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Abstract—The combination of world population and the third 
industrial revolution led to high demand for fuels. On the other hand, 
the decrease of global fossil 8fuels deposits and the environmental air 
pollution caused by these fuels has compounded the challenges the 
world faces due to its need for energy. Therefore, new forms of 
environmentally friendly and renewable fuels such as biodiesel are 
needed. The primary analytical techniques for methanolysis yield 
monitoring have been chromatography and spectroscopy, these 
methods have been proven reliable but are more demanding, costly 
and do not provide real-time monitoring. In this work, the in situ 
monitoring of biodiesel from sunflower oil using FTIR (Fourier 
Transform Infrared) has been studied; the study was performed using 
EasyMax Mettler Toledo reactor equipped with a DiComp 
(Diamond) probe. The quantitative monitoring of methanolysis was 
performed by building a quantitative model with multivariate 
calibration using iC Quant module from iC IR 7.0 software. 15 
samples of known concentrations were used for the modelling which 
were taken in duplicate for model calibration and cross-validation, 
data were pre-processed using mean centering and variance scale, 
spectrum math square root and solvent subtraction. These pre-
processing methods improved the performance indexes from 7.98 to 
0.0096, 11.2 to 3.41, 6.32 to 2.72, 0.9416 to 0.9999, RMSEC, 
RMSECV, RMSEP and R2Cum, respectively. The R2 value of 1 
(training), 0.9918 (test), 0.9946 (cross-validation) indicated the 
fitness of the model built. The model was tested against univariate 
model; small discrepancies were observed at low concentration due 
to unmodelled intermediates but were quite close at concentrations 
above 18%. The software eliminated the complexity of the Partial 
Least Square (PLS) chemometrics. It was concluded that the model 
obtained could be used to monitor methanol of sunflower oil at 
industrial and lab scale. 
 

Keywords—Biodiesel, calibration, chemometrics, FTIR, 
methanolysis, multivariate analysis, transesterification 

I. INTRODUCTION 

LOBAL energy supply such as heating, transportation 
and power plants generally produced from fossil sources. 

The increase in worldwide population and the industrialisation 
of the 21st century have caused a high demand for fuels. This 
increase in the consumption of the fossil fuel resulted in the 
depletion of global fossil fuels deposits and the increase of 
environmental air pollution caused by these fuels. Therefore 
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research has to focus on developing new forms of 
environmentally friendly and renewable forms of fuels [1]-
[10]. Global energy consumption has doubled from 1973 to 
2013; this is expected to increase by 34% from 2014 to 2035 
for which the transportation sector is the main CO2 emitter 
accounting for 33.6%. Renewable energy comes from sources 
such as geothermal energy, solar, biomass and hydropower, 
for which solar is the most growing renewable energy. 
However, biomass is classified as the only green carbon [11].  

Biodiesel is defined as an alkyl ester; it is produced by 
reacting triglycerides with short chain alcohols. The short 
chain alcohols that are mostly used are methanol and ethanol 
[2], [3], [12]-[16]. Among the advantages of biodiesel 
compared to its counterpart petroleum diesel are: low 
environmental impact, reduction of greenhouse gases effects 
due to less SOx, NOx and CO2 gases emissions, 
biodegradability, high cetane number, high combustion 
efficiency; these advantages made biodiesel to be classified as 
a renewable fuel [1], [16]-[19]. According to estimations, each 
kilogram of biodiesel produced reduces the CO2 emission by 
3.2 kilograms as compared to petroleum diesel [20], [21].  

The transesterification reaction is the reaction of 
triglycerides and short chain alcohol such as methanol or 
ethanol at a specific temperature in the presence of a catalyst; 
glycerol is also produced as a by-product. Transesterification 
is a reversible reaction; hence the alcohol has to be in excess 
to favour the forward reaction [18], [22]-[27]. The reaction 
conditions, feedstock compositional limits and post-separation 
requirements are determined by the nature of the catalyst [18], 
[22]-[27].  

Generally, the catalysts used in biodiesel production are 
characterized in three categories namely: alkalis 
(heterogeneous and homogeneous), acids (heterogeneous and 
homogeneous) and enzymes. In comparison with enzyme 
catalysts, homogenous alkali and acid catalysts are the most 
used in biodiesel production [28]-[34]. The mostly used 
homogenous base catalysts are: sodium hydroxide, potassium 
hydroxide; the mostly used homogenous acid catalyst are: 
Sulphuric acid, hydrochloric acid and phosphoric acid. Alkali 
catalysts are preferred due to their advantages such as low 
cost, the fast reactions and less energy requirement (60 °C is 
enough for high yield, while acid catalysts require more than 
100 °C) [16], [27]. Heterogeneous alkali catalysts used in 
methanolysis are: magnesium oxide (MgO), calcium oxide 
(CaO) and strontium oxide (SrO). Liquid and immobilized 
enzymes have attracted researchers’ attention as they prevent 
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soap formation and the product obtained is of good quality 
thus, reducing the purification processes [16], [28], [29], [31].  

To ensure biodiesel quality, fuel properties and reaction 
monitoring transesterification, analytical methods have been 
used and reported by many scholars. The primary analytical 
method used to quantitatively and qualitatively monitor 
biodiesel yield has been Gas Chromatography (GC), this has 
the advantage to determine intermediate and other 
components. These components are; monoglycerides, 
diglycerides, glycerol moiety and unreacted triglyceride [35]-
[38]. Flame ionisation detection (FID) has been a widely used 
detector; the introduction of mass spectrometer has increased 
the efficiency of the method [35]-[37]. Numerous other 
methods have been employed such: Capillary Gas 
Chromatography (CGC) [15], [38], High Pressure Liquid 
Chromatography (HPLC) [15], [35], [37], [38], Gel 
Permeation Chromatography (GPC) [37]-[39], FTIR 
Spectroscopy [14], [15], [37], [38], [40]-[45], Ramon 
Spectroscopy [14], [38], Size Exclusion Chromatography [15], 
[37], [38], Nuclear Magnetic Resonance (NMR) [15], [37], 
[38], [46], Ultra-sonication assisted spray ionization (UASI) 
spectroscopy, fluorescence spectroscopy, [15], [37], [38], [41], 
[48], UV spectroscopy [14], Thin Layer Chromatography 
(TLC), thermogravimetric analysis (TGA) [37], Viscometry, 
[37], [38]. 

Chromatography and Spectroscopy being the most used 
methods of qualitative and quantitative methods of biodiesel 
are reputed for their accurateness. Nevertheless, they have 
disadvantages such as time-consuming (require extensive 
sample preparation), requiring highly qualified personnel. 
Their usage for in-situ transesterifications (fast reversible 
reactions) has not been feasible. FTIR spectroscopy has been 
reported as an accurate, fast and reliable method for 
quantitative and qualitative analysis of in situ 
transesterification monitoring [15], [37], [38], [41], [48]. 
Many authors have reported the use Infrared Spectroscopy 
such as NIR (Near Infrared) spectroscopy, FTIR for real-time 
transesterification [14], [38], [46], [49], [50].  

FTIR analysis uses infrared spectroscopy technique, in 
which the electromagnetic energy of radiation spectrum is 
used; the energy used in spectroscopy has wavelengths 
between the visible light and radio waves [36]. The infrared 
region used in infrared spectroscopy is divided into three 
regions which are: Near-infrared (NIR) wavenumber ranging 
12500-400 cm-1, mid-infrared (MIR) wavenumber ranging 
4000-400 cm-1 and far infrared (FIR) wavenumber ranging 400 
to 33 cm-1 [36]. MIR has been the most used region and used 
in this study. Infrared spectroscopy has been in use for 
analysis for the past 70 years; infrared spectrums are classified 
as fingerprints of materials or samples, these fingerprints are 
constituted of absorption peaks that correspond to the 
frequencies of vibrations of atomic bonds constituting the 
material [51],  [52].  

Attenuated total reflection Fourier Transform Infrared 
(ATR-FTIR) coupled with PLS regression has been reported 
[41] to be used in the multivariate calibration models for 
determining the content of biodiesel in its blend with 

petroleum diesel. The designed model was shown to be 
reliable for determining biodiesel-diesel blends. This same 
approach was used to determine the vegetable oil used in the 
transesterification by using FTIR in combination with soft 
independent modelling of class analogy (SIMCA), hierarchical 
cluster analysis (HCA), interval principal component analysis 
(iPCA) and principal component analysis (PCA). PLS 
combined with interval partial least squares (iPLS) and 
synergy partial least squares (siPLS) regressions was further 
used to determine the quality variables (amount, flash point, 
sulfur content and specific gravity) of diesel/biodiesel blends. 
These were further used to identify the most suitable region 
for each studied property [41] Quantification of biodiesel yield 
using ATR-FTIR coupled with PLS regression was also used 
in microwave-assisted methanolysis of soybean oil by [41]. 
Reference [15] worked on the transesterification of degummed 
oil and ethanol, applying FTIR and multivariate analyses. 
They concluded that using FTIR to monitor transesterification 
was a fast and reliable analytical method. Those above were 
confirmed by [14] in their work on transesterification of high 
oleic sunflower oil with ethanol.  

Transesterification monitoring of vegetable oils using FTIR 
being a fast and accurate analytical method needs the 
application of multivariate analysis to be successfully reliable 
and industrial quality control [15], [37], [38], [42]. FTIR, 
coupled with multivariate analysis for complex reaction, 
attracted researchers since the late 90s [15]. PLS is a 
mathematical method based on Beer’s law principle for 
quantification [38].  

FTIR uses fibre-optic which was developed to work in the 
mid and NIR regions [15]. Reference [53] used fibre optic and 
PLS to quantify methyl ester from transesterification of 
soybean oil and they made use of the difference in NIR spectra 
between methyl esters at 6005 cm-1 and 4428 cm-1. A cut band 
on a shoulder band of the oil (triglycerides) was observed. 
Loss of OCH2 groups in glycerol moiety was observed, which 
resulted in a decrease in the 1378 cm-1 peak, as per FTIR 
spectrum [39]. On the other hand, [54] made use of the sample 
principle at a region of 1300-1060 cm-1. 

Most of the multivariate calibration methods that have been 
developed use mainly PLS, Principal Component Regression 
(PCR) and PCA techniques. These methods have been 
reported to be tiresome as they necessitate simultaneous 
decomposition of absorption matrices and concentration in 
computing the spectral loading. The spectral loadings are 
afterwards used to determine the most impacting spectra to the 
calibration model. The multivariate calibration methods can be 
improved by increasing the number of calibration and 
validation samples [37]. The regression calibration models can 
be improved by first using pre-processing methods such as 
mean centring technique, [42], [37] and baseline correction 
has been often used in as pre-processing method [42]. Mean 
centring has been the mostly used pre-processing technique. 
Executing mean centring over numerous factors brings about 
the removal of the mean sample vector from all sample 
vectors in the data collection. Afterwards, the relative 
contrasts of the spectrum intensity at different wavelengths are 
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more straightforward to recognise [42]. After a calibration 
model has been pre-processed, performance index algorithms 
are used to access the performance and accuracy of the model. 
These algorithms are Root Mean Square Error (RMSE), Root 
Mean Square Error of Calibration (RMSEC), Root Mean 
Square Error of Prediction (RMSEP) and Root Mean Square 
Error of Cross Validation (RMSECV) [37]. Though the use of 
PLS and PCA generate a reliable and robust model, they rely 
on Beer’s law, which has high complex, mathematics [37]. 
Therefore the use of software becomes essential, as it was the 
case in this study, in which iC Quant Module Multivariate 
modelling was employed.  

The most used analytical methods of biodiesel monitoring, 
namely Chromatography and Spectroscopy, offer information 
on the composition of the mixture. Though spectroscopy can 
be used for in-situ monitoring, they all offer some limitation 
for the fact that they can only be performed when the reaction 
had occurred or by an off-taking sample from the reaction 
mixture. FTIR spectroscopy offered the possibility of in-situ 
real-time monitoring of the process and had been found to be 
non-destructive, user-friendly and a rapid analytical technique. 
Therefore, this study aimed at developing in-situ real-time 
monitoring of the transesterification reaction using EasyMax 
102 and the iC Quant module from iC IR 7.0 software, by 
simplifying the mathematical complexity and thereby reducing 
time of multivariate analysis. Sample validation and 
performance index were performed to check the accuracy of 
the model built.  

II. MATERIALS AND METHODS 

A. Materials and reagents 

Refined sunflower oil (triglyceride) was sourced from 
Golden Fry a local cooking oil supplier. Sodium hydroxide 
(99.5%) used as a catalyst for the transesterification reaction 
and methanol (99%) used as an acyl acceptor for the 
transesterification reaction, hexane (99.5%) used as GC 
solvent and phosphoric acid (99.5%) used for washing 
biodiesel, were sourced from ACE (Associate Chemical 
Enterprises) a local laboratory chemicals supplier.  

B. Standard Preparation 

The biodiesel standard used in this work was obtained by 
transesterification reaction of sunflower with methanol in a 
laboratory scale reactor composed of flat bottom flask mount 
with a reflux condenser and hot plate with magnetic stirrer 
equipped with a temperature controller. Sunflower oil was 
heated for 60 minutes at 105 oC for moisture removal. The 
transesterification reaction occurred under the following 
conditions: Atmospheric pressure, 60 oC, 12 methanol to oil 
mole ratio, 60 minutes reaction time, 1wt% (compared to oil) 
catalyst ratio and 600RPM stirring speed. The product 
obtained was separated by density difference using separating 
funnel, the bottom layer containing glycerol was then 
removed, and the remaining contained an excess of methanol. 
The excess methanol was removed by distillation. The 
biodiesel was vigorously washing with acidic water containing 

3% phosphoric acid until the water was clear, the purpose of 
the acidic water was to remove any soap and catalyst from the 
product [54]. The washed biodiesel was heated at 105 oC for 
moisture removal, cooled and stored. A sample was collected 
for characterisation with GC-FID. The biodiesel standard 
produced was used to prepare 15 standard samples, for which 
one was methanol, and 14 were a mixture of biodiesel and 
sunflower oil at different concentrations for FTIR/PLS 
calibration using ReactIR 15 and data processing using iC IR 
software 7.0 and iC Quant Module from Mettler Toledo 
Easymax 102.  

C. In-Situ Real-Time Transesterification  

The in situ transesterification methanolysis or 
transesterification of sunflower oil was performed in a Mettler 
Toledo Easymax 102 reactor. Mettler Toledo Easymax 102, as 
shown in Fig. 2 is equipped with two reactors of 100 ml each. 
The reactor was mounted with a reflux condenser and a 
mechanical stirrer. Easymax reactors have the advantage to 
simultaneously and independently control two reaction 
mixtures. The dosing mechanism has a purpose to allow more 
accurate reactant addition to the system. Easymax 102 has the 
advantage to control the parameters such as temperature and 
pH in the specified range. The temperature is controlled by 
adjusting the heat of reaction and mixture by the heating and 
cooling system installed. All results timeously recorded for 
analysis at a further stage. EasyMax 102 is equipped with 
incorporated real-time in situ instruments; this enables a depth 
process understanding and makes the determination of the 
kinetics easier. This instrument further allows the correction of 
parameters as they are quickly analytically detected [55].  

A batch set up was used. Approximately 50 g of sunflower 
oil was weighed and transferred in the reactor; approximately 
17 g (approximating 9 moles) of methanol was weighed and 
mixed with 0.5 g (1wt % compared to oil) of sodium 
hydroxide and pumped in the reactor. A new batch 
transesterification reaction experiment was set using iControl 
software 5.0, with 55 oC, 200 RPM, 60 minutes; reaction 
temperature, stirring speed and reaction time, respectively. 
The reaction timing and stirring were set to start once the 
reaction mixture reached the set temperature, then using FTIR 
probe of the ReactIR spectrums were collected every 15 
seconds by inserting the probe in the reaction mixture, this 
further produced a surface plot on the iCIR software for online 
quantification with the calibrated model. The overhead 
impeller was used as a stirring element.  

 

 

Fig. 1 Mettler Toledo Easymax 102 equipped with a dosing system 
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D. GC Analysis of the Standard  

The GC analysis of the standard was performed using flame 
ionisation (FID) on Trace 1310 Thermo Scientific (USA) Gas 
Chromatograph (GC) instrument, equipped with an automatic 
sampler and injector AI 1310. The separation was carried out 
in a BPX70-FAME optimised capillary column (Phase: 
BPX70, 0.25 μm film, Column: 25 m x 0.32 mm ID) from 
SGE (USA).  

A constant flow of 2.2 ml/l of the carrier (helium) was used, 
and the column head pressure was adjusted to 11.8 psi. The 
injection temperature was 250 oC; the injection mode was split 
with a ratio of 8:1, the detector temperature was 300 oC, and 
the injection volume was 1 μL. The initial temperature was 80 
oC held for 2 minutes, firstly ramped to 130 oC at a rate of 50 
oC/minute held for 10 min, secondly ramped to 172 at a rate of 
2 oC/minute and held for 6 minutes. The total run time was 33 
minutes. Hexane was used as a solvent to prepare standard 
solutions. The methyl ester percentage was calculated by 
averaging the sum of surface areas of every methyl ester in the 

sample from the data of GC, this was done in triplicate and 
was found to be 99.57% and was later used as standards.  

E. FTIR Spectra Collection 

FTIR spectra were collected on the 15 samples, for which 
one was pure methanol which was used for solvent subtraction 
on the multivariate data analysis. The probe was introduced in 
all the 14 biodiesel/sunflower oil mixture samples to collect 
samples in duplicate for multivariate calibration; these are 
shown in Fig. 2.  

For the real-time analysis, the probe was inserted in the 
reaction mixture; spectra were collected every 15 seconds 
which was transferred to the iC IR software for interpretation. 
The spectrums recorded by averaging 128 scans in the wave 
number ranging from 2500 to 650 cm-1 using ReactIR15 
spectrometer from Mettler Toledo. The ReactIR15 
spectrometer instrument operates with an MCT detector, 8 cm-

1 resolution, Happ-Genzel apodization DiComp (Diamond) 
probe and AgX 6mm x 2m Fiber (Silver Halide) interface. 

 

 

Fig. 2 Spectra for multivariate analysis 
 

 

Fig. 3 Surface plot of the online monitoring of transesterification 

F. Multivariate Analysis 

The multivariate analyses were performed on 14 samples of 
standards mixture containing different concentrations; the 
mixture concentration was in a way that the entire range of 

conversion was covered. The multivariate analyses of the 
FTIR spectra of the 14 samples were performed using PLS 
regression from iC Quant module of the iC IR 7.0 software of 
Metler Toledo. The region from 701 to 1822 cm -1 was 
selected for data treatment. Uncontrolled sources of variation 
can lead to inter-batch differences. Therefore all spectral data 
were pre-processed before performing multivariate analyses. 
Pre-processing methods such as mean centring, variance 
scaling, and spectrum math square root were used. Cross-
validation by a leave-one-out procedure was performed during 
the validation step to define the optimal number of factors that 
should be kept in the model to detect outliers. The spectra 
were collected in duplicated and divided into two sets for 
calibration and validation of the PLS regression model.  

Performance index was used to evaluate the performance of 
the method. It indicates how well the calibrated method can 
classify the validation standards. As the performance index 

‐0,2

0,2

0,6

1

1,4

1,8

650 850 1050 1250 1450 1650 1850 2050 2250 2450

A
bs

or
ba

nc
e 

(A
.U

)

Wavenumber (cm -1)



International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:14, No:5, 2020

140

 

 

algorithm is set to ‘‘RMSE’’, the root mean square error is 
reported. The closer the RMSE value is to zero, the smaller are 
the differences between the calculated concentrations values 
and the actual values [14]. RMSEC, RMSECV and RMSEP 
have been calculated. Detection and elimination of outliers 
were carried out using score and leverage plots. The predictive 
ability of the model was evaluated according to the RMSEP 
obtained for the external validation set. An F-test at a 
confidence level of 95% was used to assess the statistical 
significance of differences between RMSE values. The F-
values were calculated as the ratio of the squares of the largest 
and smallest RMSE values. Detection and elimination of 
outliers were performed using score, residual (X and Y) and 
leverage plots.  
 

TABLE I 
BIODIESEL AND SUNFLOWER OIL MIXTURE FOR MULTIVARIATE ANALYSES 

Samples Sunflower Biodiesel (%) Sunflower Oil (%) 

1 100 0 

2 89.5 10.5 

3 86.7 13.3 

4 83.3 16.7 

5 69.2 30.8 

6 64.7 35.3 

7 60 40 

8 43.8 56.2 

9 36.4 73.6 

10 33.3 66.7 

11 28.6 71.4 

12 11.8 88.2 

13 6.3 93.7 

14 0 100 

III. RESULTS AND DISCUSSION 

A. Multivariate Calibration  

It was observed from the results obtained that they are 
similarities in the spectra of sunflower oil and the biodiesel, 
this is due to the fact of the high chemical similarity between 
triglycerides and methyl esters, as it can be seen in Fig. 4. 
Nevertheless, some differences can be observed at the region 
of wave number from 900 to 1500 cm −1; this region is called 
the fingerprint region of biodiesel [15], [41]. As shown in 
Figs. 5 and 6, another spectral region around 1740 cm−1 

showed a difference; this includes the stretching vibration of 
carbonyl groups and is due to the extent of glycerol 
substitution in the fatty acids by methoxy radicals.  

There was an O-CH2-C axial asymmetric stretching 
observed at the wavenumber of 1110 cm−1 in the oil spectra 
which was not observed in the methyl esters. It was also 
observed an O-CH3 stretching at 1195 cm−1 in the biodiesel 
spectra which was absent in the one of oil. These were other 
factors considered for discrimination of oil and biodiesel; 
these were found to be similar to what [37] and [41] reported. 
A region of wavenumber ranging from 1370 to 1400 cm-1 
showed O-CH2 groups glycerol moiety of triglycerides, 
diglycerides and monoglycerides present in the oil but absent 
in the biodiesel [41], [37] but diglycerides and monoglycerides 

were very low to be considered for the multivariate modelling. 
Another region (see Fig. 5) that clearly showed distinction and 
was also used as a crucial factor for differentiation was from 
1425 cm−1 to 1450 cm−1, which represent an asymmetric 
bending of CH3 [15], [37], [41]. 

 

 

Fig. 4 FTIR spectra sunflower oil and biodiesel from 650 to 2500 
cm−1 

 

 

Fig. 5 FTIR spectra sunflower oil and biodiesel from 1400 to 1500 
cm−1 

 

 

Fig. 6 FTIR spectra sunflower oil and biodiesel from 1700 to 1800 
cm −1 

 
Figs. 6 and 7 showed that the stretching vibration of 

carbonyl groups was one of the critical factors for distinction 
among the set standard samples which contained different 
percentages of sunflower and biodiesel. The obtained results 
confirmed the observation that the dislocation of the carbonyl 
signal, between the variables, was responsible for the spectral 
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differentiation that occurred as a result of a gradual increase of 
sunflower concentration. That is, for the seven standard 
mixtures described in Table I, there was a gradual migration of 
the C=O stretching vibration from 1746 cm−1 in triglycerides 
to 1738 cm−1. Authors [15] reported a similar observation, in 
the work they reported ethanolysis of degummed soybean oil 
in which the C=O stretching vibrations were observed at 
1746.2 cm −1 and 1735.2 cm −1 for degummed soybean oil and 
ethyl esters, respectively.  

Methanolysis of sunflower influences changes in the FTIR 
spectra of the reaction mixture, therefore to allow the in situ 
real-time monitoring of reaction yield, a multivariate model 
was developed using PLS from iC Quant module from iC IR 
7.0 software.  

 

 

Fig. 7 FTIR spectra sunflower oil and biodiesel mixtures from 1700 
to 1800 cm −1 

 
The FTIR/PLS calibration model was developed from the 

14 samples (see Table I), the region ranging from 701 to 1822 

cm −1 (see Fig. 8) was selected; this was motivated by the fact 
the most discrimination of the spectrum was found in that 
range, and the cumulative root mean square increased from 
0.82 (on full spectrum) to 0.89 (on selected range).  

The same 14 samples were used for calibration (training 
data) and validation (test data); therefore after calibration 
spectrums were taken, the validation spectrums were taken as 
well. Pre-processing methods (Variance Scale, Mean Centring, 
spectrum math square root and solvent subtraction) were used. 
These resulted in the improvement of the performance index; 
this shows the predictive capability of the model (see Table 
II). The improvement of the RMSEC, RMSECV, RMSEP and 
R2Cum showed the effect of perfecting the model by applying 
the pre-processing method. Authors [42], [37] reported the use 
of the performance index, as crucial tools to improve the 
performance of the model. 

The predicted versus actual value of the model (see Fig. 9) 
illustrated how close the predicted results are to the actual 
values. The system calculated the best fit for the training set 
samples to the actual values, and the result of the training data 
is displayed in the chart. Since the model was adequately 
calibrated, almost all the training set samples fell on the 45º 
line. The chart also displays the number of factors used in 
calibrating the training set samples.  

Cross-validation by a leave-one-out procedure was 
performed during the validation step to define the optimal 
number of factors that should be kept in the model to detect 
outliers; this gave 11 optimum factors that were used in the 
model. By using score and leverage plot, outliers were 
detected and eliminated. Detection and elimination of outliers 
were carried out using score and leverage plots. 

 

 

Fig. 8 Spectra range use for PLS/FTIR multivariate analysis 
 

The actual Predicted (Cross Validation) graph (see Fig. 10) 
represents cross-validation of the actual versus the predicted 
values in the model. In this process, the standards samples 

were taken as 28 samples each sample had two spectrums, one 
training set sample (standard) was removed from the 
calibration step at a time. For each standard removed, a new 
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model was calculated, and this model was used to estimate the 
concentration of the omitted standard. For each standard, the 
maximum available data are included in the calibration model, 
but the model is not influenced by the inclusion of the 
standard to be estimated. This method provides a reliable 
estimate of the expected errors in using the calibration to 
estimate concentration in the unknowns. 

 
TABLE II 

PERFORMANCE INDEX BEFORE AND AFTER APPLYING PRE-PROCESSING 

METHODS FOR MULTIVARIATE CALIBRATION 

Index before after 

RMSEC 7.98 0.0096 

RMSECV 11.2 3.41 

RMSEP 6.32 2.72 

R2Cum 0.9416 0.9999 

 

 

Fig. 9 The predictive capability of the multivariate model for oil and 
biodiesel blend: Actual versus Predicted value of the model (blue 

training data and green test data) 
 

The R2 describes the fraction of the explained variations by 
each factor for each response variable. R2 cumulative is 
cumulative explained variance by each factor for each 
response variable. The R2 value of 1 (training), 0.9918 (test), 
0.9946 (cross-validation) indicated the degree to which the 
model fits the data. As seen in Fig. 11, more optimum factors 
are used in the PLS model, the cumulative R2 approached 1; 
this indicated the number of optimum factors influences the 
cumulative R2 positively. Hence the model became perfect.  

 

 

Fig. 10 Cross-Validation Predictive capability of the multivariate 
model for oil and biodiesel blend: Actual versus Predicted value of 

the model 
 

The F Test Statistic graph (see Fig. 12) plots the F-Ratio 
calculated for residual variance of each data sample in the 
predictor variable space. The F-Ratio is the ratio of residual 
variance for a sample versus the total variance of the training 
sample set. This ratio is an indication of how one sample is 
statistically similar to the training dataset of the model. The 
95% confidence limit is displayed on the chart as a reference 
line. The sample’s F-Ratio being far below the 95% 
confidence limit showed that there is 95% possibility that the 
sample should not be considered an outlier. 

The scores are the projection of each spectrum onto the 
various PLS factors. The projection tells how much of a 
specific factor is used to model the given spectrum. The PLS 
score was used in conjunction with F-Test to detect outliers to 
classify samples and to obtain qualitative information about 
the calibration set. The circle describes the boundary using the 
two factors, this was done with 95% confidence limit and 
helps identify if there any potential outliers in the data set. Fig. 
13 shows PLS scores graphs of factor 1 vs factor 2 (a), factor 
2 vs factor 2 (b), factor 6 vs factor 2 (c), and factor 11 vs 
factor 2 (d). From Fig. 13 it was observed that the training 
data are very close to the test data and no point was outside the 
ellipsoid, therefore, no potential outliers.  

 

Fig. 11 R2, R2 Cumulative graph of the model 
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Fig. 12 F Test Statistic (blue training and green test) 
 

 

 

(a) 

(b)
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Fig. 13 PLS scores graphs: factor 1 vs factor 2 (a), factor 2 vs factor 2 (b), factor 6 vs factor 2 (c), and factor 11 vs factor 2 (d) 
 

 

Fig. 14 PRESS vs number of Factors 
 

Fig. 14 shows how the PRESS is affected by the increase in 
the number of factors; PRESS is the PRediction Error Sum of 
Squares versus the number of factors. PRESS is defined as the 
sum of the squared differences between actual and predicted Y 
values for the training data points that are left out in the 
Leave-N-out cross-validation process [56]. PRESS values are 
proper measures of the predictive power of the model. The 
system picks the number of factors that give the minimum 
PRESS value as the optimum number of factors. PRESS and 
RMSECV are closely related. RMSECV is the Root Mean 
Square of the PRESS. 

Fig. 15 plots the value of RMSEC versus the number of 

factors used in the model. RMSEC values are calculated for all 
the training data points used in the model calibration and 
therefore are direct estimates of the modelling error. Each Y 
response variable has its own RMSEC series. Typically, the 
RMSEC value decreases when more factors are used in the 
model. PRESS and RMSEC are closely related.  

Fig. 16 plots the value of RMSECV versus the number of 
factors used in the model. RMSECV are calculated for the 
data points that are left out in the Leave-N-Out cross-
validation during the model calibration. Each Y response 
variable has its own RMSECV series. Typically, RMSECV 
value decreases when more factors are used in the model.  

Fig. 17 plots the value of RMSEP versus the number of 
factors used in the model. RMSEP is calculated for all the test 
data points using the calibrated model. RMSEP expresses the 
average error to be expected with the future predictions. 
Typically, RMSEP values decrease when more factors are 
used in the model. RMSEP is a useful measure when the user 
compares different models, regardless of how the models were 
calibrated.  

 

(c) 

(d) 
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Fig. 15 RMSEC vs number of Factors 
 

 

Fig. 16 RMSECV vs number of Factors 
 

 

Fig. 17 RMSEP vs number of Factors 
 

 

Fig. 18 Residual vs sample 
 

Fig. 18 plots the modelling residuals for the selected 
response variable for all samples. Residuals are the differences 
between the actual values and the predicted values. A large 
residual for a sample indicates that this sample has not been 
well modelled (it may even be an outlier). The residuals 
should evenly be distributed meaning that the remaining 
unexplained variations in the data should be similar to white 
noise. A systematic pattern in the residuals indicates that there 
might be some systematic variation in the data remains. 

Fig. 19 plots the studentised residual versus leverage and 
can be used to detect possible outliers. An outlier is a standard 
which, due to either concentration error, is not similar to the 
rest of the calibration set and may be detrimental to the 
calculation. Ideally, no single standard should exert undue 
influence (leverage) on the calibration. Residuals are also 
ideally small. In practice, a high value for one or the other, 
particularly leverage, does not automatically indicate an 
outlier. It may merely indicate an extreme standard in the 
calibration space, either in concentration or its spectrum. 
Those points with a significant residual and leverage may be 
outliers and therefore, should be removed from the calibration 
set before recalibration. 

 

 

Fig. 19 St Residuals vs leverage 

B. In Situ Real-Time Monitoring of Transesterification Yield  

The model obtained was then used to predict the biodiesel 
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yield in real time from an experiment run on an EasyMax 102 
Mettler Toledo reactor.  

Using iC IR software 7.0, an in-situ real-time monitoring 
was performed. Fig. 20 showed the results obtained; it can be 
seen that the model can be used to predict the biodiesel yield 
in the transesterification of sunflower oil. It was also observed 
that peak present in biodiesel (1437 cm-1 and 1744 cm-1) was 
increasing with time and could be used to monitor the online 
transesterification of sunflower oil. As shown in Fig. 20, it 
was clearly seen that there is a proportional increase of the 

peaks identified as peaks representing biodiesel, hence the 
model obtained is in line with the with what reported by [49], 
stating that single peaks can be used to monitor the biodiesel 
transesterification reaction. Considering a closed system used 
in this work, where no loss of methanol was assumed, 
methanol (peak at 1023 cm -1) consumption could as well be 
used as well to predict the biodiesel yield. The reaction 
monitoring of the biodiesel synthesis using methanol peak 
agrees with the work reported by [49].  

 

 

Fig. 20 In Situ Real-time monitoring of transesterification yield 
 

Fig. 20 indicates that the model obtained from iC IR 
software was quite reliable for predicting reaction yields at 
advanced reaction times in which conversions higher than 
18% were obtained. Small discrepancies were observed along 
the linear regression, particularly at low conversion yields. 
This apparent uncertainty of the model was attributed to the 
interference caused by unmodelled reaction intermediates 
(unreacted mono and diglycerides), which are particularly 
crucial at low reacting times. The matrix was significantly 
simplified towards the end of the reaction. Therefore, 
deviations at short reaction times were expected due to the 
occurrence of a higher amount of unmodelled reaction 
intermediates. 

IV. CONCLUSION 

FTIR spectroscopy has been proven to potentially offer a 
direct, non-destructive, rapid and real-time transesterification 
monitoring. The effectiveness of multivariate variation 
technique using FTIR technique lies in carefully performing 
calibration and model validation to be done with quite a high 
number of samples. Once this is done, there is no need for 
further validation as this can be used for years as long as the 
materials remain the same. This will give much more easiness 
to the operators, quality controllers and quality assurance 
operating the biodiesel plant to use the FTIR to determine the 
yield of biodiesel and to monitor the transesterification. The 

FTIR/PLS model was built to predict more advanced reaction 
yields of methanolysis sunflower oil, which is what matters to 
indicate the time in which the reaction should be stopped. The 
obtained model can be considered suitable for the 
quantification of fatty acid methyl ester in biodiesel produced 
in EasyMax 102 Mettler Toledo reactor and iC Quant module 
from iC IR 7.0 software. A more robust model can be built if 
non-converted mono and diglycerides are to be considered in 
the samples used for both calibration and validation. EasyMax 
Mettler Toledo equipped with ReactIR FTIR probe does not 
require sampling for offline FTIR analysis, neither sample 
preparation for the analysis. As opposed to the GC reference 
method adopted by most of the official methods from 
regulating and monitoring agencies in the world, it can be 
concluded that it is a promising candidate for becoming a 
reference technique to be upgraded for industrial scale. 
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