
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:3, No:12, 2009

1606

 

 

  
Abstract— The interactions between input/output variables are a 

very common phenomenon encountered in the design of multi-loop 
controllers for interacting multivariable processes, which can be a 
serious obstacle for achieving a good overall performance of multi-
loop control system. To overcome this impediment, the decomposed 
dynamic interaction analysis is proposed by decomposing the multi-
loop control system into a set of n independent SISO systems with 
the corresponding effective open-loop transfer function (EOTF) 
within the dynamic interactions embedded explicitly. For each 
EOTF, the reduced model is independently formulated by using the 
proposed reduction design strategy, and then the paired multi-loop 
proportional-integral-derivative (PID) controller is derived quite 
simply and straightforwardly by using internal model control (IMC) 
theory. This design method can easily be implemented for various 
industrial processes because of its effectiveness. Several case studies 
are considered to demonstrate the superior of the proposed method. 
 

Keywords—Multi-loop PID controller, internal model control 
(IMC), effective open-loop transfer function (EOTF) 

I. INTRODUCTION 
ULTI-LOOP (or decentralized) control has always been 
one of the most common control schemes for interacting 
multivariable plants in the process industries despite the 

availability of sophisticated full-scale multivariable control 
techniques that has developed in the literature of process 
control over a number of years (Rosenbrock [1], MacFarlane 
[2], Maciejowski [3], Camacho et al. [4], and Wang et al. [5]). 
The main reason for this popularity is due to its flexibility in 
operation, simplified design and simplified tuning. Generally, 
multi-loop control system is allowed to restructure during 
different operating conditions with purpose to handle 
changing control objectives, and the multi-loop controllers 
have much simpler structures and fewer tuning parameters 
than that of the centralized controllers. Thus, the product 
quality with lower cost can be naturally achieved by the 
manufacturers (Grosdidier and Morari [6]). However, the 
design of multi-loop control systems can be difficult because 
of the interactions among loops, which is a undesired 
phenomenon encountered in the closed-loop control systems 
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as result of the existence of less diagonal dominance cases 
since the magnitude of off-diagonal elements in transfer 
function matrix increases along the range of frequency. To 
overcome this limitation, the tuning of a multi-loop PI/PID 
controller is usually used to minimize loop interactions.  

Our interest in this paper is to find a simple design method 
of the multi-loop PI/PID type controllers, which satisfies some 
important requirements as well motivated, analytically 
derived, loop failure tolerance ensured, and significant 
performance improvement. Based on the virtue of the 
independent design method and IMC-PID controller design 
formulas, the proposed method can compensate all 
deficiencies of previous design methods. The key idea is to 
decompose the multi-loop control system into each equivalent 
individual loops, and then the EIP model can be formulated 
based on the dynamic of each individual loop with the 
dynamic interactions embedded explicitly, and thus, the 
practicable controller is obtained independently in form of 
IMC-PID type controller without referring to the controller 
dynamics of other loops. 

Several illustrated simulation examples are addressed to 
demonstrate the effectiveness of proposed method for various 
interacting multivariable processes. 

II. PRELIMINARIES 
Fig. 1 shows block diagrams of n x n general multi-loop 

system where loop i is open while all the other loops are 
closed. In Fig. 1, the notation is summarized as follows: G and 
gii are the transfer function matrix and its individual elements, 
respectively. irg and icg  denote the ith row and column 
vector of matrix G where gii is discarded, respectively. 

iG denotes a matrix G where both the ith row and column are 
removed.  The multi-loop controller and its individual 
elements are denoted by cG� and cig , while i

cG� denotes the 
diagonal matrix in which  cig is dropped. Furthermore, r, u, 
and y are the set-point, manipulated, and controlled variable 
vectors, respectively while  ir , iu , and iy  are those without 
ri, ui, and yi, respectively. 
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III. EFFECTIVE OPEN-LOOP TRANSFER FUNCTION AND 
DYNAMIC RELATIVE GAIN 

 
Consider a multi-loop system in Fig. 1 where loop i are 

open while all the other loops are closed. A multi-loop MIMO 
system can be considered as a set of n independent SISO 
systems with the corresponding EOTFs. Fig. 1 shows the 
block diagram for the concepts of the EOTF of loop i where 
loop i are open while all the other loops are closed. It is clear 
that tuning the controller of loop i in the multi-loop system 
should be done based on the EOTF rather than the original 
open-loop transfer function, i,ig . The EOTF differs from the 
original open-loop transfer function, iig , by transmission 
interaction through a path including the other loops.  

Consider the block diagram in Figure 1 with i 0=r . Then 
iu is given by  

i i i i ir i
c c ii i(g u )= − = − +u G y G g u� �  (1) 

Rearranging Eq. 1 yields  

( )-1i i i i ic
c c i= u− +u G I G G g� �  (2) 

Therefore, the relation between yi and iu can be written as  

( )

ir i
ii i

-1ir i i i ic
ii c c i

y g u

    g u

i = +

⎡ ⎤= − +⎢ ⎥⎣ ⎦

g u

g G I G G g� �   (3) 

The complication of dynamic interaction is clear from Eq. 3. 
The open-loop dynamics between yi and iu depends on not 
only the single transfer function, iig , but also the process and 
controller  terms in all other loops. This also implies that 
tuning of one controller should not be done independently and 

depends on the other controllers. However, since the 
controllers include integral actions to avoid offset and the 
closed-loop dynamics by properly tuned controllers is 
significantly faster than the open-loop dynamics, a perfect 

control approximation, ( )-1i i i i
c c+ =G G G G� �I I , can be 

considered at frequencies lower than the cross-over frequency.  
Therefore, Eq. 3 can be reasonably simplified in terms of 
process dynamics excluding controller terms: 

( ) ( )
( )

-11ir i i i i i ic
i ii c c i

1ir i ic
ii i

eff
ii i

y  = g u  

     = g u

     = g u

⎡ ⎤− +⎢ ⎥⎣ ⎦
⎡ ⎤−⎢ ⎥⎣ ⎦

-

-

 g G G G I G G g

g G g

 

� �

 (4) 

where the EOTF of loop i, eff
iig , consists of process 

dynamics term only.  
Let us define the effective open-loop transfer function 

(EOTF) of loop i as the transfer function relating u i  with 
yi where loop i are open while all the other loops are closed. It 
is clear that the EOTF is different from the original open-loop 
transfer function because of process interaction. A multi-loop 
MIMO system can be considered as a set of n independent 
SISO systems with the corresponding EOTFs. 

Furthermore, this EOTF can be compactly expressed in 
terms of dynamic relative gain array (DRGA) [7-9] by using 
some algebra as follows: 

eff ii
ii

ii

g
g =

Λ
  (5) 

where iiΛ denotes the ith diagonal element of the DRGA and 
is calculated by  
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Fig. 1   Block diagram of n×n multi-loop system where all the other loops except loop i are closed. 
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T
ii ii

⎡ ⎤Λ = ⊗⎣ ⎦
-G G  (6) (13) 

where ⊗  is the Hadamard product and T-G is the transpose of 
the inverse of G. 

In the DRGA, the definition of RGA has been extended to 
include frequency-dependent terms by replacing the steady-
state gains with the corresponding transfer functions. It is 
clear from Eq. 5 that the ith diagonal element of the DRGA 
implies the ratio of open-loop to effective open-loop transfer 
functions of loop i but under the assumption of perfect control 
of other loops. 

IV. REDUCED EOTF FOR CONTROLLER DESIGN 
The two input, two output (TITO) multi-delay processes are 

considered here because they are most commonly encountered 
in the industrial and chemical. The general stable and square 
transfer function matrix is represented as  

( ) ( )
( ) ( )

11 12

21 22

(s) =
g s g s
g s g s

⎡ ⎤
⎢ ⎥
⎣ ⎦

G  (7) 

The DRGA can be obtained from Eq. 6 as 

( ) ( ) 11 22
11 22

11 22 12 21

( ) ( )
( ) ( ) ( ) ( )

g s g s
s s

g s g s g s g s
⎛ ⎞

Λ = Λ = ⎜ ⎟−⎝ ⎠
 (8) 

Then, the EOTF model for the first and second equivalent 
individual loops can be found by using Eq. 5, respectively. 

eff 12 21
11 11

22

( ) ( )( ) ( )
( )

g s g sg s g s
g s

= −  (9) 

eff 12 21
22 22

11

( ) ( )( ) ( )
( )

g s g sg s g s
g s

= −  (10) 

The resulting EOTF is usually too complicated to be 
directly used for controller tuning. To circumvent this 
awkwardness, it needs to be simplified to a reduced order 
model such as the first order plus dead time (FOPDT) and the 
second order plus dead time (SOPDT) model using a proper 
model reduction technique.  

Consider a simple model reduction technique to get a 
reduced model of the EOTF. Consider the model reduction to 
the FOPDT given by 

-θs
r_eff Keg =

τs +1
 (11) 

Expanding eff
iig in a Maclaurin series in s term gives 

eff 2 3
ii ii ii iig (s) = a + b s + c s + (s )O  (12) 

The coefficients of this polynomial can be defined by 
( )eff

ii iia = g 0  (13) 
eff
ii

ii
s 0

g ( )
b =

d s
ds

→

 (14) 

eff
ii

ii
s 0

g ( )1c =
2

2

2

d s
ds

→

 (15) 

Expanding the FOPDT model given by Eq. 11 in a 
Maclaurin series in s term also gives 

( ) ( )r_eff 2 2 31g (s) = K - K θ+ τ s +K θ + θ+ τ τ s +O(s )
2

⎡ ⎤
⎢ ⎥⎣ ⎦

 (16) 

where K , τ , and θ should be identified to approximate 
eff
iig as close as possible for important frequency ranges. 

Comparing the first, second, and third term of Eq. 12 with 
those of Eq. 16 leads to  

iiK = a  (17) 

2
ii ii ii

ii

1τ = 2c a b
a

−  (18) 

ii

ii

b
θ =

a
τ− −  (19) 

It should be noted that both τ  and θ  must have positive 
values. If the dynamics due to process interaction is too 
complicated to be expressed by the FOPDT, either τ or 
θ might have the negative values. In this case, a higher order 
model such as the SOPDT has to be considered as a reduced 
model of EOTF. 

V. MULTI-LOOP PID CONTROLLER DESIGN 
Once the reduced EOTF is obtained, any PID tuning 

method for SISO system can be applied to design of multi-
loop PID controller design. In this study, the IMC- PID tuning 
approach is selected. The IMC-PID design approach is 
commonly used for PID controller tuning in the process 
industries because it is not only simplicity, but also great 
improved performance of overall control systems in case of 
set-point tracking. Therefore, the analytically derived IMC-
PID tuning methods have attracted attention of academic and 
industrial users for many decades, and the IMC-PID tuning 
rules suggested by Lee et al. [10], which were shown the 
performance superiorly when compared with other methods, is 
utilized for the design of each individual PI/PID controller. 
The procedure is shown as follows: first consider the process 
model, eip A MG (s) = p p , where Ap and Mp are the all-pass 
portion and minimum phase portion, respectively. The 
conventional IMC filter, f, is selected to ensure the perfect set-

point tracking of steps as 
( )i n

1f (s) =
s +1iλ

, in which iλ is a 

design parameter that provides the tradeoff between 
performance and robustness. Besides, it is the desired closed-
loop time constant for set-point tracking.  The filter order n is 
selected as positive integer so that controller is proper and 
realizable. 

The ideal controller ciG that yields the desired loop 
response perfectly is given by 

( )
-1

i Mi
ci nr_eff

Aii

q p (s)
G =

( s +1) - p (s)1- g q iλ
=  (20) 

where qi is the IMC controller and is designed by -1
i Mi iq = p f . 

The controller obtained directly by Eq. 20 is impractical and 
it does not have the standard PI/PID form. Hence, the 
practicable form is required to approximate the PI/PID 
controller.  

Here, the mathematical Maclaurin series is considered first 
to expanded the ideal controller given by Eq. 20. 
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( ) ( ) ( ) ( )2 30 0( ) 1 0 0
2! 3!ci

f ff sG f f s s s
s s

′′ ′′′⎡ ⎤
′≡ = + + + +⎢ ⎥

⎣ ⎦
…  (21) 

The target is to create the resulting controller in term of the 
standard PID controller. To do that the ciG in Eq. 20 should 
be transformed into the equivalent form of the standard PID 
controller by using Pade approximation.  The conventional 
PID controller parameters can be obtained respectively by 
 

'(0) ci iK f=  (22) 
'(0) 

   
(0)

i
I i

i

f
f

τ =  (23) 

''(0) 
   

2 '(0)
i

Di
i

f
f

τ =  (24)  

Again, it is apparent from the above equation 
that I iτ and Diτ can be negative due to a major limitation of 
IMC theory and this potential problem can be avoided by 
selecting the closed-loop time constant or the appropriate PID 
controller form. 

VI. ROBUSTNESS INDEX 
It is necessary to analyze the robust stability of multi-loop 

control system in presence of process uncertainties so that the 
tuning constraints for the design parameters iλ  of proposed 
controllers can be ascertained by following the robust stability 
that  published by William [11]. Basically, the control system 
will be examined under the output multiplication uncertainty. 
For the multi-delay process with the output multiplicative 
uncertainty of 0Δ , the upper bound of robust stability can be 
written by 

( ) ( ){ }
( )

1

0

1

1/ ( ) ( ) ( ) ( )

                 ( ) ( )  ,    0

c c

c

I j j j j

I j j

γ σ σ ω ω ω ω

σ ω ω ω

−

−

⎡ ⎤= Δ < +⎢ ⎥⎣ ⎦

⎡ ⎤< + ∀ ≥⎢ ⎥⎣ ⎦

G G G G

G G

� �

�
 (25)  

where ( ) ( )cj jω ωG G�  is invertible. 
For tracking error reduction, disturbance rejection, and 

insensitivity to plant parameter variations, γ should be as 
small as possible. Basically, since γ  is kept smaller at over 
frequency ranges, the output responses provide better 
performance. Inversely, for enhanced robust stability, 
γ should be kept as large as possible at over frequency ranges. 

VII. SIMULATION STUDY 
Example 1. Wood and Berry (WB) column.   

The pilot-scale distillation column model, the eight-tray plus 
re-boiler separating a mixture of methanol and water, is 
introduced by Wood and Berry [12].  This model can be 
represented in term of the transfer function matrix as 

3

7 3

12.8 18.9
16.7 1 21 1( )
6.6 19.4

10.9 1 14.4 1

s s

s s

e e
s sG s
e e
s s

− −

− −

⎡ ⎤−
⎢ ⎥+ +⎢ ⎥=
⎢ ⎥−
⎢ ⎥+ +⎣ ⎦

 (26) 

 
By using Eqs. 9 and 10, the EOTF of each loop can be 

obtained by 
( )

( )( )

7
eff
11

6.36 14.4 112.8( )
16.7 1 21 1 10.9 1

ss s eeg s
s s s

−− +
= −

+ + +
          

( )
( )( )

93
eff
22

9.75 16.7 119.4( )
14.4 1 21 1 10.9 1

ss s eeg s
s s s

−− +−
= +

+ + +
 

Accordingly Eqs. 17, 18, and 19, the reduced EOTF model 
for each individual loop is found as follows 

 
( )

0.31
_

11
6.37
10.53 1

s
r eff eg

s

−

=
+

 ;  
( )

4.27
_

22
9.66
6.27 1

s
r eff eg

s

−−
=

+
 

Figure 2 depicts the Bode diagram of the EOP and the EIP 
for the comparing the approximation precision of the effective 
open-loop process and the reduction technique. 

 

 

 
 
Fig. 2  Bode magnitude plots of the reduced EOTF, the EOTF, 
gii and the actual EOTF for WB column.  

 
It is observed from the figure that the magnitudes of Actual 

EOTF and Reduced EOTF show fairy good coincidence in 
compared with the closed-loop transfer function for all 
frequencies. In such a meaning, the proposed method is 
effectively applied at low and middle frequency, which is the 
most important case in process control.  
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Fig. 3   Closed-loop time responses for WB column. 
 

For a fair comparison, the robust stability level γ  should be 
hold as same as possible for all comparative design methods. 
The γ value is calculated as 0.47 and 0.33 for Ho et al. [13] 
and Loh et al. [14], respectively. To cope with the same robust 
level with Ho’s method, in the proposed method, the design 
parameters iλ  are adjusted directly by using Eq. 25. The 
closed-loop time responses for the sequential unit step change 
in set-point are shown in Fig. 3. As one can see from Fig. 3, 
the proposed PI/PID controllers can be resulted better control 
performance in contrast with the other two design methods. 
This conclusion is also convinced by performance indices in 
Table I. 
 
 

TABLE I 
PI/PID CONTROLLER PARAMETERS AND PERFORMANCE INDICES FOR  

WB COLUMN 

 ciK  Iiτ  Diτ  iλ  IAEt iγ  

Proposed PID 0.66 10.55 0.02 2.2 19.13 0.47 -0.11 7.54 1.04 2.87 

Proposed PI 0.50 10.54 - 3.0 22.5 0.47 -0.09 7.32 - 4.41 

Ho et al. 0.57 20.7 - - 29.74 0.47 -0.11 12.88 - - 

Loh et al. 0.87 3.25 - - 24.60 0.33 -0.09 10.40 - - 
IAEt: total sum of each IAEi 

 
Example 2. Vinante and Luyben (VL) column.   

The 24-tray tower separating a mixture of methanol and water 
is first reported by Luyben [15], and its transfer function 
matrix can be given by 

- s -0.3 s

-1.8 s -0.35 s

-2.2 e 1.3 e
7s + 1 7s + 1G(s)=

-2.8e 4.3e
9.5s + 1 9.2s + 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (27) 

Consider the same design procedure for above example, the 
EIP model can be found as follows: 

( )
0.73

_
11

1.35
6.61 1

s
r eff eg

s

−−
=

+
;   

( )
0.05

_
22

2.65
8.84 1

s
r eff eg

s

−

=
+

 

It can be easily seen that the VL column system does not 
exhibit open-loop column diagonal dominance. However, all 
of J. Lee et al. [16], Lee et al. [17], and Loh et al. [14] design 
methods can be directly provided the multi-loop controllers 
for original process by using numerical iteration, IMC-PID 
analysis, and sequential auto-tuning, respectively. Therefore, 
the proposed method is compared with those well-known 
design methods. Accordingly Eq. 25 the proposed PI/PID 
controller parameters are found since the iλ  values for 
proposed PI/PID methods are adjusted to obtain the same 
value of 0.53γ = as for both of J. Lee’s and Lee’s methods. 
The controller setting parameters and performance indices are 
shown in Table II.  

 

 

 
Fig. 4   Closed-loop time responses for VL column. 
 
It is obvious from Fig. 4 that the improved system 

performance for both proposed PI and proposed PID control 
systems are clearly demonstrated. In which, the smaller 
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overshoot and faster settling time of proposed output 
responses compared to that of the above-mentioned design 
method in term of the unit step change sequentially setting to 
the binary set-point at t =0 and t = 30. The performance values 
in Table II clearly point out the advantage of the proposed 
PI/PID controller over other controllers.  

 
TABLE II 

 PI/PID CONTROLLER PARAMETERS AND PERFORMANCE INDICES FOR VL 
COLUMN 

 
 ciK  Iiτ  Diτ  iλ  IAEt iγ  
Proposed 
PID 

-1.83 6.71 0.09 1.98 5.56 0.53 5.54 8.84 0.002 0.55 

Proposed PI -1.89 6.72 - 1.89 5.42 0.53 5.20 8.84 - 0.59 

J. Lee et al.  -1.31 2.26 - - 7.19 0.53 3.97 2.42 - - 

Lee et al.  -1.90 4.48 - 0.74 6.13 0.53 2.45 5.70 - 0.53 

Loh et al. -1.35 3.00 - - 7.28 0.40 3.36 1.33 - - 
 

VIII. CONCLUSION 
In this paper, a systematic design of multi-loop PI/PID 

controller for multi-delay processes is proposed in order to 
obtain the simplification, flexibility, and effectiveness of 
decentralized control system. The proposed method can be 
successfully applied to decompose the complex multi-loop 
control systems into a number of simple equivalent control 
loops, in which the dynamic interaction is involved 
systematically. The multi-loop IMC-PID controller can be 
designed simply as SISO PI/PID controller for each 
representative reduction model. 

The simulation results show that proposed PI/PID 
controllers achieved superior performance for several 
multivariable processes. 
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