
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:7, No:2, 2013

192

 
 
 

 

  
Abstract—Lateral-torsional buckling (LTB) is one of the 

phenomenae controlling the ultimate bending strength of steel I-
beams  carrying distributed  loads on top flange. Built-up I-sections 
are used as main beams and distributors. This study investigates the 
ultimate bending strength of such beams with sections of different 
classes including slender elements. The nominal strengths of the 
selected beams are calculated for different unsupported lengths 
according to the Provisions of the American Institute of Steel 
Constructions (AISC-LRFD). These calculations are compared with 
results of a nonlinear inelastic study using accurate FE model for this 
type of loading. The goal is to investigate the performance of the 
provisions for the selected sections. Continuous distributed load at 
the top flange of the beams was applied at the FE model. 
Imperfections of different values are implemented to the FE model to 
examine their effect on the LTB of beams at failure, and hence, their 
effect on the ultimate strength of beams. The study also introduces a 
procedure for evaluating the performance of the provisions compared 
with the accurate FEA results of the selected sections. A simplified 
design procedure is given and recommendations for future code 
updates are made. 
 

Keywords—Lateral buckling, Top Loading, Ultimate load, 
Slender Sections.  

I. INTRODUCTION 

HE ultimate bending strength of beams is affected by the 
Lateral-torsional buckling phenomenon. This phenomenon 

controls the strength of beams that are not adequately restraint 
to lateral deflection and twisting out of the loading plane.  

For elastic LTB under pure constant bending, the 
unsupported length is considered to be the beam length (i.e. 
the beam is laterally restrained at its ends). 
The critical buckling moment in the case of pure bending 
described above is given by [1]: 
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Where L is the length of the beam span which is considered 

unsupported laterally.  
The elastic lateral buckling of beams under vertical loads 

depends mainly on two parameters: the lateral rigidity of 
flanges EIy and the torsional rigidity GJ. For long beams the 
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effect of the lateral rigidity decreases and the torsional rigidity 
dominates. 

For short compact sections the lateral rigidity provides the 
main resistance of beams. It is noticed that short beams with 
slender elements are subjected to local failures under heavy 
vertical loads. The resistance is further reduced by the yield 
spread either locally or globally due to excessive stresses. 

For cases of different moment gradients along the 
unsupported beam length, the moment gradient factor Cb was 
used in (1) to take the effect of different moment distribution 
along the beam’s unsupported length [1]: 
     

2

2

1
GJL

ECJGIE
L

CM w
y

b
cr

ππ
+=                               (2) 

 
The first formula for Cb to find its way into structural 

design codes is the result of work presented by Salvadori 
(1955).   

There is one omission in either of the two formulas just 
presented (1), (2). They do not account for the position of the 
load on the y-axis of the cross-section [1]. 

AISC-LRFD [2] proposes a linear transition equation from 
the end of the elastic region to the plastic moment and scales it 
with a constant moment gradient factor, Cb, for all ranges of 
inelastic beam’s slenderness as follows:  
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Fig. 1 Free supporting beams 

 
There are different values for Cb in AISC-LRFD depending 

on the load conditions of the openings. Apart from the load 
cases mentioned in AISC-LRFD [2], there are some other 
cases that the transverse loads act away from the shear center 
axis. For example, top flange loading on a crane runway girder 
and bottom flange loading acting on a monorail can be 
considered in practice [3].  
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Beam supporting freestanding walls as well as temporary, 
or permanent, beam supports of sway free floors, as shown in 
Fig. 1, are subjected to lateral instability.  

Loads on beam top are overturning and thus remarkably 
reducing the capacity. In the following, these cases are 
investigated on carefully selected beam sections with various 
lengths. The cross sections may contain slender webs to 
reduce material costs. Furthermore, webs are assumed plain 
with no stiffeners arranged in order to reduce material and 
labor expenses. 

In this paper, all the studied sections are investigated for 
distributed loading on the center of the top compression 
flange. This loading case is destabilizing with respect to LTB 
phenomenon. 

The selected sections are symmetric of different classes 
including slender elements. The beams are simulated using 
FEA model, including imperfection in the out-of-plane of 
beam bending. 

The purpose of this paper is to investigate the inelastic 
behavior of  LTB for beams loaded on top and built up with 
slender elements.  Taking into consideration the effect of 
lateral imperfections of the laterally free upper flanges, with 
parabolic moment gradient along the beam’s unsupported span 
resulted from distributed loading on center of the top 
compression flange, as to take into consideration factors that 
affect floor beams flexural behavior and strength. 

For this purpose a finite element model based on the 
software package ANSYS [5] is developed for the nonlinear 
inelastic LTB analysis of built up I-beams with different 
slenderness. Then the results are used to investigate the 
accuracy of the LTB equations  given in the AISC-LRFD 
provisions, and to propose a simplified design procedure.  

II.   LITERATURE REVIEW 
A comprehensive literature review was given by 

Mohebkhah [3] covering the advances of  LTB related 
research work.  

The differential equation of the elastic, on top loaded beam 
with distributed forces is given as follows [6]: 
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Where M  is the bending moment, M" represent the loading, 

f is the rotation and vM is the distance from loading line of 
action to the shear center as shown in Fig. 6a.  

As for double symmetric I – Beams the center of gravity 
coincides with the shear center at web mid height. The 
warping constant is  CM = Iy .h2/4, where h is the height of the 
beam. GJ is the torsional rigidity, where ∑= )( 3tbJ . It is 

noticed that the third coefficient includes M" representing the 
distributed load acting vertically on the beam and making the 
mathematical closed solution very complex. The differential 
equation is solved numerically and the solution is simplified 
and is given in [6] as follows:                                        
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  In this equation k is given graphically [6] and includes 

correction factor representing distributed loading on the beam 
acting on top, at the center of gravity or at the bottom. 
Equation (5) is used later in this paper to verify the numerical 
accuracy of the finite element model. 

Extensive laboratory tests and numerical investigations 
have been conducted to study the LTB behavior of steel beams 
by Nethercot et al., Galambos et  al. [1], and Trahair [7]. The 
findings of the above mentioned studies have led to the 
developments of modern steel design codes in different parts 
of the world. 

 Mohebkhah [3] investigated the nonlinear LTB of inelastic 
castellated beams under moment gradient using a 3D finite 
element model and showed that the Cb factors given by AISC-
LRFD for the inelastic castellated beams are higher than those 
obtained using the finite element approach. He  also 
investigated the effects of unbraced length and central off-
shear center loading [4] (located at center, top flange and 
bottom flange) on the moment gradient factor in inelastic 
behavioral zone.  

Grondin and Cheng [8] investigated side sway web 
buckling of steel beams of laterally supported compression 
flange numerically and experimentally, including residual 
stresses and initial imperfection to the numerical model. 

  Serna et al. [9] proposed a general closed-form 
expression for determining the equivalent uniform moment 
factor for any moment distribution and end support conditions, 
using both finite element analysis and finite difference 
method. 

Choi et al. [10], [11],  examined inelastic buckling of 
discretely braced I-girders by diaphragm bracings and 
torsional stiffness requirements to attain nominal flexural 
design strengths, incremental nonlinear finite element analyses 
considering the initial imperfections and residual stresses are 
conducted, and the effect of torsional bracing stiffness on 
inelastic lateral torsional buckling was evaluated. They 
performed series of experimental test results on the inelastic 
buckling of torsionally braced I-girder system under uniform 
bending.  

Nguyen et al. [12], [13], presented an analytical solution, as 
well as FE-analysis for LTB strength and stiffness 
requirements of I-girders with discrete torsional bracings 
under a uniform bending condition. 

III. ASSUMPTIONS AND STUDIED CASES 
- The material is considered to be idealized perfect elasto-

plastic  steel. 
-  The load is acting equally distributed along the top flange. 
-  The beam is laterally supported only at the ends. 
-  Flange warping at supports is free. 
-  Load imperfection is consideredout of web plane.  
The considerations of section selections are: 
-  Sections are widely used in practice. 
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- Structural element (eg. Web, flanges) dimensions conform 
to available plate sizes. 

- Economical thin web thickness is selected. 
The selected section dimensions (mm) are given in Table I. 
The beam lengths are varied such that the lateral flange 

slenderness covers the practical range: Lb/rT = 30 – 240. 
 

TABLE  I 
SELECTED SECTIONS 

Type Web Height Web 
Thick. 

Flange Br. Flange 
Thick. 

A 300 5 200 14 
B 500 5 200 10 
C 660 5 200 10 

IV. FINITE ELEMENT ANALYSIS 

A. Finite Element Modeling: 
The nonlinear computations are performed using the Finite 

Element Software package [5]. A total of 48 models are 
simulated for non-linear inelastic static loading for the three 
selected sections, covering various beam lengths and 
imperfection values. Both geometric and material 
nonlinearities are considered in a model. Four side shell 
elements SHELL 181 are used to model the web, flange (top 
and bottom) and the end stiffeners. This element considers 
inelastic big strains with six degrees of freedom at each of its 
four corners. Flanges and webs are `modeled with about 
4cmx4cm divisions, not exceeding aspect ratio of 1:2.  

Stiffener plates are used to void the reaction force 
concentration and local buckling at the beam-ends. 
Nevertheless, the supporting at each ending is arranged to 
facilitate the reaction forces gradual transition to the web as 
shown in Fig. 2. Lateral supports are arranged only at supports 
providing warping free beam flanges. The supports at the four 
corners of the beam web are warping-free.  

 

 
Fig. 2 Model restraints 

 
The steel is modeled as bilinear isotropic material of 

modulus of elasticity E=210,000 Mpa till the end of elastic 
behavior, and E=zero Mpa at the strain hardening zone. 

Poissons ratio was set to 0.3. Nominal yield stress Fy value 
was specified to be 360 Mpa as typically used for built-up 
sections. 

The iteration procedure selected is the Newton-Raphson 
method capable of capturing local buckling. Big system 
deformations are enabled until failure takes place using Von-
Mises criteria. 

B. Loading of the Model: 
Distributed load is applied on the model at the top of the 

web. The load is increased each step increment until it reaches 
the value of the ultimate load. 

Load imperfections are replaced by small value opposite 
disturbing horizontal distributed loads applied at upper and 
lower flanges, as shown in Fig. 3. The value of this disturbing 
force: 

h
ePPH ×= , where h is the beam height.  

The geometric Thus, vertical load is considered to be 
eccentric loading with respect to the beam centerline by the 
imperfection value e. 

 

Fig. 3 Loading System 

C. Validation of the Finite Element Model: 
In order to check accuracy of the finite element solution 

procedure a comparison is made with the respective results 
given in [6]. The beam is considered elastic. The Eigen-Value 
is determined numerically using the Block-Lanczos [5] 
method. The results are plotted and directly compared to chart 
[6] relating distributed load position, elastic flexural and 
torsional rigity, along with the beam length and web height: 
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Then the χ value for each case is compared to the factor k 
described in (5) as shown in Fig. 4 .  

The section type A is used to evaluate critical loads for χ 
values from near zero until 0.25, which is equivalent to (Lb/rT) 
– values from very big (about 400) until 30 respectively. The 
results are plotted and directly compared to chart .   

Good agreement is noticed for χ less than 0.17.  At high χ-
values beam length become smaller and the system may 
locally suffer pre-failure due to very high vertical loads. For χ-
values less than 0.01, the beam lengths become extremely long 
and is considered out of the practical range of the lengths used 
in floor beams. The reference curve [6] provided in Fig. 4 is 
for loaded top flange. This loading case reduces the flexural 
resistance of the beam. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 Comparison with [6] 
 

Hence, it is evident that the FEM results remain in 
acceptable accuracy under the (Lb/rT) value range covered by 
the FEA procedure. Further from this point, FEA is carried out 
as non-linear inelastic static loading with big deformation to 
investigate the inelastic behavior of the models for the three 
selected sections. 
 

 
 

 
 
 
 
 
 
 

 
 
 

Fig. 5 Excessive Deformations (Post Buckling) 

V.  CHARACTERISTICS OF NUMERICAL ANALYSIS 

 
                   Fig. 6a Section Rotation 

 

 Fig. 6e 
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The geometrical non-linear inelastic analysis of the model 
allows for equilibrium under big deformation.  It also 
considers inelastic big strain values. The system may undergo 
high inelastic deformations and can still accept load increase. 
The numerically obtained ultimate load may be associated 
with unrealistic large beam distortions. 

For example, the deformed shape shown in Fig. 5 is for 
beam of section type A at (Lb/rT ) value of 220 (L=1216.6 cm). 
It reached inelastic big strain that cannot be considered as a 
realistic ultimate load, the ultimate load is rather investigated 
related to the elastic LTB load, and the means of realistic 
deformations.   

Therefore, for each individual case, every load step was 
inspected to determine the actual ultimate buckling load.  

Spread of yield, excessive stresses and/or deformations, 
web crippling at mid span below the upper flange, local web 
shear buckling near supports, and local flange buckling are all  
potential  factors affecting  the ultimate lateral buckling load. 

The (rT ) values of the selected three sections are around 
5cm, hence a constant value section slenderness ratio (Lb/rT) 
indicate beam lengths that are approximately the same. 

Example load-deflection curves are given in  Fig. 6 (d-e): 
the positive lateral (horizontal) deflection at upper flange as 
well as the negative vertical deflection of the lower one are 
plotted with respect to load as in Fig. 6b. 

At (Lb/rT )=80 (L~400cm) - that according to [2] is 
considered inside the inelastic range of the beam resistance - 
sections Type A and Type B failure is characterized by sudden 
failure that doesn’t exceed the value of the critical buckling 
load of the beam buckling load. The lateral displacement of 
the compression flange (UY) at failure for Type B is slightly 
greater than that of Type A as shown in Fig. 6c and 6d. 

For Type C – that contains slender web – the ultimate load 
exceeded the value of the elastic beam buckling load with 
excessive lateral deformations as shown in Fig. 6e (Post 
Buckling Behavior). 

The value of the vertical displacement at failure decreases 
with the section type: A, B and C respectively. The vertical 
displacement behavior remains almost linear with the loading 
increment progression on the beam for all section types. 

It should be noted that in all three cases the ultimate load is 
preceded by big loss of system lateral rigidity ranging from 
75% to 95%. This is a strong indication of “The Initial 
Failure” due to big loss of lateral rigidity. 

For higher Lb/rT values, the overall lateral deformations at 
failure are greater than those reached at lower Lb/rT values to 
each section of the same type. At failure the members 
exceeded the elastic critical buckling load by very small 
values only for section Types B and C . 

For Lb/rT values that are less than 60 – that are resident in 
plastic zone of the flexural resistance according to [2] – the 
failure was observed due to shear buckling of the web near 
support for Type A section. 

Crippling of the web plate for Type C is also observed as 
shown in Fig. 7. Thus, FEA results below Lb/rT =60 are 
excluded as they could not be considered representing lateral 

buckling failure. Examples given in Fig. 6 (c-e) are evaluated 
considering imperfection L/10000. This value is selected as 
the ultimate lateral buckling load drops drastically at very 
small imperfection.  

The imperfection sensitivity is checked for the section Type 
A at Lb/rT=80 (L=442.4 cm) and its variation is shown in Fig. 
8.  

For the comparison values shown in Fig. 8, the imperfection 
value of L/1000 is considered to represent a reasonable value. 
It gives an acceptable “lower bound” of the ultimate load. For 
the rest of the analysis both L/1000 and L/10000 imperfection 
values are investigated for all the selected sections. 

 

 
 

TABLE II 
SECTIONS CLASES 

Section 
Type Web class Flange Class 

AISC-LRFD 
[2] 

Subjection 
Clause 

A Compact Non-compact (F3) 
B Non-compact Slender (F4) 
C Non-compact Slender (F4) 

 

Web Crippling 
(Type C) 

Shear Local Buckling 

Fig. 7 Crippling and shear local buckling
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VI. ANALYTICAL SOLUTION 

A. Comparison of FEA VS  AISC-LRFD [2]: 
For each Section Type selected, classes are determined 

according to Table B4.1 of the AISC-LRFD provisions [2], as 
shown in Table II. 

In addition to steel material attributes used in finite element 
analysis, the flexural resistance of the beams was calculated 
using Cb value of 1.136 determined for the parabolic gradient 
moment of the studied case according to (F1-1) in [2]. 

Each ultimate load value determined by the finite element 
analysis is converted to the corresponding ultimate bending 
moment at mid-span, and then divided by the plastic moment 
of each section. The normalized ratio (Mn/Mp) represents the 
section flexural capacity. 

All the investigated sections developed a flexural strength 
that is mainly less than the code provisions of the AISC-LRFD 
[2] as shown in Fig. (9-11). This is also noted for the elastic 
buckling moment ratio for the same cases. 

In Type A section – as shown in Fig. 9 – the imperfection of 
e = L/10000 represented by the eccentric loading is almost 
congruent to the elastic buckling curve at the inelastic range. 

 

 
Fig. 9 Flexural Resistance of Type A section 

 

 
        Fig. 10 Flexural Resistance of Type B section 

 
 

 
Fig. 11 Flexural Resistance of Type C section 

 
For imperfection e = L/1000, the difference between the 

nonlinear inelastic capacity and the elastic buckling moment 
tends to increase at the beginning of the inelastic range and at 
higher Lb/rT values. The results of all the performed nonlinear 
inelastic analysis is upper bounded by the elastic buckling 
moment values. 

In Type B section – as shown in Fig. 11 – the smaller 
imperfection coincides with the elastic buckling moment curve 
at higher and lower Lb/rT values with slight rise at range of 
Lb/rT=100~170. The values of the larger imperfection flexural 
capacity is congruent to the elastic buckling curve at higher 
Lb/rT values then begins to drop for Lb/rT < 100.  

In Type C section – as shown in Fig. 12 – the section 
behaves typically as section Type B except that the 
imperfection of e = L/10000 raises the flexural resistance 
above the elastic buckling moment resistance for Lb/rT <170. 
The post buckling phenomena explains this increase. 

B. FE-Ultimate Moment with Respect to Nominal Moment 
[2]:  

Now we can investigate the analytical solution given by the  
code provisions with respect to accurate behavior of the beams 
determined by FE analysis. Hence, a procedure is developed to 
compare the results by means of determining the Finite 

Fig. 8 Imperfection sensitivity 
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Element Ultimate Moment of the selected sections with 
respect to the assumptions used in the analysis. 

MFE/Mn ratios – with respect to AISC-LRFD [2] - are 
developed for the three sections, for imperfection of 
e=L/10000 as shown in Fig. 13a, as well as for imperfection 
e=L/1000 as shown in Fig. 13b.  

The values MFE/Mn are more homogenous for the smaller 
imperfection value of L/10000, as shown in Fig. 13a. The 
values are approximately equivalent at the range of 
Lb/rT=120~220 with a mean value of 0.78 for this range. The 
minimum MFE/Mn – ratio occurred at Lb/rT=100, that is 
considered at the end of the inelastic range of the flexural 
resistance for the three sections according to AISC-LRFD [2]. 

The bigger imperfection of L/1000 resulted in a general 
reduction and less homogeneity in safety ratios than those of 
the smaller imperfection. The range of homogeneity remains 
between Lb/rT=120 and Lb/rT=220 with a mean value of 0.68 
for this range. 

MFE/Mn – ratios decrease with section type for  Lb/rT <120, 
and vice versa at Lb/rT >220 out of the above mentioned Lb/rT 
range. The factors of safety shows a rise out of the mentioned 
range for the smaller imperfection L/10000. 

 

   
 

 
  

    
 

VII. DISCUSSION OF RESULTS 
The section classes provided by the clause B.4 [2] shows 

that for a built-up section, the section class is never considered 
as compact for flexure about strong axis as its compact limit is 

not available. The section classes for all the selected sections 
are governed by the flange slenderness according to case 4 of  
Table B4.1 [2]. 

The non-compact limit of flange slenderness contains 
reduction factor Kc [2] that is a function of the web 
slenderness. Where: 

 

)/(
4

ww
C th

k =                                                             (7) 

 
The value of Kc is limited in range between 0.35 and 0.76 

[2]. Thus, the web slenderness has a significant effect on the 
flange class. Hence, the nominal flexural resistance of built–
up is affected by the web slenderness value according to the 
AISC-LRFD [2] provisions. 

The comparison of the FEA results to the AISC-LRFD [2] 
provisions showed that the elastic buckling moment ratios are 
less than the nominal moment determined using the subjection 
clauses of (F3) [2] and (F4) [2] for the selected sections in this 
study. Moreover, the nonlinear inelastic capacities of sections 
of types B and C exceeded the elastic buckling moment 
increasingly for lower Lb/rT.  This phenomena is due to the 
post buckling behavior. This excessive resistance occurred for 
beams with imperfection of L/10000. Meanwhile, the 
imperfection of L/1000 resulted in less flexural capacity than 
the elastic buckling moment for all sections. 

By examining the determined ultimate moment values Fig. 
9 – 11  along with lateral and vertical deformations Fig. 6. 
Section Type C developed a flexural capacity that exceeds the 
elastic buckling moment values for small imperfection value 
of  L/10000 at lower Lb/rT values. This increase could possibly 
be due to post buckling behavior and should be investigated 
extensively in future. Even though the Type B section has the 
same element class as section Type C, it didn’t develop the 
same load-displacement behavior beyond the elastic buckling 
limit.  

The nonlinear inelastic resistance values - along with the 
elastic buckling moment ratio - is generally less than the 
AISC-LRFD [2] provisions nominal resistance. This may be 
explained by the following reasons: 
1)   The existence of shear stresses in web increases the web 

instability, and hence it’s ability to support the flange 
against Lateral-torsional buckling failure. Some cases for 
very low Lb/rT values are excluded from the analysis due 
to shear buckling as in  Fig. 7. The Beams are not 
considered sufficiently stiffened transversely along the 
whole span according to the traditional assembly of built-
up floor beams/ distributors. 

2) The load is applied on the top flange, which is a 
destabilizing load for the cases studied [3] [6]. 

3)  It is agreed that geometric imperfections included in 
inelastic nonlinear analysis decreases the resistance than 
that determined by the elastic buckling analysis especially 
in inelastic zone. Lateral-tortional inelastic buckling is 
found to be very sensitive to geometrical imperfections. 
Although the value of ultimate moment exceeded the 

Fig. 13a MFE/Mn – Ratios for e=L/10000 
FEA Results 

Fig. 13b MFE/Mn – Ratios for e=L/1000 
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elastic buckling at some cases, but they remained under 
the values determined by the AISC-LRFD [2] provisions. 

The existence of shear stresses in web may be considered as 
the most dominant for the reasons mentioned, as the beam 
resistance for different moment gradient distributions is 
mainly related to the pure bending case of constant moment 
along the unsupported length. Meanwhile, the pure bending 
case does not contribute shear forces/stresses on the beam 
section. The effect of shear is effective for the inelastic range 
approximately at Lb/rT =60~120 for the selected sections, as 
short lengths are characterized by high values of loading. The 
increase in loading for short lengths causes more instability for 
slender webs for Types B & C, in addition to the large cross-
sectional area of the web compared to Type A section. 

 

VIII.     PROPOSAL FOR CODE UPDATES AND 
RECOMMENDATIONS 

Recommendations for future code updates shall be based 
upon the results of the smaller imperfection of  L/1000 as a 
conservative selection for the beam flexural resistance.  

The results of inelastic zone shall  be selected for 
calibration of the nominal flexural resistance curve of the 
AISC-LRFD [2] provisions. This is due to the fact that the 
results provided by this study start approximately at the 
inelastic zones for the selected sections [2]. 

Several trials indicated that just a minor modification to the 
dominating flexural provisions of AISC-LRFD [2] - by using 
the Kc [2] factor - could be introduced to take account for 
loading on top flange, section class as well as for geometric 
imperfection as follows: 

1) For Type A section: 
Eqn. (F2-2) in [2], to become: 
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Eqn. (F2-4) in [2], to become: 
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2) For Type B & C sections:  
Eqn. (F4-2) in [2], to become: 
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Eqn. (F4-5) in [2], to become: 
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The efficiency of the proposed modification with respect to 
the flexural capacities using the same algorithm of the AISC-
LRFD [2] is shown in Fig. 14 (a, b).  

 

 
 

 

 

 
The comparison shows improved MFE /Mn - ratio for the 

studied slender sections of types B & C, that increases with 
higher Lb/rT values most likely to be used with their depths. 
For Type A section, the ratio drops under 1 at approximately 
Lb/rT=220 that is considered the end of the practical range of 
the study. Further more, non-compact sections of Type A 
section have the smallest height and thus are not likely to be 
used with long beams. 

The proposed modifications could be used under the 
following conditions: 
1) The Lb/rT range of application shall be between 60 and 

220, such that the web height remains in the practical 
range of usage. As for beams in Lb/rT < 60 deep beam 
theory may be sounder to be used in addition to careful 
investigation of shear- and/or local buckling phenomenae 
as in Fig. 7. 

2)  In case no adequate- and/or enough rigid lateral 
supporting of the compression upper flange. The designer 
should determine the out-of-plane supporting condition of 
the beam compression flange.  

      The following recommendations could be made: 

Fig. 14b MFE/Mn – Ratios of the proposal. 
According to (8) to (11)  

Fig. 14a Proposal compared to L/1000 FEA Results 
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1) Residual stresses, and their effect on the beam flexural 
capacity should be accounted for. Further capacity 
reduction is expected. 

2) Post-buckling behavior of lateral-torsional buckling, 
especially for slender sections, should be investigated. 

3) Local-, shear- buckling and/or crippling are crucial  in 
short beams. Their interaction should be investigated.  

4) Loading positions, with different moment gradients along 
the unsupported length, need more investigations as the 
analytical solution may differ from case to another. 

IX.  CONCLUSIONS 
Investigated beams are loaded on top and considered 

laterally unsupported. They have built up sections with 
economical thin webs. The top loading in addition to a very 
small lateral imperfection L/10000 reduced the ultimate load 
remarkably. A lateral imperfection of L/1000 is conservatively 
selected to obtain ultimate loads that are under the upper 
bound for the ultimate load (The elastic critical buckling load). 
Nevertheless, the beams behaved differently with respect to 
the flange lateral slenderness Lb / rT:  

As for small slenderness, different failure types are found: 
Local- and/or web shear buckling, web crippling under 
vertical load side by side with lateral buckling failure are 
determined. These failure types are associated with large local 
and/or lateral deformations. Such short beams should be 
carefully checked for all possible failure cases.  

Beams with medium values of slenderness Lb/rT=60-120 
failed mainly due to lateral instability associated with 
reasonable global deformations. Their corresponding ultimate 
load is remarkably reduced by up to 40% compared to code 
provisions. This reduction could be accounted for by 
introducing a simplified factor in the related code provisions 
of the AISC-LRFD [2], which is valid for similar cases in the 
given slenderness range and is proven to be accurate enough. 

Very long beams failed in case of L/10000 imperfection due 
to excessive big deformations. Failure loads exceeded the 
Elastic Euler Buckling Load and post buckling failure type 
dominated. Prior to the failure stage, a huge reduction in the 
lateral system rigidity is yet noted near the elastic buckling 
load (up to 90%). This may be called “The Initial Failure” due 
to lateral buckling. This initial failure load should always be 
considered to determine a reasonable ultimate load. 
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