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Abstract—This paper presents a 4-DOF nonlinear model of a 

cracked de Laval rotor-stator system derived based on Energy 

Principles. The model has been used to simulate coupled torsional-

lateral response of the faulty system with multiple parametric 

excitations; rotor-stator-rub, a breathing transverse crack, eccentric 

mass and an axial force. Nonlinearity of a “breathing” crack is 

incorporated in the model using a simple hinge mechanism suitable 

for a shallow crack. Response of the system while passing via its 

critical speed with intermittent rotor-stator rub is analyzed. Effects of 

eccentricity with phase and acceleration are investigated. Features of 

crack, rub and eccentricity in vibration response are explored for 

condition monitoring. The presence of a crack and rub are observable 

in the power spectrum despite excitations by an axial force and rotor 

unbalance. Obtained results are consistent with existing literature and 

could be adopted into rotor condition monitoring strategies. 

 

Keywords—Axial force, Crack, Nonlinear, Rotor-Stator, Rub. 

I. INTRODUCTION 

ESIGN and vibration control of rotating machines require 

prediction of dynamic characteristics; resonance 

thresholds, stability limits, participating modes and 

interactions of machine parts in the sub-critical and in super-

critical regimes [1]. Rotor-stator rub involves several 

phenomena; impact, friction, and stiffness modification among 

others. Rub forces significantly affect system’s stability limits 

[2]. Most of the reported research analyzes rotor stability 

using various models and simulation techniques [3]-[5].  

A rotor-stator-rub diagnostic model and dynamic 

characteristics to be observed are given in [6]. This model has 

gained a wide application to-date [7]. 

A model of torsional-lateral vibrations with rotor-to-stator 

rub was proposed in [7]. Rub was simulated as elastic impact-

contact, and rub forces represented by friction coefficient, 

normal and tangential forces at rotor-stator contact point.  

A multi-mass model to assess the degree to which chaos 

gets distributed in a rotor- stator system was developed in [8]. 

An analysis of rotor-stator rub done on system bifurcation 

using various damping ratios, Poincare map and FFT spectrum 

in [9] revealed predominance of rub at the bottom of the 

clearance circle at a low rotor speed. A quasi-periodic model 

of a rotor with a bearing clearance was derived by Harmonic 
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Balance Method in [10]. A subsequent stability analysis 

revealed system’s nonlinear features. 

Rotor-stator rub was modelled and stiffening of rotor shaft 

quantitatively investigated in [11]. Change in transient 

stiffness served as a sufficient indicator of rub-impact. 
Rotor-stator rub and the often neglected axial force effect in 

a Lagrangian formulation was analyzed by FFT [12]. 

Simulation at a constant shaft speed failed to indicate most of 

the nonlinear phenomena. At non-uniform speed, nonlinear 

features including bifurcation and chaos were observed. 

Rotor vibration condition monitoring focuses on 

acceleration-deceleration phase, passage via critical speed, and 

coupling of diverse vibration modes [14]. 

The current paper focus on the analysis of coupled lateral-

torsional vibrations of unbalanced rotor-stator system with 

multiple parametric excitations; rub, a breathing transverse 

crack, and an axial force. For the analysis, the model in [7], 

[12] is extended following Energy principles. A layout of the 

physical system under consideration is shown in Fig. 1. 
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Fig. 1 Motor-shaft-disc –stator-transverse crack and axial force [P] 
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Fig. 2 Section view of disc on the shaft in inertial, rotating and motor 

coordinates (�, �), (�, �), (��, ��) respectively 

II. MATHEMATICAL MODEL OF THE STUDY 

The kinetic energy equation of the system in of Fig. 2 is [7]: 
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 ��,�� , �, � and ��� respectively are, disc-mass moment of 

inertia, motor-mass moment of inertia, rigid-body rotation, 

twist about �-axis and velocity vector of �� . Upon 

differentiating �� with respect to time and making appropriate 

substitution as in [7], simplification of (1) yields: 
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 (2) 
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Fig. 3 Geometry of rotor, rubbing impact force and a clearance 

III. FORCES ACTING ON THE ROTOR’S SHAFT 

The shaft deflects under, torque, crack, unbalance, axial 

force and rub. Using Fig. 3, the position of shaft center and 

rotor-stator clearance are, �*+ = �,+ +�-****+, and = �.  �/. 
Friction force0� , acts at the contact point. Contact occurs 
when,  

 �  ∆2 0                                             (3) 
 

When � 4 5, contact ceases and 0�  vanishes.The value of � at an arbitrary point 67 , is  
 � 	 8��  ∆��� � ��  ∆���.                   (4) 

 

The position of 67  relative to point  9 in the ��, �� frame 

is,  

  �***+ 	 �∆ � ∆:;��'($< ,+ � $%&< -+�                 (5) 
 

where � 	 �∆: � ∆�'($< ;  � 	 �∆; � ∆�$%&<         (6)    =>&< 	 ;:                                            (7) 
 

Therefore,  0? 	 @/��  5�;     0� 	  A@/��  5�            (8) 
 0?and A respectively are, radial component due to impact and 

friction coefficient. The lateral forces in �and � directions 

are: 

 

0: 	  0?'($< � 0�$%&<; 0; 	  0?$%&<  0�'($<   (9) 
 

In Cartesian coordinates, the forces are expressed as, 0: 	  @/ C1  DEF � � @/ C1  DEF A�               (10)   0; 	  @/ C1  DEF A�  @/ C1  DEF �                 (11)  

IV. POTENTIAL ENERGY EXPRESSION 

The system elastic strain energy is: 

 G 	 
� @::�� � 
� @;;�� � 
� @HH��     (12) 

 

A high rotor speed excites axial and lateral vibrations which 

affect bending stiffness as given in [12]. 

 @:: 	 @;; 	 @I  JKL�M  NOKP�ML  ;                          (13) 
 @I, 6 and 0H correspondingly are, modal stiffness of first 

bending mode, fluctuating axial force and axial torque. In this 

paper 6 and 0H are prescribed a priori as in [15]. 

 6 	 6Q � 6R$%&�,  0H 	 SQ � SR$%&�     (14) 

 6R , SRand� are amplitudes and rotation angle respectively. 

The system Rayleigh’s dissipation function is expressed as, 

  T 	 
� U::�� � � 
� U;;�� � � 
� UHH�� �                       (15) 
V.  SYSTEM EQUATION OF MOTION 

Substituting (10)-(15) into Lagrange's equation, performing 

requisite differentiation and manipulations, yields: 

 

V�WW�HW�:W�;W

�WH�HH�:H�;H
�W:�H:�::0
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X 

Y�������� [+V0000
0@��00

00@::@;:
00@:;@;;

X \����]+Y^W0̂:^;
[=Y0W0H0:0;

[        (16) 

 

Elements referred to in (16) are as set out in [7]. 

VI. ROTOR MODEL WITH A TRANSVERSE CRACK 

A hinge mechanism is incorporated in the shaft to provide 

for local flexibility of a breathing crack [4]. Shear stresses are 

neglected, Saint-Venant’s principle observed [8] and [13] used 

on (16) yielding the following equation of motion: 
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where,Δa"" ,@Q, and _��� are respectively, change in 
stiffness in the weaker axis due to the crack, uncracked shaft 

stiffness and steering function._���is taken from [13]. 

VII. NUMERICAL SIMULATION AND DISCUSSION 

The system parameters in [7] are adopted for simulation. 

Velocity and torque time histories are given a priori in Figs. 4 

(a), (b). Equation (17) is numerically solved on diverse 

hypothesis by a Modified Runge–Kutta algorithm in 

MATLAB giving �, �, � at time step,∆f	 0.001$, between = 	 0 $,and = 	 20 $. 
 

 

Fig. 4 (a) Torque-Time history   Fig. 4 (b) Shaft speed history 

VIII. LATERAL MOTION AND AXIAL FORCES EFFECTS 

For this simulation, a reduced order model refer to (17) is 

used in the form 

 

h�WW�:W�;W
�W:�::0

�W;0�;;i j�Z�Z�Z k �  h000
0U::0

00U;;i j������ k �  h000
0@::0

00@;;i l���m 	
 
� _�=�Δa"" n00 0              01  '($2� $%&2�0 $%&2� 1 � '($2�o j 00�/fk  j^W^:^;k � jSR00 k   (18) 

 �,� and � are evaluated on passing via critical speed with 

and without a crack. Cross-coupling stiffness and damping 

coefficients adopted are, U:; 	 U;:=@:; 	 @;: 	 0 
 

 

 

Fig. 5 (A) Dynamic response, no torsional flexibility, rub, crack but 

axial force, ∆Kq/Kr=0,  =0, P=2kN: (a) Vertical deflection of 

uncracked shaft; (b) Rotor response orbit; (c) X-Lateral frequency;  

(d) Y-lateral frequency; (e) X-Lateral power spectra; (f) Y-Lateral 

power spectra 

 

 

 

 

Fig. 5 (B) Dynamic response of cracked rotor via the critical speed, 

with axial force, and no rub, ∆Kq/Kr=0.9542, P=2 kN: 
(a) Y- cracked shaft deflection; (b) Rotor response orbit; 

(c) X-Lateral frequency; (d) Y-Lateral frequency; (e) X-Power 

spectral density; (f) Y-Power spectral density. 

 

Comparing the orbits in Figs. 5 (A) and (B), it is apparent 

that, the breathing crack is a source of extra evolution in the 

vibration response, especially when the rotating speed falls in 

the neighborhood of half of the system critical speed. 

The maximum orbit amplitudes in Fig. 5 (B) (b) are 

modified from �
 	 3.167 b 10vw� to �� 	 5.025 b 10vy�  

when the speed changes respectively from z
 	 1132.27 {|� 

in Fig. 5 (A) (c) to z� 	 1855.43 {|� in Fig. 5 (B) (c) i.e. from 

a healthy to a cracked shaft. The cracked shaft is 

characterized by presence of strong tightening loops.  

In Fig. 5 (B) (c), the frequency amplitudes where the inside 

orbit loop is higher is present, is greater than that of a rotor 

with small axial force in Fig. 5 (A) (c). 
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Fig. 5 (B) (d) reveals that a high vibrational level is reached 

by order 1 harmonic at 23.46 ��. 
Vibration in the axial direction does not provide 

information on the presence of the crack. Axial force causes a 

variation in power density spectrum and gives resonance when 

increased to 6.0 kN. Increasing axial force to 12kN intensifies 

the vibration and a third resonance peak is observed in Fig. 6 

(a). The abrupt change in the inside orbit loop indicates a 

breathing crack.  

IX. RUB UNDER AXIAL FORCE AND A CRACK  

 The reduced order model equation for this case is, 

 

h�WW�:W�;W
�W:�::0

�W;0�;;i j�Z�Z�Z k � h000
0U::0

00U;;i j������ k � h000
0@::0

00@;;i l���m 	  j^W^:^;k �
 j0W0:0;k � �
� _�=�Δa"" n00 0              01  '($2� $%&2�0 $%&2� 1 � '($2�o j 00�/fk�   (19) 

 

 

 

 

Fig. 6 (a), (b). Variation of power spectrum density for uncracked (c), 

(d). cracked shaft deflection at axial force P=6 kN. (e) Shaft orbit 

trajectory at large axial force P=12kN 

 

 

 

 

Fig. 7 (A) Rotor lateral-rotor response without torsional deformation, 

with rub, axial force: ∆Kq/Kr=0, ψ =0. P=2000N (a) Vertical 

uncracked shaft deflection (b) Rotor response orbit, (c) X-Lateral 

frequency signal, (d) Y-Lateral frequency signal, (e) X-Lateral power 

spectral density (f), Y-Lateral power spectral 

 

 

 

 

Fig. 7 (B) Rotor system response of the lateral-rotor model without 

torsional flexibility, with rotor-to-stator rub, small axial force and 

crack, ∆Kq/Kr=0.9542, ∆	 2.65 b 10v�m P=2000N (a) Vertical 

cracked shaft deflection (b) Rotor response orbit, (c) X-Lateral 

frequency signal (d) Y-Lateral frequency signal (e) X-Lateral power 

spectral density (f) Y-Lateral power spectral density. 
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An increase in amplitudes of vibration is observed with the 

cracked rotor passing via its one-half and first critical speed 

(z
 	 1917.88 {|� and z� 	 3451.803 {|�). Contact between 

the rotor and the stator increases the rotor dynamic stiffness, 

and this increases the rotor critical speed. However the 

presence of crack decreases the stiffness and decreases the 

critical speed of the rotor (Fig. 7 (B) (a)). 

Comparing the case of uncracked rotor with rub, the 

presence of a crack increased interactions between the rotor 

and stator as indicated in Fig. 7 (B) (b). It is noted that a 

significant rebound appears just after the interaction and it 

becomes quite redundant when the stiffness of the rotor is 

reduced by the severity of the defects in the shaft. 

In Fig. 7 (B) (b) the orbit becomes quite disordered and the 

lateral motion is no longer multi-periodic. Rotor-stator rub 

also increased vibration level of the cracked rotor in the 

presence of an axial force. As a result multiple resonance 

peaks appear in the vibration waveform in Fig. 7 (B) (a). 

Approximately periodic responses of rub appear in Figs. 7 

(B) (c), (d). Harmonics of 1× order (29.21 Hz) are noted as in 

results reported by [16]. The FFT spectral plot also shows that 

the higher frequencies, e.g., 1×, get excited by unbalance in 

presence of rub.  

The 2×, 3× … harmonics which represent the 

superhamonics frequencies peaks are mainly due to crack, and 

harmonics at 1/2×, and 4×, etc., arise due to rotor-stator rub, 

and axial force. These harmonics are clearly seen in FFT plot 

(in Figs. 7 (B) (c), (d)). Power Spectral Density (PSD) 

describing distribution of the power of time series with 

frequency is plotted in Figs. 7 (A) (e), (f) and (B) (e), (f). 

From power spectral distribution in Figs. 7 (A) and (B), the 

rotor-stator contact is obvious, although there exist some 

trivial interferences components (e.g., the encircled part by red 

line in Figs. 7 (A) (e), (f)) at a frequency 57.5Hz. The higher 

frequency is excited by rub and disappears once the rotor-

stator contact ceases (Figs. 7 (B) (e), (f)) due to the dissipative 

energy distribution.  

Comparing the orbital patterns of the cracked rotor rub in 

Figs. 7 (B) (a), (b), it can be concluded that, the size of the 

inside loop, the presence of multiple peaks of resonance and 

the orbital movements of the rotor passing via the first critical 

speed are totally different and can provide information on 

crack presence.  

Examining the system response in the presence of a crack, 

peaks of successive amplitude indicating super harmonic 

resonance appear in Figs. 7 (B) (c), (d). 

The size of the inside loop is drastically affected by the 

crack and the rub. So, the orbital changes of the rotor via one-

half of the first critical speed can be used as an indicator of a 

transverse crack, and the bounces inside the loops can be 

assigned as rub signature. 

X. ROTOR-STATOR-RUB AND CRACK IN 4 D.O.F 

The fully coupled torsional, lateral vibrations of the 

unbalanced rotors with rub and a transverse crack and axial 

force are investigated, using the model referred by (28). 

Parametric resonance occurs in an axially loaded shaft when 

the excitation frequency is great than the shaft bending natural 

frequency zM as in [7]. Torsional resonance occurs when the 
angular velocity of the rotating shaft equals the torsional 

natural frequency z� .  
Simulation of the rotor response using the torsional lateral-

rotor model is made under fourth hypothesis. 

For the first hypothesis the system response is simulated 

when the axial force is exerted and without rub. The torsional 

and lateral natural frequencies are then equal, z� 	 zM. And 
in the second hypothesis rotor is operated only with presence 

of crack and axial force. 

The third and fourth is considering both rub-crack effect for 

which the torsional resonance behaviour takes places when z� � zM . 
 

 

 

 

Fig. 8 (A) Dynamics system response from lateral-torsional-rotor 

model, no rub, no crack ∆Kq/Kr=0. P=2000N, ψ � 0, ω� 	 ω� (a) 
Vertical shaft deflection (b) Rotor response orbit (c) Torsional 

frequency signal (d) Lateral and frequency signal (e) Torsional power 

spectral density (f) Lateral power spectral density 
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Fig. 8 (B) Dynamics system response using the lateral-torsional-rotor 

model, no rub, ∆Kq/Kr=0.9542, P=2000N, ψ � 0; ω� 	 ω� (a) 
Vertical shaft deflection (b) Rotor response orbit (c) Torsional 

frequency signal (d) Lateral and frequency signal (e) Torsional power 

spectral vibration. (f) Lateral power spectral density 

 

 

 

 

Fig. 9 (A) Dynamics response, with rotor-to-stator-rub and axial 

force but no crack ∆Kq/Kr=0. P=2000N,∆	 2.65 b 10v�m (a) 

Vertical cracked shaft deflection (b) Rotor response orbit, (c) 

Torsional frequency signal domain, (d) Lateral frequency signal 

domain (e) Torsional power spectral vibration. (f) Lateral power 

spectral density 

 

 

 

 

Fig. 9 (B) System response with, rub-crack, axial force: ∆Kq/Kr=0.9542. P=2000N,ω� � ω�,∆	 2.65 b 10v�m (a) Vertical 

cracked shaft deflection (b) Rotor orbit response (c) Torsional 

frequency signal (d) Lateral frequency signal (e) Torsional power 

spectral density (f) Lateral power spectral density 

 

Fig. 8 (A) (a) shows the synchronous rotor lateral response 

as a function of time. The shaft attains critical speed at 2042, 4 

rpm indicated by peak amplitude in Fig. 8 (A) (d). The 

variation in FFT amplitude with frequency is plotted in Figs. 8 

(A) (c), (d). 

As noted in Figs. 8 (A) (c), (d) and 9 (A) (c), (d) once the 

critical speed is traversed, the amplitude of vibration 

decreases. This indicates that only unbalance and axial force 

are the source of the above vibrations. 

This is verified by the orbit shape depicting a compressed 

circular response due to the large axial force and the 

synchronous response shown in the spectral plots in Figs. 8 

(A) (f) and 9 (A) (f). 

Spectral plots of the signal in Figs. 8 (B) (d) and 9 (B) (d) 

show an increase in the magnitude of frequency components 

before resonance; while it indicates a reduction in the 

magnitude of the second harmonic and a disappearance of 

higher frequency components. Fig. 9 (B) (b) shows the second 

rigid mode shapes of the modelled rotor. Presence of the 

second rigid mode can be attributed to multiple factors such as 

the model anisotropy, the higher axial force, the transient 

vibration which follows the removal of the friction torque in 

the rub free zone and the presence of the flexibility of the 

cracked shaft. 

Analysis of the orbit presented in Fig. 9 (A) (b) revealed as 

noted already in [7], that the direction of the two maximum 

responses changes due to anisotropy model of rotor. Unlike 

the orbit of the cracked rotor describes the deflection shape of 

the system due to vibration and to local flexibility of the rotor 

at the damage location.  
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Figs. 8 (B) (a) and 9 (B) (a) are waveforms registered 

respectively at a rotational speed of 2309.4 rpm and 4510.21 

rpm.  

Two high resonance points and three resonance points 

developed from the excitation between the torsional and 

lateral rotor. The first one is the ordinary resonance and the 

other two are situated at the median and high resonance in Fig. 

9 B (a). 

Two possible factors could lead to the appearance of 

vibration peaks bands. The first is the large axial force and 

friction which are, of course, a consequence of rub. The axial 

force contributes to increased bending shaft effects, which 

accentuates the rotor-stator contact. However, friction forces 

cause a frictional torque opposite to rotor motion, resulting in 

a fluctuation of rotor speed.  

Therefore, the frequency spectrum (Fig. 9 (B) (e)) would 

contain a vibration component corresponding to these 

modified processional speeds.  

From Fig. 9 (B), it seems that axial force, crack and rub 

force have a big effect on the vibration response in 

comparison to the case of no rub-crack vibrations in Fig. 8 

(A). 

Examining the maximum power spectral density and shaft 

trajectory obtained for a cracked rotor, an increase in the 

spectral power density at half the critical speed can be used to 

diagnose presence of a breathing transverse crack. 

XI.  CONCLUSION 

A study on coupled torsional-bending vibrations of an 

unbalanced rotor-stator system with rub is presented.  

The results clearly indicate the change both in the orbit and 

the amplitude of the 1× harmonic components around one-half 

of the first critical speed. 

An analytical model of an extended Jeffcott rotor is derived 

from Energy Principle accounting for lateral-torsional 

vibration coupling mechanism induced by an axial force and a 

“breathing” transverse crack.  

Three cases are considered in this work; a model accounting 

for rotor-stator rub, a breathing transverse crack, and the 

parametric effect due to the axial compressive force applied 

opposite to motor.  

A frequency response analysis to identify the frequencies of 

critical speeds has been done.  

It is apparent that the axial force is a factor to take into 

account, its effect on the system vibration response in the 

presence of a crack is considerable. For a large axial force, the 

cracked rotor gives a chaotic behaviour and fault features 

become indiscernible in the vibration response. 

 When the excitation frequency is higher than the natural 

frequency, the second harmonic coincides with the natural 

frequency resulting in the amplitude amplification at that 

frequency.  

Uncracked rotor gives a pure harmonic signal at the 

excitation frequency while a cracked rotor indicates harmonic 

frequency excitation due to the nonlinear behaviour of 

stiffness. 

In time and frequency domain stronger higher harmonic 

components in the horizontal direction than in the vertical 

direction during passage via sub-harmonic resonances is 

observed. The increase in spectral power density at half the 

critical speed can serve as an additional indicator of a 

transverse breathing crack. 
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