
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1043

Abstract—In most rule-induction algorithms, the only operator

used against nominal attributes is the equality operator =. In this

paper, we first propose the use of the inequality operator, , in

addition to the equality operator, to increase the expressiveness of

induced rules. Then, we present a new method, Binary Coding,

which can be used along with an arbitrary rule-induction algorithm to

make use of the inequality operator without any need to change the

algorithm. Experimental results suggest that the Binary Coding

method is promising enough for further investigation, especially in

cases where the minimum number of rules is desirable.

Keywords—Data mining, Inequality operator, Number of rules,

Rule-induction.

I. INTRODUCTION

N general, a rule induction algorithm operates on a given

dataset and generates a model based on a set of rules. One

of the main types of attributes in such datasets is the nominal

type. The value of a nominal attribute is usually a value in a

predefined and finite set of discrete values. For example, in an

application, we may define Color as an attribute which can

only be Red, Green, or Blue. Other examples of nominal

attributes include the Family, Product-type, Steel, and

Formability in the Annealing dataset, all the attributes in the

Car Evaluation, and all the attributes in the Vote datasets,

which can all be found in the UCI Data Repository [1], at

http://www.ics.uci.edu/~mlearn/MLRepository.html.

For the purpose of this paper, we introduce two types of

nominal attributes. By a binary nominal attribute, or for short

a binary attribute, we mean a nominal attribute which only has

two possible values; e.g. Gender, which can only be Male or

Female. On the other hand, by a multi-value nominal attribute,

or for short a multi-value attribute, we mean an attribute

which has more than two possible values. For example, if

Color can be Red, Green, or Blue, then it will be a multi-value

attribute.

Most well-known rule-induction algorithms only use the

equality operator, =, against multi-value attributes [2]-[5]. In

this paper, we propose the use of the inequality operator, , in

addition to the equality operator, against multi-value

attributes. We first explain how this would increase the

S. R. Mousavi is a Ph.D. student in the Computing Department., Imperial

College London, SW7 2BZ UK (phone: +44 (0)20 8740 9377; e-mail:

bsm99@doc.ic.ac.uk).

expressiveness of the induced rules, thereby giving the

potential for reducing the number of rules. Obviously, a

possible way to include the inequality operator in a rule-

induction algorithm is to modify the algorithm. This would be

desirable with respect to flexibility, i.e. the way the inequality

operator is handled within the algorithm is completely under

control and can be customized for that specific algorithm.

However, in most cases, it would not be possible, or at least

not desirable, to do so; e.g. the user of the algorithm might not

be a computer programmer, or there might not be access to the

code of the algorithm. To overcome this issue, in this paper

we also present a new method called Binary Coding, which

allows for a rule-induction algorithm to make use of the

inequality operator, without any need to modify the algorithm.

The rest of the paper is organized as follows. Section II

describes how the use of the inequality operator against multi-

value attributes allows for more expressive rules. In

Section III, we outline possible approaches to make use of the

inequality operator. We describe the Binary Coding method in

Section IV. Experimental Results are presented in Section V.

Section VI summarizes the paper.

II. MORE EXPRESSIVENESS BY INEQUALITY OPERATOR

Let a be a multi-value attribute with n possible values of v1,

v2, …, vn. The reason why the use of the inequality operator

allows for higher expressiveness of rules is that (i) a single

test a vi, 1 i n, is equivalent to the disjunction of n-1 test

of

a = vj, where j i and 1 j n, i.e.:

)()(
1

j

ij
nj

i vava

and (ii) the condition part of rules are normally conjunctions,

as opposed to disjunctions, of tests; i.e. disjunctions must be

represented by several rules. To clarify this, consider the

Induction of Expressive Rules using the Binary

Coding Method

Seyed R Mousavi

I

TABLE I

A SAMPLE DATASET

Theory Project Gender Result

High Good F Pass

Low Good M Fail

High Bad M Fail

Low Bad F Fail

High Good M Pass

Med Good M Pass

High Bad F Fail

Med Bad F Fail

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1044

dataset shown in Table I.

In this dataset, there are three attributes: Theory, Project,

and Gender. Project and Gender are both binary because each

of them has only two possible values: Good and Bad for

Project, and Female (F) and Male (M) for Gender. On the

other hand, Theory is a multi-value attribute because it has

three possible values: High, Medium (Med.), and Low.

The following ruleset, R, has been derived by applying ID3

[6] to this dataset:

1. IF Project=Good AND Theory=High Pass

2. IF Project=Good AND Theory=Mid Pass

3. IF Project=Good AND Theory=Low Fail

4. IF Project=Bad Fail

Using the operator, it is possible to obtain the following

ruleset, say R , which has fewer rules (3 instead of 4) and

fewer tests (5 instead of 7):

1. IF Project=Good AND Theory Low Pass

2. IF Project=Good AND Theory=Low Fail

3. IF Project=Bad Fail

It is easy to see that R is equivalent to R (rules 1 and 2 in R

are reduced to rule 1 in R). In other words the use of the

operator in the first rule of R has increased its expressive

power such that it is now equivalent to the first two rules in

the ruleset R.

In the general case, let a1, a2, …, an be n distinct multi-value

attributes with, respectively, m1, m2, …, mn nominal values. If

a rule consists of k1 tests with ‘ ’ against attribute a1, k2 tests

with ‘ ’ against attribute a2, …, and kn tests with ‘ ’ against

attribute an, then it will be equivalent to)(
1

ii

n

i

km rules in

which only ‘=’ has been used against the attributes a1, a2, …,

an. In the case of the first rule in R , for instance, we have

n=1, m1=3, and k1=1. So the rule is equivalent to 2 rules with

‘=’ operator, i.e. the first two rules in R.

III. HOW TO INDUCE RULES WITH INEQULITY OPERATOR

Let us use R to denote a ruleset in which the inequality

operator, , is allowed, and keep R to denote a ruleset with

the ordinary syntax. In general, a rule-induction algorithm, A,

operates on a given dataset D and generates a ruleset R as in

Fig. 1.

Fig. 1. A Generic Rule-induction Algorithm

In order to obtain a ruleset R , there are several possibilities,

which include:

--Extend the algorithm A to A such that A considers as a

possible operator, in addition to =, against multi-value

attributes (Fig. 2).

Fig. 2. Algorithm A is an Extension of Algorithm A

--Devise a transformer algorithm that converts R to R ,

independently from the underlying algorithm A (Fig.

3). In other words, the original algorithm A is used as

usual to generate R, and then a transformer algorithm

converts R to R , irrespective from A.

Fig. 3. Use a Transformer Algorithm to Convert R to R .

--Use the method of Binary Coding described in the

next section.

The advantage of the first approach is that the way the

inequality operator is used in an algorithm is entirely under

the control and can be customized for that algorithm to

achieve more desirable results. C4.5, for instance, is a sort of

algorithms which has followed this approach [7]. Although it

does not explicitly generate rules with the inequality

operators, it uses the belong to operator, when run with –s

switch, which is implicitly equivalent to using the inequality

operator. However, the disadvantage with the first approach is

that it has to be done for each individual algorithm separately.

The second approach, on the other hand, works independently

from the underlying algorithm. In other words, if a

transformer algorithm is devised to convert a ruleset R to an

equivalent ruleset R , then it will not be restricted to specific

algorithms. However, no such algorithm has been proposed

yet.

The method of Binary Coding, which is described in detail

in the next section, has the advantage of the second approach,

i.e. it is a generic method independent from the underlying

algorithm. Moreover it is simple.

IV. THE METHOD OF BINARY CODING

The method of Binary Coding (Fig. 4) adds two modules to

a rule-induction system: (1) a pre processor called Binary

Encoder and (2) a post processor called Binary Decoder.

These two modules are co-related but entirely independent

from the underlying rule-induction algorithm. Therefore, this

Dataset

 D

Ruleset

R

A rule-induction

algorithm A

Dataset

D

Ruleset

R

A : an extension of A

Dataset

 D

Ruleset

 R

A rule-induction

algorithm A

Ruleset

 R

Transformer

Algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1045

approach is a generic approach which may be applied to an

arbitrary rule-induction algorithm.

Fig. 4. The Binary Coding Method.

The Binary Encoder and the Binary Decoder are described

below:

A. Binary Encoder

The Binary Encoder is used to encode the dataset D into

another dataset Db in the following way. Let a be a multi-

value attribute with k possible values v1,...,vk. Then in Db, a is

replaced by k binary attributes a1,...,ak, such that for each

sample x, the value of ai will be 1 if and only if the value of a

for x in D is vi. Note that for each sample in Db, at most, one

of the attributes a1, a2, ..., ak can be 1, because a in D cannot

have more than one value for each sample. If the value of a is

missing, then the value of every ai will also be considered as

missing. We will call Db a binary dataset because it is a

dataset with no multi-value attribute.

The Binary Encoder module can be represented by the

following algorithm:

B. Binary Decoder

Let a be a multi value attribute in D with k possible values

v1, v2,...,vk which has been replaced with k binary attributes a1,

a2, ..ak in Db. As the rule-induction algorithm operates on Db,

as opposed to D (Fig. 4), the resulting ruleset Rb would be

expressed in terms of attributes a1, a2, ..ak, as opposed to

attribute a. However, since the original dataset D is based on

attribute a, and not attributes a1, a2, ..ak, it is desirable to

convert each test based on ai to the equivalent test based on

the original attribute a. This conversion is the duty of the

Binary Decoder module.

Let aj=b, where b is either 0 or 1, be a test used in a rule in

the ruleset Rb. This test evaluates to true if and only if:

b=1 and the value of the original attribute a is vj, or

b=0 and the value of the original attribute is anything other

than vj.

In other words, the test aj=b can be replaced with a=vi

when b=1 and with a vj when b=0.

The Binary Decoder module can be represented by the

following algorithm:

V. EXPERIMENTAL RESULTS

In order to test the Binary Coding method we applied it to

the TDIDT(entropy), Prism (standard), and J-Rule algorithms,

using the Inducer software [8], [9]. All of the datasets are

selected from the UCI repository [1].

The results of the experiments are shown in Table II. The

first column shows the underlying dataset. The second column

indicates the total number of classes in the datasets. The third

column includes the number of attributes (binary, multi-value,

and continuous, respectively). The last three columns show

the results for TDIDT, Prism, and J-Rule algorithms,

respectively. The experiments are based on the 10-fold test

[9]. For each dataset for each algorithm, there are two sets of

figures: the figures at the top are the result without using

Binary Coding, and the ones at the bottom are the results

when it has been used. For each set of data, there are three

values. The first value is the average number of rules, the

second value (inside parentheses) is the average number of

tests per rule, and the last value is the average correct

percentage. The correct percentage is the ratio of the number

of samples for which the resulting ruleset provides the right

class to the total number of samples.

As indicated in Table II, the Binary Coding method has

improved considerably the TDIDT output for most of the

cases. For Prism and J-rule, the improvement in the number of

rules is roughly within 10% for about 66% of the cases.

Among the other 34%, considerable improvements can be

seen for the Nursery (about 50%) and Car Evaluation datasets

(about 40%). In most of the cases, the correct percentage has

not been affected considerably. However, in majority of cases,

Dataset

D

A rule-induction

algorithm, A

Binary Encoder

Ruleset

Rb

Dataset

Db

Binary Decoder

Ruleset

R

Algorithm Binary_Encoder

Db:=D

For each multi-value attribute a in D with k possible values

v1,v2,..,vk do

 Replace attribute a in Db with k binary attributes a1, a2, .., ak.

 For each sample x do

 If value of a in D is missing then

 set the value of each ai, 1 i k, in Db as missing

 Else

 Let the value of a be vi, 1 i k

 set the value of ai in Db as 1

 set the value of aj , j i, in Db as 0

End.

Algorithm Binary_Decoder

R :=Rb

For each multi-value attribute a in D with k possible values v1,v2,..,vk

which correspond respectively to attributes a1,a2,…,ak in Db do

 For each rule r in R do

 replace each test (ai=1) in r with (a=vi)

 replace each test (ai=0) in r with (a vi)

End.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:4, 2007

1046

it has slightly been improved by Binary Coding.

VI. CONCLUSION

In this paper, we firstly showed how the use of the

inequality operator ‘ ’, in addition to the equality operator,

could result in higher expressiveness of rules induced by rule-

induction algorithms. We then introduced three possibilities to

use the inequality operator. One of these possibilities is the

Binary Coding method, which simply adds to a rule-induction

system two extra layers of pre processing and post processing

without actual changing the underlying rule-induction

algorithm itself. This brings the remarkable advantage that we

do not need to change the underlying rule-induction algorithm

in order to make use of the inequality operator. In other

words, the method of Binary Coding operates independently

from the underlying rule-induction algorithm.

One of the main possibilities for future work could be to

investigate the characteristics of datasets on which the Binary

Coding method performs well; in other word to find the class

of datasets where Binary Coding could be advantageous.

Another possible work could be to extend the use of the

inequality operator to continuous attributes in order to

increase the likelihood of achieving fewer and more

expressive rules.

databases (http://www.ics.uci.edu/~mlearn/MLRepository.html),” Irvine,

CA: University of California, Department of Information and Computer

Science, 1998.

[2] P. Smyth and R. M. Goodman, “An information theoretic approach to

rule induction from databases,” IEEE Trans. Knowledge Data

Engineering, vol. 4, pp. 301-316, 1992.

[3] P. Clark and R. Boswell, “Rule induction with CN2: some recent

improvements,” in Proc. 5th European Conf.(EWSL-91) Ed.: Yves

kodratoff Springer-Verlag, Berlin, pp. 151-163, 1991.

[4] J. Cendrowska, “PRISM: an algorithm for inducing modular rules,” Int.

J. Man-Machine Studies, vol. 27, pp. 349-370, 1987.

[5] M. A. Bramer, “Using J-pruning to reduce overfitting in classification

trees” Research and Development in Intelligent Systems, vol. XVIII,

Springer-Verlag, pp. 25–38, 2000.

[6] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,

pp. 81-106, 1986.

[7] J. R. Quinlan, C4.5: programs for machine learning. Morgan

Kaufmann, 1993.

[8] M. A. Bramer, “The Inducer user guide and reference manual,”

University of Portsmouth, Faculty of Technology, UK, Tech. Rep.,

1999.

[9] M. A. Bramer, “Inducer: a rule induction workbench for data mining,” In

Z. Shi, B. Faltings and M. Musen, editors, Proc. 16th IFIP World

Computer Congress Conf. Intelligent Information Processing,

Publishing House of Electronics Industry (Beijing), pp. 499-506, 2000.

TABLE II

EXPERIMENTAL RESULTS

Problem Num. of

Classes

Num. of

Bin.,Mult.,Cont.

Attributes

TDTIDT Prism J-Rule

Annealing 6 19,13,6 63.7 (4.97) 95.36

26.4 (5.82) 99.37

104.0 (3.05) 91.35

62.4 (2.46) 97.37

43.5 (3.12) 93.98

32.3 (2.93) 96.61

Car Evaluation 4 0,6,0 267.4(5.46) 88.88

83.3(9.68) 98.66

217.1(5.30) 89.23

132.3 (5.38) 93.80

149.1(4.78) 90.33

85.2 (4.75) 92.7

Chess 2 3,4,0 20.0 (5.25) 99.37

9.9 (4.76) 99.84

15.1 (3.12) 99.84

9.8 (3.14) 99.84

7.9 (4.27) 99.37

5.9 (4.06) 99.37

Contraceptive Method Choice 3 3,4,2 664.7 (6.11) 46.57

605.7 (8.05) 47.85

678.7 (4.21) 42.97

666.9 (4.37) 42.62

404.4 (4.23) 44.46

398.8 (4.44) 44.87

Contact Lenses 3 2,3,0 16.0 (3.8) 92.54

11.9 (4.64) 94.36

14.4 (3.09) 86.0

12.5 (3.18) 87.81

8.6 (3.36) 88.72

7.4 (3.25) 92.54

Credit Screening 2 4,5,6 129.0(4.68) 78.84

79.0 (6.55) 82.46

151.3 (2.65) 76.52

151.1 (2.63) 76.23

75.3 (2.51) 80.0

74.1 (2.54) 80.28

Dermatology 6 1,32,1 43.5(4.10) 91.53

18.9(5.74) 93.99

55.5 (2.14) 84.93

52.3 (2.17) 86.85

31.4 (2.02) 87.15

30.5 (2.02) 86.88

Solar Flare 2- class 1 9 5,5,0 180.5 (5.00) 78.79

170.6 (9.13) 79.54

152.2 (5.70) 75.61

149.8 (11.86) 75.98

37.3 (4.17) 79.26

37.2 (5.93) 79.17

Solar Flare 2- class 2 7 5,5,0 95.5 (4.52) 94.27

75.8 (7.67) 95.58

77.5 (4.07) 94.65

72.5 (7.83) 94.65

9.8 (3.39) 95.31

9.8 (3.39) 95.31

Solar Flare 2- class 3 3 5,5,0 18.1 (3.37) 99.43

13.7 (4.76) 99.34

22.6 (2.26) 99.24

21.1 (3.73) 99.24

3.7 (3.94) 99.24

3.7 (7.83) 99.24

Labor relations 2 3,5,8 4.8 (2.06) 85.0

4.6 (2.10) 82.5

7.7 (1.19) 80.0

7.5 (1.18) 77.5

5.0 (1.18) 85.0

4.8 (1.16) 85.0

Monk 1st 2 2,4,0 38.2 (3.86) 83.91

17.7 (6.06) 91.85

25.0 (2.96) 73.33

18.7 (2.90) 82.24

14.0 (2.67) 87.56

10.7 (2.68) 90.96

Monk 2nd 2 2,4,0 87.7 (4.69) 43.82

56.8 (6.90) 73.97

67.9 (3.83) 54.41

60.0 (3.99) 52.57

37.3 (3.99) 50.18

32.9 (4.23) 50.14

Monk 3rd 2 2,4,0 26.5 (3.22) 86.92

16.6 (5.43) 88.52

24.8 (2.71) 84.55

19.2 (2.80) 86.15

15.2 (2.42) 85.32

11.9 (2.48) 90.19

Nursery 5 1,7,0 811.0 (6.61)98.22

227.6(10.61)99.75

559.8 (5.42) 97.20

296.4 (5.41) 98.51

309.2 (5.33) 98.69

154.6 (5.23) 99.33

Soybean-large 19 16,19,0 83.9 (4.52) 81.15

45.6 (7.38) 86.64

73.0 (2.72) 77.86

72.4 (2.73) 76.25

45.6 (1.75) 85.68

45.5 (1.77) 84.39

Tic-Tac-Toe Endgame 2 0,9,0 190.9 (5.65) 84.45

71.2 (7.52) 95.09

46.1 (3.46) 96.66

42.8 (3.56) 96.24

23.8 (3.44) 96.65

22.9 (3.62) 96.65

Congressional Voting 2 0,16,0 29.2 (4.34) 91.66

21.4 (5.33) 91.66

31.7 (2.49) 90.33

30.0 (2.52) 90.66

21.6 (2.26) 92.33

20.1 (2.39) 93.0

[1] C. L. Blake and C. J. Merz, “UCI repository of machine learning

REFERENCES

