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Abstract—In most rule-induction algorithms, the only operator 

used against nominal attributes is the equality operator =. In this 

paper, we first propose the use of the inequality operator, , in 

addition to the equality operator, to increase the expressiveness of 

induced rules. Then, we present a new method, Binary Coding,

which can be used along with an arbitrary rule-induction algorithm to 

make use of the inequality operator without any need to change the 

algorithm. Experimental results suggest that the Binary Coding 

method is promising enough for further investigation, especially in 

cases where the minimum number of rules is desirable.   

Keywords—Data mining, Inequality operator, Number of rules, 

Rule-induction.

I. INTRODUCTION

N general, a rule induction algorithm operates on a given 

dataset and generates a model based on a set of rules. One 

of the main types of attributes in such datasets is the nominal

type. The value of a nominal attribute is usually a value in a 

predefined and finite set of discrete values. For example, in an 

application, we may define Color as an attribute which can 

only be Red, Green, or Blue. Other examples of nominal 

attributes include the Family, Product-type, Steel, and 

Formability in the Annealing dataset, all the attributes in the 

Car Evaluation, and all the attributes in the Vote datasets, 

which can all be found in the UCI Data Repository [1], at 

http://www.ics.uci.edu/~mlearn/MLRepository.html.

For the purpose of this paper, we introduce two types of 

nominal attributes. By a binary nominal attribute, or for short 

a binary attribute, we mean a nominal attribute which only has 

two possible values; e.g. Gender, which can only be Male or 

Female. On the other hand, by a multi-value nominal attribute, 

or for short a multi-value attribute, we mean an attribute 

which has more than two possible values. For example, if 

Color can be Red, Green, or Blue, then it will be a multi-value 

attribute.  

Most well-known rule-induction algorithms only use the 

equality operator, =, against multi-value attributes [2]-[5]. In 

this paper, we propose the use of the inequality operator, , in 

addition to the equality operator, against multi-value 

attributes. We first explain how this would increase the 
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expressiveness of the induced rules, thereby giving the 

potential for reducing the number of rules. Obviously, a 

possible way to include the inequality operator in a rule-

induction algorithm is to modify the algorithm. This would be 

desirable with respect to flexibility, i.e. the way the inequality 

operator is handled within the algorithm is completely under 

control and can be customized for that specific algorithm. 

However, in most cases, it would not be possible, or at least 

not desirable, to do so; e.g. the user of the algorithm might not 

be a computer programmer, or there might not be access to the 

code of the algorithm. To overcome this issue, in this paper 

we also present a new method called Binary Coding, which 

allows for a rule-induction algorithm to make use of the 

inequality operator, without any need to modify the algorithm.   

The rest of the paper is organized as follows. Section II 

describes how the use of the inequality operator against multi-

value attributes allows for more expressive rules. In  

Section III, we outline possible approaches to make use of the 

inequality operator. We describe the Binary Coding method in 

Section IV. Experimental Results are presented in Section V. 

Section VI summarizes the paper.    

II. MORE EXPRESSIVENESS BY INEQUALITY OPERATOR

Let a be a multi-value attribute with n possible values of v1,

v2, …, vn. The reason why the use of the inequality operator 

allows for higher expressiveness of rules is that (i) a single 

test a vi, 1 i n, is equivalent to the disjunction of n-1 test 

of

a = vj, where j i and 1 j n, i.e.:

)()(
1

j

ij
nj

i vava

and (ii) the condition part of rules are normally conjunctions, 

as opposed to disjunctions, of tests; i.e. disjunctions must be 

represented by several rules. To clarify this, consider the 
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TABLE I

A SAMPLE DATASET

Theory Project Gender Result 

High Good F Pass 

Low Good M Fail

High Bad M Fail

Low Bad F Fail

High Good M Pass 

Med Good M Pass 

High Bad F Fail

Med Bad F Fail
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dataset shown in Table I. 

In this dataset, there are three attributes: Theory, Project, 

and Gender. Project and Gender are both binary because each 

of them has only two possible values: Good and Bad for 

Project, and Female (F) and Male (M) for Gender. On the 

other hand, Theory is a multi-value attribute because it has 

three possible values: High, Medium (Med.), and Low.  

The following ruleset, R, has been derived by applying ID3 

[6] to this dataset: 

1. IF Project=Good AND Theory=High  Pass 

2. IF Project=Good AND Theory=Mid  Pass 

3. IF Project=Good AND Theory=Low  Fail

4. IF Project=Bad  Fail 

Using the  operator, it is possible to obtain the following 

ruleset, say R , which has fewer rules (3 instead of 4) and 

fewer tests (5 instead of 7): 

1. IF Project=Good AND Theory  Low  Pass 

2. IF Project=Good AND Theory=Low  Fail

3. IF Project=Bad  Fail 

It is easy to see that R  is equivalent to R (rules 1 and 2 in R

are reduced to rule 1 in R ). In other words the use of the 

operator in the first rule of R  has increased its expressive 

power such that it is now equivalent to the first two rules in 

the ruleset R.

In the general case, let a1, a2, …, an be n distinct multi-value 

attributes with, respectively, m1, m2, …, mn nominal values. If 

a rule consists of k1 tests with ‘ ’ against attribute a1, k2 tests

with ‘ ’ against attribute a2, …, and kn tests with ‘ ’ against 

attribute an, then it will be equivalent to )(
1

ii

n

i

km rules in 

which only ‘=’ has been used against the attributes a1, a2, …, 

an. In the case of the first rule in R , for instance, we have 

n=1, m1=3, and k1=1. So the rule is equivalent to 2 rules with 

‘=’ operator, i.e. the first two rules in R.

III. HOW TO INDUCE RULES WITH INEQULITY OPERATOR

Let us use R  to denote a ruleset in which the inequality 

operator, , is allowed, and keep R to denote a ruleset with 

the ordinary syntax. In general, a rule-induction algorithm, A,

operates on a given dataset D and generates a ruleset R as in 

Fig. 1. 

Fig. 1. A Generic Rule-induction Algorithm 

In order to obtain a ruleset R , there are several possibilities, 

which include: 

--Extend the algorithm A to A  such that A  considers  as a 

possible operator, in addition to =, against multi-value 

attributes (Fig. 2).  

Fig. 2. Algorithm A  is an Extension of Algorithm A 

--Devise a transformer algorithm that converts R to R ,

independently from the underlying algorithm A (Fig. 

3). In other words, the original algorithm A is used as 

usual to generate R, and then a transformer algorithm 

converts R to R , irrespective from A.

Fig. 3. Use a Transformer Algorithm to Convert R to R .

--Use the method of Binary Coding described in the 

next section. 

The advantage of the first approach is that the way the 

inequality operator is used in an algorithm is entirely under 

the control and can be customized for that algorithm to 

achieve more desirable results. C4.5, for instance, is a sort of 

algorithms which has followed this approach [7]. Although it 

does not explicitly generate rules with the inequality 

operators, it uses the belong to operator, when run with –s 

switch, which is implicitly equivalent to using the inequality 

operator. However, the disadvantage with the first approach is 

that it has to be done for each individual algorithm separately. 

The second approach, on the other hand, works independently 

from the underlying algorithm. In other words, if a 

transformer algorithm is devised to convert a ruleset R to an 

equivalent ruleset R , then it will not be restricted to specific 

algorithms. However, no such algorithm has been proposed 

yet.

The method of Binary Coding, which is described in detail 

in the next section, has the advantage of the second approach, 

i.e. it is a generic method independent from the underlying 

algorithm. Moreover it is simple. 

IV. THE METHOD OF BINARY CODING

The method of Binary Coding (Fig. 4) adds two modules to 

a rule-induction system: (1) a pre processor called Binary 

Encoder and (2) a post processor called Binary Decoder.

These two modules are co-related but entirely independent 

from the underlying rule-induction algorithm. Therefore, this 
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approach is a generic approach which may be applied to an 

arbitrary rule-induction algorithm. 

   

Fig. 4. The Binary Coding Method. 

The Binary Encoder and the Binary Decoder are described 

below: 

A. Binary Encoder  

The Binary Encoder is used to encode the dataset D into 

another dataset Db in the following way. Let a be a multi-

value attribute with k possible values v1,...,vk. Then in Db, a is 

replaced by k binary attributes a1,...,ak, such that for each 

sample x, the value of ai will be 1 if and only if the value of a

for x in D is vi. Note that for each sample in Db, at most, one 

of the attributes a1, a2, ..., ak can be 1, because a in D cannot 

have more than one value for each sample. If the value of a is 

missing, then the value of every ai will also be considered as 

missing. We will call Db a binary dataset because it is a 

dataset with no multi-value attribute. 

The Binary Encoder module can be represented by the 

following algorithm: 

B. Binary Decoder  

Let a be a multi value attribute in D with k possible values 

v1, v2,...,vk which has been replaced with k binary attributes a1,

a2, ..ak in Db. As the rule-induction algorithm operates on Db,

as opposed to D (Fig. 4), the resulting ruleset Rb would be 

expressed in terms of attributes a1, a2, ..ak, as opposed to 

attribute a. However, since the original dataset D is based on 

attribute a, and not attributes a1, a2, ..ak, it is desirable to 

convert each test based on ai to the equivalent test based on 

the original attribute a. This conversion is the duty of the 

Binary Decoder module. 

Let aj=b, where b is either 0 or 1, be a test used in a rule in 

the ruleset Rb. This test evaluates to true if and only if: 

b=1 and the value of the original attribute a is vj, or

b=0 and the value of the original attribute is anything other   

than vj.

In other words, the test aj=b can be replaced with a=vi

when b=1 and with a vj when b=0. 

The Binary Decoder module can be represented by the 

following algorithm: 

V. EXPERIMENTAL RESULTS

In order to test the Binary Coding method we applied it to 

the TDIDT(entropy), Prism (standard), and J-Rule algorithms, 

using the Inducer software [8], [9]. All of the datasets are 

selected from the UCI repository [1]. 

The results of the experiments are shown in Table II. The 

first column shows the underlying dataset. The second column 

indicates the total number of classes in the datasets. The third 

column includes the number of attributes (binary, multi-value, 

and continuous, respectively). The last three columns show 

the results for TDIDT, Prism, and J-Rule algorithms, 

respectively. The experiments are based on the 10-fold test 

[9]. For each dataset for each algorithm, there are two sets of 

figures: the figures at the top are the result without using 

Binary Coding, and the ones at the bottom are the results 

when it has been used. For each set of data, there are three 

values. The first value is the average number of rules, the 

second value (inside parentheses) is the average number of 

tests per rule, and the last value is the average correct 

percentage. The correct percentage is the ratio of the number 

of samples for which the resulting ruleset provides the right 

class to the total number of samples.  

As indicated in Table II, the Binary Coding method has 

improved considerably the TDIDT output for most of the 

cases. For Prism and J-rule, the improvement in the number of 

rules is roughly within 10% for about 66% of the cases. 

Among the other 34%, considerable improvements can be 

seen for the Nursery (about 50%) and Car Evaluation datasets 

(about 40%). In most of the cases, the correct percentage has 

not been affected considerably. However, in majority of cases, 
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Algorithm Binary_Encoder 

Db:=D 

For each multi-value attribute a in D with k possible values   

v1,v2,..,vk do 

   Replace attribute a in Db with k binary attributes a1, a2, .., ak.

      For each sample x do 

         If value of a in D is missing then  

           set the value of each ai, 1 i k, in Db as missing  

         Else 

           Let the value of a be vi, 1 i k

           set the value of ai in Db as 1  

           set the value of aj , j i, in Db as 0 

End.

Algorithm Binary_Decoder 

R :=Rb

For each multi-value attribute a in D with k possible values v1,v2,..,vk

which correspond respectively to attributes a1,a2,…,ak in Db do 

    For each rule r in R  do

        replace each test (ai=1) in r with (a=vi)

        replace each test (ai=0) in r with (a vi)

End. 
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it has slightly been improved by Binary Coding.  

VI. CONCLUSION

In this paper, we firstly showed how the use of the 

inequality operator ‘ ’, in addition to the equality operator, 

could result in higher expressiveness of rules induced by rule-

induction algorithms. We then introduced three possibilities to 

use the inequality operator. One of these possibilities is the 

Binary Coding method, which simply adds to a rule-induction 

system two extra layers of pre processing and post processing 

without actual changing the underlying rule-induction 

algorithm itself. This brings the remarkable advantage that we 

do not need to change the underlying rule-induction algorithm 

in order to make use of the inequality operator. In other 

words, the method of Binary Coding operates independently 

from the underlying rule-induction algorithm. 

One of the main possibilities for future work could be to 

investigate the characteristics of datasets on which the Binary 

Coding method performs well; in other word to find the class 

of datasets where Binary Coding could be advantageous. 

Another possible work could be to extend the use of the 

inequality operator to continuous attributes in order to 

increase the likelihood of achieving fewer and more 

expressive rules.   
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TABLE II

EXPERIMENTAL RESULTS

Problem Num. of  

Classes 

Num. of  

Bin.,Mult.,Cont. 

Attributes

TDTIDT Prism J-Rule 

Annealing 6 19,13,6 63.7 (4.97) 95.36 

26.4 (5.82) 99.37 

104.0 (3.05) 91.35 

62.4 (2.46) 97.37 

43.5 (3.12) 93.98 

32.3 (2.93) 96.61 

Car Evaluation 4 0,6,0 267.4(5.46) 88.88 

83.3(9.68) 98.66

217.1(5.30) 89.23 

132.3 (5.38) 93.80 

149.1(4.78) 90.33 

85.2 (4.75) 92.7 

Chess 2 3,4,0 20.0 (5.25) 99.37 

9.9 (4.76) 99.84

15.1 (3.12) 99.84 

9.8 (3.14) 99.84 

7.9 (4.27) 99.37 

5.9 (4.06) 99.37 

Contraceptive Method Choice 3 3,4,2 664.7 (6.11) 46.57 

605.7 (8.05) 47.85 

678.7 (4.21) 42.97 

666.9 (4.37) 42.62 

404.4 (4.23) 44.46

398.8 (4.44) 44.87

Contact Lenses 3 2,3,0 16.0 (3.8) 92.54

11.9 (4.64) 94.36 

14.4 (3.09) 86.0 

12.5 (3.18) 87.81 

8.6 (3.36) 88.72 

7.4 (3.25) 92.54 

Credit Screening 2 4,5,6 129.0(4.68) 78.84 

79.0 (6.55) 82.46 

151.3 (2.65) 76.52 

151.1 (2.63) 76.23 

75.3 (2.51) 80.0 

74.1 (2.54) 80.28 

Dermatology 6 1,32,1 43.5(4.10) 91.53

18.9(5.74) 93.99

55.5 (2.14) 84.93 

52.3 (2.17) 86.85 

31.4 (2.02) 87.15 

30.5 (2.02) 86.88 

Solar Flare 2- class 1 9 5,5,0 180.5 (5.00) 78.79 

170.6 (9.13) 79.54 

152.2 (5.70) 75.61 

149.8 (11.86) 75.98 

37.3 (4.17) 79.26 

37.2 (5.93) 79.17 

Solar Flare 2- class 2 7 5,5,0 95.5 (4.52) 94.27 

75.8 (7.67) 95.58 

77.5 (4.07) 94.65 

72.5 (7.83) 94.65 

9.8 (3.39) 95.31 

9.8 (3.39) 95.31 

Solar Flare 2- class 3 3 5,5,0 18.1 (3.37) 99.43 

13.7 (4.76) 99.34 

22.6 (2.26) 99.24 

21.1 (3.73) 99.24 

3.7 (3.94) 99.24 

3.7 (7.83) 99.24 

Labor relations 2 3,5,8 4.8 (2.06) 85.0

4.6 (2.10) 82.5

7.7 (1.19) 80.0  

7.5 (1.18) 77.5 

5.0 (1.18) 85.0 

4.8 (1.16) 85.0 

Monk 1st 2 2,4,0 38.2 (3.86) 83.91 

17.7 (6.06) 91.85 

25.0 (2.96) 73.33 

18.7 (2.90) 82.24 

14.0 (2.67) 87.56 

10.7 (2.68) 90.96 

Monk 2nd 2 2,4,0 87.7 (4.69) 43.82 

56.8 (6.90) 73.97 

67.9 (3.83) 54.41 

60.0 (3.99) 52.57 

37.3 (3.99) 50.18 

32.9 (4.23) 50.14 

Monk 3rd 2 2,4,0 26.5 (3.22) 86.92 

16.6 (5.43) 88.52 

24.8 (2.71) 84.55 

19.2 (2.80) 86.15 

15.2 (2.42) 85.32 

11.9 (2.48) 90.19 

Nursery 5 1,7,0 811.0 (6.61)98.22 

227.6(10.61)99.75 

559.8 (5.42) 97.20 

296.4 (5.41) 98.51 

309.2 (5.33) 98.69

154.6 (5.23) 99.33

Soybean-large 19 16,19,0 83.9 (4.52) 81.15 

45.6 (7.38) 86.64 

73.0 (2.72) 77.86 

72.4 (2.73) 76.25 

45.6 (1.75) 85.68 

45.5 (1.77) 84.39 

Tic-Tac-Toe Endgame 2 0,9,0 190.9 (5.65) 84.45 

71.2 (7.52) 95.09 

46.1 (3.46) 96.66 

42.8 (3.56) 96.24 

23.8 (3.44) 96.65 

22.9 (3.62) 96.65 

Congressional Voting  2 0,16,0 29.2 (4.34) 91.66 

21.4 (5.33) 91.66 

31.7 (2.49) 90.33 

30.0 (2.52) 90.66 

21.6 (2.26) 92.33 

20.1 (2.39) 93.0 
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