynamics of a neuron under simultaneous in-
hibition and excitation. The parameter values of the model (1), (2) are adjusted
to minimize the sum of the squared differences between the experimentally
observed firing (”experimental output”) and the firing predicted by the model
(”model output”).

correct mathematical model of the tactile information process-
ing accomplished by this small network we should take into
account the dynamics of experimentally hidden neuron. Thus
our objective is to deduce the presence, type, characteristics
of synaptic couplings in the network and also provide insight
on the dynamics of the hidden neuron relying solely on the
input and output spike trains.

Sensory fiber

“Hidden”
(not recorded neuron)

Experimental
(observed neuron)

Periodic spike train

“Recorded neural response”

Fig. 4. Graphical representation of the model of experimental recording.
Sensory fiber bifurcates and conveys input periodic spike train to two (in
general) reciprocally connected neurons. We “record” spike train only from
the Experimental neuron, while the firing dynamics of the Hidden neuron is
unavailable. Our objective is inferring the presence of the interneuron and
characteristics of the network.

In the problem statement shown in Fig. 4, when the dynam-
ics of the hidden neuron plays an important role, an application
of INCAM method, i.e. minimization of (3) over the input
and output spike trains, will provide a “suboptimal” solution
for the dynamics of the experimentally observed neuron. By
suboptimal here we mean that the obtained solution will
fail to explain accidental properties in the dynamics of the
observed neuron provoked by the spikes received from the
hidden neuron. Signs of such suboptimality can be observed
in Fig. 2 in the form of “erratic” inhibition. To overcome
this problem of missing knowledge on the spike trains of the
hidden neuron and considerably improve modeling results we
modify the original INCAM procedure.

First, we include corresponding equations of type (1), (2)
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for the hidden neuron in the model of the network:

due

dt = −ue/τe + i0e + isyn
e (t)

duh

dt = −uh/τh + i0h + isyn
h (t)

isyn
e (t) = wes

λes

∑
i

H(t − si)exp
(
− t−si

λes

)
+

+weh

λeh

∑
j

H(t − zj)exp
(
− t−zj

λeh

)
isyn
h (t) = whs

λhs

∑
i

H(t − si)exp
(
− t−si

λhs

)
,

(4)

where subindexes e and h stay for Experimental and Hidden
neurons, respectively; and si, zj are the spike trains coming
from the sensory fiber and the hidden neuron, respectively.
Then the parameter set describing the dynamics of the exper-
imental neuron extends to:

Pexp =
{
i0h, τe, wes, λes, weh, λeh

}
.

We also get a similar set for the hidden neuron

Phid =
{
i0h, τh, whs, λhs

}
.

Second, for a given parameter set Phid we can predict
the spike train generated by this neuron under input from
the sensory fiber simply integrating the corresponding part of
Eq. (4). Once the spike train of the hidden neuron is inferred
(for the given parameter values) we can evaluate the cost
function (3) for the experimental neuron by ordinary INCAM
but now incorporating the synaptic coupling from the hidden
neuron.

Third, we search over the extended parameter space
Pextended = {Phid, Pexp} for the minimum of the cost function
(3). Note that the extended parameter space includes the direct
parameter space, hence the minimum of the cost function will
be smaller or equal to the best prediction by the direct method.
This particularly means that the new approach will provide a
better or at least the same good solution as the direct INCAM
method. Further we shall refer to the new method as INCAMh.

C. Decision Criterion on the Presence of Hidden Neuron

As we noted above INCAMh always provides the same or
better solution to the problem than the direct INCAM does.
This is due to the fact that ICAMh uses the more complex
model with ten fitting parameters, whereas direct INCAM uses
only four parameters.

When fitting two different models to the same experimental
data we should take into account the model orders. For
comparing results of fitting of the INCAM and INCAMh
models to the spike trains we use a second order Akaike
Information Criterion (AIC) given by [16]:

AIC = N log

(
1
N

N∑
i=1

r2
i

)
+ 2K +

2K(K + 1)
N − K − 1

, (5)

where r are the residuals after the model fitting and K is
the number of model parameters (we assume a Gaussian
distribution of points around nonlinear curve). Then the more
complex model (INCAMh) is more probable than the simpler

one (INCAM) when its AIC is lower. Accordingly, we posi-
tively confirm the presence of a hidden neuron when AIC of
INCAMh is lower than AIC of the direct method:

AICINCAMh < AICINCAM. (6)

Thus when (6) is fulfilled, the network includes the hidden
neuron with corresponding characteristics. Otherwise the sim-
pler model with the direct connection going from the sensory
fibre to the observed neuron is preferable.

IV. METHOD ASSESSMENT ON SIMULATION DATA AND
APPLICATION TO EXPERIMENTAL RECORDINGS
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Fig. 5. Method assessment on simulated recordings. A) Sketch of the neuron
connectivity. Sensory fiber conveys a periodic spike train that excites two
neurons: hidden (H) and experimental (E). Hidden neuron in turn inhibits
the experimental neuron. B) ”Recorded” spike trains, PeriStimulus Time
Histogram and Auto Correlation function for the experimental neuron.

First, we assess the performance of our method on simulated
data. To reproduce the above discussed experimental data we
use the neural network shown in Fig. 5. We model two neurons
labeled as experimental and hidden under excitation by a
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periodic sensory input. The hidden neuron sends inhibitory
synapsis to the experimental neuron.

In simulation we used the following parameter values: i0h =
3.5, i0e = 1.57, τh = 40, τe = 20, and the coupling and
synaptic scales matrices are given by:

w =

⎛
⎝ 0 −0.6 0.5

0 0 0.3
0 0 0

⎞
⎠ , λ =

⎛
⎝ 0 0.2 0.01

0 0 0.01
0 0 0

⎞
⎠ .

(7)
First we use the direct INCAM method applied to all the

three spike trains. As expected it recovers the initial parameter
values practically with no errors. The AIC coefficients (5) for
the “E” (experimental) and “H” (hidden) neurons are:

AICE = −1386.9, AICH = −1811.4. (8)

These values give the absolute minima for the AIC criterion.
Now using the direct INCAM applied to the experimental

spike train only we obtain correct identification of the synaptic
coupling made by the sensory fiber on the “E” neuron: wes =
0.5. However, we also observe a strong increase in the criterion
coefficient AICINCAM

E = −849.7. This means that the model
excluding the dynamics of the hidden neuron describes quite
poorly the dynamics of the experimentally observed neuron.

Application of INCAMh gives correct identification
of synaptic types of all neurons and reduces AIC to
AICINCAMh

E = −1273.5, which is close enough to the absolute
minimum (8). Accordingly, the new method strongly improves
prediction of the direct INCAM method and provides correct
picture of the neural network behind the experimentally ob-
served spike trains.

Let us now illustrate the method application on the real
experimental recordings shown in Fig. 2. As an input to the
algorithm we use the spike train of the second neuron and
the train of stimulus onsets. The results of prediction indeed
confirm the presence of the hidden inhibitory inter-neuron
labeled by “b” in Fig. 2C.

Figure 6 shows experimental and simulated PSTHs obtained
over spike trains generated by two models. The results pro-
vided by INCAMh method are much closer to the experimen-
tal, thus confirming the strength of the method.

V. CONCLUSION

In this paper we have provided a mathematical method of
inferring the presence of hidden (inter) neuron and its firing
dynamics influencing the output spike train of the experimen-
tally observed neuron under sensory stimulation. The method
allows to deduce the strength and type of the synapse sent
by the hidden neuron to the experimentally observed one. We
also can predict the dynamics of the hidden neuron and its
importance for the spike train of the experimental neuron.

Using simulated date resembling experimental conditions
we have demonstrated the method validity. Finally we have
presented a method application for identification of the hidden
neuron dynamics in the experimental recordings made in the
dorsal column nuclei of the rat under tactile stimulation.
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Fig. 6. Method application to experimental data. PSTHs for N2 obtained over
experimental recordings (up); after application of the direct INCAM (middle);
and after new ICAMh (bottom).
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