
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

402

Independent Spanning Trees on Systems-on-chip
Hypercubes Routing

´

Abstract—Independent spanning trees (ISTs) provide a number
of advantages in data broadcasting. One can cite the use in fault
tolerance network protocols for distributed computing and bandwidth.
However, the problem of constructing multiple ISTs is considered
hard for arbitrary graphs. In this paper we present an efficient
algorithm to construct ISTs on hypercubes that requires minimum
resources to be performed.

Keywords—Hypercube, Independent Spanning Trees, Networks
On Chip, Systems On Chip.

I. INTRODUCTION

THE hypercube, generally denoted as Qk, is a k-connect

graph with a special characteristic in which each vertex

and its adjacent differ in only one bit in their binary repre-

sentations. Among the advantages of this topology it may be

emphasized the use on k-reliable broadcasts and distributed

diagnosis [1].

Let G be a graph, a set of spanning trees rooted at a vertex

r in G is said vertex/edge independent if for each vertex v
in G, v �= r, the paths of r to v in any pair of trees are

vertex/edge disjoint. There is an interesting conjecture about

ISTs that states:

Conjecture 1.1: For any k-connected graph G there exist k
independent spanning trees(k−ISTs) of G with any vertex v
of G as root of the tree [2].

The conjecture was proved only for k-connected graphs with

k ≤ 4 and still open for arbitrary graphs when k ≥ 5.

Itai and Rodeh [3] proved it for k=2. For k=3 it was

independently proved by Zehavi and Itai[2], and Cheriyan

and Maheshwari [4]. However, several algorithms are known

in some classes of graphs such as product graphs [5], planar

graphs [6], chordal rings [3], De Brujin and Kautz graphs [7],

[8], hypercubes [9], [10], folded hypercubes [11], folded

hyper-stars [12], multi dimensional thorus [13] and circulant

recursive graphs [14].

Tang et al [9] developed an algorithm to construct ISTs

on Qk recursively from Qk−1, i.e., it is necessary to construct

k−1 trees in advance to obtain the k−ISTs. In [10] the authors

presented an algorithm based on latin square distance, which

is not recursive like the one presented in [9] and can, therefore,

be parallelized.

However, the algorithms used to construct the trees gener-

ally require high computational power, even to those classes

of graphs mentioned above. Such construction becomes pro-

hibitive in many existing network architectures with limited

E. Silva, A. Guedes and E. Todt are with the Department of Infor-
matics, Federal University of Paraná, Curitiba, PR, 19018 Brazil e-mails:
eduardo.santanadasilva@gmail.com andre@inf.ufpr.br todt@inf.ufpr.br.

resources. For such architectures simpler alternatives should

be used instead, due to limited space and processing power.

Systems-on-chip (SoCs) designs usually employ several

distinct types of components such as memories, processors,

peripherals, and external IP (intellectual property) blocks that

need to communicate with each other in some way. Several

architectures have been used to accomplish this needs using

bus based architectures such as: ARM Micro-controller Bus

Architecture (AMBA) [15], IBM Core-Connect [16], Sonics

SMART Interconnect [17], OpenCores Wishbone [18], and

Altera Avalon [19].

Although widely used such alternatives are not standardized

and their use requires deep knowledge on the manner that each

technology works. Networks-On-Chip (NoCs) [20], [21], [22]

have been proposed as a manner to provide abstraction in the

way that SoCs blocks communicate among them. Therewith

the time to market a new product is reduced significantly,

turning the semiconductor companies more competitive.

Network-on-Chip is seen as an evolutionary approach to

provide high performance and scalability in addition to a

robust infrastructure for communication on-chip. The NoCs
interconnect architectures used in SoCs must meet the require-

ments of these systems simultaneously providing scalability,

re-usability and parallelism in communication, in addition to

covering issues such as power consumption restrictions and

use of distributed clock. [23], [22], [24].

The computational resources like memory, I/O and logical

units in NoCs are interconnected by routers. In such networks

the resources communicate with each other using data packets

managed by routers deployed on the same integrated circuit.

The knowledge coming from the computer networks and

distributed systems provides a wide range of results to be

mapped to the field of Networks on Chip. This mapping is

not easy mainly due to the restrictions on the implementation

of network infrastructures in silicon.

Addressing the problem of limited resources in NoCs de-

mands the use of new approaches to old problems such as

routing. Due to space constraints components as routers and

network interfaces should be simple to minimize memory

requirements and processing power. Algorithms that require

intensive computation to construct ISTs are not suitable for

implementation in NoCs. Thus we present an algorithm that

solves the problem using straightforward circuits with low

memory consumption.

Eduardo Sant’Ana da Silva, Andre Luiz Pires Guedes, and Eduardo Todt



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

403

II. PRELIMINARIES

Before presenting the developed method it is necessary to

define some terms that are used throughout this article as well

as some conventions proposed here.

Let G = (V,E) be a graph with a vertex set V =
{v1, . . . , vn} and an edge set E, the adjacency matrix MG =
(mij), of the same order of G, has non-zero value at the value

at coordinate i, j (generally value 1 when the graph is not

valued) iff vi and vj have an edge connecting them, otherwise

the value at coordinate i, j is 0. All matrix coordinates mij

satisfying the condition i = j have 0 as value.

hypercube Q3 with 8 vertices shown in the left side.

0 1 1 0 1 0 0 0

1 0 0 1 0 1 0 0

1 0 0 1 0 0 1 0

0 1 1 0 0 0 0 1

1 0 0 0 0 1 1 0

0 1 0 0 1 0 0 1

0 0 1 0 1 0 0 1

0 0 0 1 0 1 1 0

0 1 2 3 4 5 6 7

0

1

2

3
4

5

6

7

0 (000) 1 (001)

2 (010) 3 (010)

4 (100) 5 (101)

6 (000) 7 (001)

Fig. 1. Q3 adjacency matrix

In this paper an alternative matrix is used instead of the

adjacency matrix. We also present a reading convention of the

alternative matrix when dealing with trees. Thus the alternative

matrix (from now on denoted as MT ) shown in Figure 2 (b)
must be read as follows: The values of the row i in the matrix

indicate that the vertices of the column index j are children

of the vertexes with index i. In this way one can obtain the

spanning tree of Figure 2 (a) by reading the adjacency matrix

as described above.

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 0

0

1

2

3
4

5

0 1 2 3 4 5

6

6 7

7

a) b)

0

2

3

1

6

4 7

5

Fig. 2. Q3 tree representation matrix MT

One of the consequences of this convention is that all leave

vertices have zero valued rows (vertices 1, 4, 5, Figure 2). It

is valid to mention that in the reading convention of MT , the

edge x−y is considered distinct of the edge y−x, which does

not occur in the conventional adjacency matrix. Therewith the

graph becomes directed and each edge oriented in a specific

direction must belong to a distinct tree, meaning that each

vertex has a different parent in each tree.

III. CONSTRUCTING INDEPENDENT SPANNING TREES ON

Qk

The trees constructed by the algorithm presented here start

from vertex 0 and vertices are incrementally added obeying

a simple rule in the first phase in which the edges are added

to the tree only if the child vertex has index greater than the

parent vertex. In the second phase the edges are added in the

reverse order to complete the tree. Algorithm 1 is used to

generate the first tree. It is optimized to execute using logic

operators such as OR and XOR, whose task is to compare

vertices indexes and avoid edge repetitions.

input : k

output: first tree edge list, 0 as root

k: 2k is the hypercube order
edgesOrder: (normal=0 or inverse=1)
vertices: number of vertices (2k)
bitwise operators OR: ∨, and XOR: ⊕

for edgesOrder ← 0 to 1 do
for n ← 0 to vertices do

for b ← 1 ; i ← 1 to k do
n2 ← n ∨ b;
if n �= n2 then

if edgesOrder = 0 then
edge ←Edge(n,n ⊕ b); else
edge ←Edge(n ⊕ b, n);

if IsTheFirstEdge(edge) then
AddToTree(t, edge);

end
if ParentIsInTheTree(edge)
then

AddToTree(t, edge);

end
end
b ← b(rll)1;

end
end

end

Algorithm 1: Algorithm to create the first tree.

The algorithm is straightforward, it uses only one bit to

mark the addition of the vertices in the tree. There is a

special treatment to the first edge addition as vertex 0 has

only one child in each tree. After that, any edge respecting the

order mentioned before can be added to the tree if the parent

was already added. The parent existence test is performed by

checking a bit array that has size n. All other trees can be

generated by the bit-wise left rotate operation with the index

tree as the number of shifts to be performed. The left rotate

operation is equivalent to the equation of conjecture 4.1.

After the trees with vertex zero as root are created, any other

root can be calculated simply by performing an exclusive-

or (⊕) operation of each vertex of the trees using the desired

root vertex. Figure 3 shows how to obtain a tree with root 5

from a tree with root 0.

Figure 1 shows the adjacency matrix corresponding to the



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

404

4

5

1

0

2

6

3

71 5

0 5

4 5

5 5

5 7

3 5

6 5

2 5

Fig. 3. Tree with root 5 obtained from the tree with root 0

IV. EXPERIMENTAL RESULTS

Table I presents the data about the memory consumption of

the proposed algorithm compared to the algorithm presented

by Yang et al. [10]. As our memory space is measured in

bits, to compare with the algorithm presented by Yang et al.,

that is O(kN), it is needed to multiply the previous equation

by k, since it is necessary k bits to represent N . So the new

equation to memory consumption of Yang’s algorithm should

be O(k2N). Compared with our method that requires N bits,

our algorithm consumes 0.34% of the memory required by

Yang et al. to build the trees on Q17 (131,070 vertices).

TABLE I
MEMORY CONSUMPTION (IN BITS) DURING THE TREES CONSTRUCTION

PROCESS

k Yang Ours Ours/Yang perc.

3 72 8 11.11
4 256 16 6.25
5 800 32 4.0
6 2,304 64 2.77
7 6,272 128 2.04
8 16,384 256 1.56
9 41,472 512 1.23
10 102,400 1,024 1.0
11 247,808 2,048 0.82
12 589,824 4,096 0.69
13 1,384,448 8,192 0.59
14 3,211,264 16,384 0.51
15 7,372,800 32,768 0.44
16 16,777,216 65,536 0.39
17 37,879,808 131,072 0.34

It were performed tests until Q17 so far, the independence

verification process is being done computationally though we

believe that the algorithm works to any N . So we proposed

the following conjectures regarding hypercubes:

From an initial tree, T0, rooted at vertex 0, k trees

T1, T2, ..., Tk, all rooted at vertex 0, can be generated by

permutations of the vertices. Let πi be the permutation that

generates Ti. Given a vertex x from T0, πi(x) is the equivalent

vertex in Ti. And πi is given by:

πi(x) =

{
2i × x mod 2k − 1, if x �= 2k − 1
x, if x = 2k − 1

(1)

Conjecture 4.1: If T0 is constructed by the algorithm 1, and

the trees T1, T2, ..., Tk constructed with the operation π above

then the set T0, T1, ..., Tk is a set of ISTs of the Qk.

Conjecture 4.2: All independent spanning trees, con-

structed by the algorithm presented in this paper are optimal

in terms of average length of the paths [9].

Both conjectures above were confirmed until Q17 and we

are currently working on the proofs.

V. CIRCUIT SIMULATION

The circuit simulation was done through Matlab Simulink

to Q4 (figure 4). Each custom block is depicted (figures 5 and

6) with the exception of the bit-array implementation since it

is trivial. For Q4 we need a bit-array with 16(24) bits of size.

In the figure 7 we can see that the edges of the first tree are

generated in about 120 cycles.

nand

NAND

conv

uint32

bit array initialization 2 (binary 10) -> bit 1 active

2

and

AND

Switch

> 0

Switch

> 0

Save results

In

Enable Output

Memory

Memory

Memory

Memory

Invert Edges

In1 Out1

HypercubeEdgeGen

vertexA

vertexB

CycleIndex

Edge Filter

GetBitPort1

GetBitPort2

Initial Value

Set Bit

Enable Set Bit

BitPort1

BitPort2

1

Fig. 4. Block to calculate first tree on Q4

CycleIndex

3

vertexB

2

vertexA

1

conversion

uint32

conversion

uint32

0

b

1

Switch

> 0

Switch

> 0

Shift
Arithmetic

Qu << s
u

s

Hypercube Edge

n

b

isEdge

vertexA

vertexB

Counter
Free-Running N

Counter
Free-Running K

Compare
To Zero

== 0

Extract 4 Bits
Lower End

Fig. 5. Hypercube edges build block

VI. CONCLUSION

The algorithm presented in this paper is done in O(kN)
time and its main advantage is the memory space used to

construct the trees, O(N) bits. All independent spanning

trees, constructed by the algorithm presented in this paper

are optimal in terms of average length of the paths [9]. Our

construction method is straightforward and very suitable to

devices with limited computational power as well.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

405

vertexB

3

vertexA

2

isEdge

1

Data Type Conversion2

boolean

Compare
To Zero

~= 0

Bitwise
Operator2

Bitwise
OR

Bitwise
Operator1

Bitwise
XOR

Bitwise
Operator

Bitwise
XOR

b

2

n

1

Fig. 6. Hypercube individual edge block

20 40 60 80 100 120
0

5

10

15

1

3

1

5

1

9

3

7

3

11

5

13

7

15

0

1

3

2

5

4

7

6

9

8

11

10

13

12

15

14

first vertex

second vertex

edges of tree 0

Fig. 7. Wave simulation diagram

REFERENCES

[1] J. Duarte, E.P., A. Brawerman, and L. Albini, “An algorithm for
distributed hierarchical diagnosis of dynamic fault and repair events,”
in Parallel and Distributed Systems, 2000. Proceedings. Seventh Inter-
national Conference on, 2000, pp. 299 –306.

[2] A. Zehavi and A. Itai, “Three tree-paths,” Journal of Graph Theory,
vol. 13, pp. 175–188, 1988.

[3] A. Itai and M. Rodeh, “The Multi-Tree Approach to Reliability in
Distributed Networks,” Information and Computation, vol. 79, pp. 43–
59, 1984.

[4] J. Cheriyan and S. N. Maheshwari, “Finding nonseparating induced
cycles and independent spanning trees in 3-connected graphs,” J. Al-
gorithms, vol. 9, no. 4, pp. 507–537, 1988.

[5] K. Obokata, Y. Iwasaki, F. Bao, and Y. Igarashi, “Independent spanning
trees of product graphs,” in Graph-Theoretic Concepts in Computer Sci-
ence, ser. Lecture Notes in Computer Science, F. d’Amore, P. Franciosa,
and A. Marchetti-Spaccamela, Eds. Springer Berlin / Heidelberg, 1997,
vol. 1197, pp. 338–351.

[6] A. Huck, “Independent Trees in Planar Graphs Independent trees,”
Graphs and Combinatorics, vol. 15, pp. 29–77, 1999. [Online].
Available: http://dx.doi.org/10.1007/s003730050030

[7] Z. Ge and S. L. Hakimi, “Disjoint rooted spanning trees with small
depths in deBruijn and Kautz graphs,” SIAM Journal on Computing,
vol. 26, no. 1, pp. 79–92, 1997. [Online]. Available: www.scopus.com

[8] T. Hasunuma and H. Nagamochi, “Independent spanning trees with
small depths in iterated line digraphs,” Discrete Applied Mathematics,
vol. 110, no. 2-3, pp. 189 – 211, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166218X00002699

[9] S.-M. Tang, Y.-L. Wang, and Y.-H. Leu, “Optimal Independent Spanning
Trees on Hypercubes,” J. Inf. Sci. Eng., vol. 20, no. 1, pp. 143–156,
2004.

[10] J.-S. Yang, S.-M. Tang, J.-M. Chang, and Y.-L. Wang, “Parallel con-
struction of optimal independent spanning trees on hypercubes,” Parallel
Comput., vol. 33, no. 1, pp. 73–79, 2007.

[11] J.-S. Yang, J.-M. Chang, and H. Chan, “Independent Spanning Trees on
Folded Hypercubes,” Parallel Architectures, Algorithms, and Networks,
International Symposium on, vol. 0, pp. 601–605, 2009.

[12] A. A. Rescigno, “Vertex-disjoint spanning trees of the star network
with applications to fault-tolerance and security,” Information Sciences,
vol. 137, no. 1-4, pp. 259 – 276, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025501001219

[13] S.-M. Tang, J.-S. Yang, Y.-L. Wang, and J.-M. Chang, “Independent
Spanning Trees on Multidimensional Torus Networks,” IEEE Transac-
tions on Computers, vol. 59, pp. 93–102, 2010.

[14] J.-S. Yang, J.-M. Chang, S.-M. Tang, and Y.-L. Wang, “On
the independent spanning trees of recursive circulant graphs
g(cdm,d) with d¿2,” Theoretical Computer Science, vol. 410,
no. 21-23, pp. 2001 – 2010, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397508009122

[15] ARM, “AMBA Specification and Multilayer AHB specification
(rev2.0),” http://www.arm.com/armtech/AXI/.

[16] IBM, “CoreConnect Specification,” http://www.ibm.com/.
[17] Sonics, “SMART interconnect,” http://www.sonicsinc.com/.
[18] “Wishbone Specification,” http://www.opencores.org/wishbone/.
[19] “Altera Avalon Interface Specification,” http://www.altera.com/.
[20] L. Benini and G. D. Micheli, “Networks on Chips: A New SoC

Paradigm,” Computer, vol. 35, pp. 70–78, 2002.
[21] F. Karim, A. Nguyen, and S. Dey, “An interconnect architecture for

networking systems on chips,” Micro, IEEE, vol. 22, no. 5, pp. 36 – 45,
sep/oct 2002.

[22] J. Owens, W. Dally, R. Ho, D. Jayasimha, S. Keckler, and L.-S. Peh,
“Research Challenges for On-Chip Interconnection Networks,” Micro,
IEEE, vol. 27, no. 5, pp. 96 –108, sept 2007.

[23] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson,
J. Oberg, P. Ellervee, and D. Lundqvist, “Lowering power consumption
in clock by using globally asynchronous locally synchronous design
style,” in Design Automation Conference, 1999. Proceedings. 36th, 1999,
pp. 873 –878.

[24] K. Srinivasan, K. Chatha, and G. Konjevod, “Linear-programming-based
techniques for synthesis of network-on-chip architectures,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 14, no. 4,
pp. 407 –420, april 2006.

Eduardo Sant’Ana da Silva received the BSc
degree in computer science from Federal University
of Paraná, Curitiba, Brazil in 2002, and the MSc
degree at the same university in 2005. He currently is
a PhD candidate at Federal University of Paraná and
member of the Vision, Robotics and Image Research
Group (VRI). His research interests are primarily
in the area of graphs and fault tolerant algorithms
applied to interconnection networks.

André Luiz Pires Guedes received his DSc in
Computer Science from Federal University of Rio de
Janeiro, Brazil, in 2001. He is a professor at Federal
University of Paraná and works at the Algorithm
Research Group (ARG). His research interests are
graphs and algorithms.

Eduardo Todt received the BE degree in electrical
engineering from Federal University of Rio Grande
do Sul, Porto Alegre, Brazil in 1985, and the MSc
degree at the same university in 1990. He received
his PhD in Advanced Automation and Robotics
- Polytechnic University of Cataluña in 2005 and
he currently is a professor of the Department of
Informatics Federal University of Paraná and leader
of the Vision, Robotics and Image Research Group
(VRI). His research interests are primarily in the
area of image processing, robotics and embedded

systems.


