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Abstract—In this study, three subtypes of influenza A viruses
(pHINI, H5N1 and H3N2) which naturally infected human were
analyzed by bioinformatic approaches to find candidate human
cellular miRNAs targeting viral genomes. There were 76 miRNAs
targeting influenza A viruses. Among these candidates, 70 miRNAs
were subtypes specifically targeting each subtype of influenza A
virus including 21 miRNAs targeted subtype HINI1, 27 miRNAs
targeted subtype HSN1 and 22 miRNAs targeted subtype H3N2. The
remaining 6 miRNAs target on multiple subtypes of influenza A
viruses. Uniquely, hsa-miR-3145 is the only one candidate miRNA
targeting PB1 gene of all three subtypes. Obviously, most of the
candidate miRNAs are targeting on polymerase complex genes (PB2,
PBI1 and PA) of influenza A viruses. This study predicted potential
human miRNAs targeting on different subtypes of influenza A
viruses which might be useful for inhibition of viral replication and
for better understanding of the interaction between virus and host
cell.

Keywords—Human miRNAs, Influenza A viruses, HIN1, H5NI,
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1. INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNAs with
approximately 22 nucleotides in length which play an
important role in regulation of gene expression. [1, 2] The
miRNAs biosynthesis transpires originally in nucleus where
hundreds and thousands of nucleotides with hairpin structures,
called primary miRNAs (pri-miRNAs) were transcribed. Then
the primary miRNAs are cropped and trimmed to 60 to 100
nucleotides long with a stem loop structure called precursor
miRNAs (pre-miRNAs). The pre-miRNAs are then exported
to the cytoplasm by Exportin-5 and then processed by Dicer
containing RNaselll endonuclease activity. [3] The Dicer
removes the loop region of the hairpin, and releases the mature
miRNA duplexes which approximately 22 nucleotides in
length with 2 nucleotides overhanging on both 5’ and 3’ ends.
As soon as the miRNA duplexes assembled with RNA-
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induced silencing complex (RISC) and then one strand of
miRNA is removed by a helicase activity of the RISC, the
remaining miRNA strand guides the RISC to a distinctive
target mRNA via base pairing. [4] A perfect complementary
balancing between miRNA and target mRNA leads to mRNA
degradation. However a partial balancing will lead to in
translational repression. Therefore, miRNAs play an
imperative and foremost undertaking in the regulation of gene
expression in terms of gene silencing. [5]

Effective mature miRNAs distinguished their target
miRNAs based on specific nucleotide complementary
balancing mainly at position 2nd -8th from 5' end of the
miRNAs which termed seed region. [6,7] According to
previous studies, the binding between miRNAs and target
mRNAs can be categorized into 3 distinctive patterns
including 5' canonical, 5' seed and 3' compensatory. The 5'
canonical pattern encompasses base-parings at least seven
nucleotides within a seed region and a supplementary base-
pairings in the 3'-end of the miRNAs.

The 5'seed pattern predominantly comprises of only the
base-paring within the seed region without any support from
the base complement within the 3'-end. The enhanced 3' base
pairings in a canonical pattern are likely to be more effective
that is attributable to their higher pairing energy. In contrast,
the 3' compensatory pattern has no effective base paring
within the seed region and requires several base pairing from
the middle to 3'-end of miRNA to function. [8]

Human miRNAs implicated in many cellular processes such
as cell proliferation, apoptosis and homeostasis. [9] In
addition, many reports conjured up that miRNAs also engage
in an role of great magnitude in regulation of viral infection
and interplay between virus and host cell response.
Aforementioned reports described viral encoded miRNAs
from DNA and RNA viruses including herpesviruses (HSVs)
[10] Epstein—Barr-Virus (EBV) [11], Simian Virus 40 (SV40)
[12] and human immunodeficiency virus-1 (HIV-1) [13]. In
contrast, host cellular miRNAs can also target viral gene and
involve with the replication of many incoming viruses such as
primate foamy virus type 1 (PFV-1) [14], vesicular stomatitis
virus (VSV) [15] and hepatitis C virus (HCV) [16].

Influenza A viruses contain negative single strand RNA
genome and are compartmentalized in to the
Orthomyxoviridae family. [17] During infection in human,
they affect the upper respiratory system and cause either
asymptomatic, mild or severe symptoms including high fever,
coughing, sneezing, nasal congestion, running nose,
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pneumonia and diarrhea. [18] Predominantly, influenza A
virus can be classified into various subtypes based on the
antigenic differences between hemagglutinin (HA) and
neuraminidase (NA) glycoprotein. However, HIN1 [19,20],
H3N2 [21] and H5N1 [22] subtypes were found to naturally
infect humans and cause serious global health problems.
Therefore, this study focused on these subtypes of influenza A
virus and aimed at identification of human cellular miRNAs
targeting the genome of influenza A viruses which might be
useful for understanding the host defense mechanism in terms
of regulating viral infection.

II. METHOD

A. Viral Nucleotide Sequences

Viral nucleotide sequences were downloaded from NCBI
database. Three subtypes of influenza A viruses including
A/Thailand/104/2009  (HIN1),  A/Thailand/NK165/2005
(HS5N1) and A/Thailand/CU-H187/2010 (H3N2) which
naturally affect humans were taken account of in this study.
Accession numbers of complete coding sequences of each
gene (PB2, PB1, PA, HA, NP, NA, M and NS) for each
subtype were presented in Table 1.

TABLEI
ACCESSION NUMBERS OF VIRAL NUCLEOTIDE SEQUENCES IN THIS STUDY
ubtypes HIN1 HS5N1 H3N2

genes

PB2 GQ205443 | DQ372598 | CY074963

PB1 GQ259597 | DQ372597 | CY074964

PA GQ169383 | DQ372596 | CY074965

HA GQ169382 | DQ372591 CY074966

NP GQ169385 | DQ372594 | CY074967

NA GQ169381 DQ372593 | CY074968

M GQ169384 | DQ372592 | CY074969

NS GQ229379 | DQ372595 | CY074970

B. Searching for Candidate Human miRNAs

Totally, 1921 human miRNAs sequences are available in
the miRBase database [23-26] (http://www.mirbase.org).
Based on the average length of miRNA (approximately 22
nucleotides), gene segments of influenza A virus were divided
into small fragments with 50 nucleotides (50 bp) in length
with 25 nucleotides overlapping between adjacent fragments.
Then each small fragment (50 bp) was input and
circumspectly examined for nucleotide similarity with all
human miRNAs by using “SSEARCH” method in a search
tool of the miRBase (www.mirbase.org/search.shtml). In
principle, each of the input viral fragment sequence (50 bp)
was align with all of the miRNAs in the database and then the
miRNAs with highly similar to the viral sequence were
identified as candidate miRNAs. Customarily, the mature
miRNAs duplex structure consists of two strands of miRNAs
that are practically perfect complement to each other. The
complementary strand of the candidate miRNAs might
complement the inserted viral sequence. Therefore, prediction
for hybridization between the viral gene sequence and
complementary strand of the candidate miRNA was further

analyzed by RNA hybrid.

C. Prediction of Hybridization between miRNAs and Viral
RNA

RNA hybrid [27] (http://bibiserv.techfak.unibielefeld.de/
rnahybrid/) was used as a tool to predict the energetically most
favorable hybridization between candidate miRNAs and viral
RNAs. Subsequently, the results were characterized in terms
of hybridization pattern and pairing energy (mfe). The
hybridization patterns obtained from RNAhybrid were
classified into 4 categories including 5’canonical, 5’seed, 3’
compensatory and ineffective hybridization.

Criteria for selection of potential miRNAs

According to the principles of miRNAs target recognition
which requires the sufficient base pairing between the
miRNAs and their target mRNAs that can be classified into
5’canonical, 5’seed and 3’ compensatory [8]. The principle
was cogitated to be a foremost criterion for the selection of the
potential miRNAs . For 5’ dominant classes of target sites that
can be divided into 2 subtypes: 5’ canonical and 5’seed as
described previously, both must indicate the effective base
pairing within the 2nd to 8th position from the 5’ portion of
the miRNAs. For the pattern of 3’ compensatory, the
candidate miRNAs should show at least half of the sequence
from middle to 3’ portion of the miRNAs that will perfectly
coordinate with the target. Another criterion involved with the
pairing energy indicating the stability of the hybridization is
the pairing energy or minimum free energy (mfe) at -10
kcal/mol that was utilized for the selection of potential
miRNAs. In conclusion, the miRNAs targeting influenza viral
gene with effective hybridization patterns (5’canonical, 5’seed
or 3’ compensatory) and paring energy less than -10 kcal/mol
were selected as potential miRNAs. The miRNAs with
ineffective hybridization or unsuitable pairing energy were
excluded from the study.

III. RESULTS AND DISCUSSION

A. Specific miRNAs Targeting Influenza A Virus Subtype
HINI

From 1,921 mature human miRNAs in miRBase database,
25 miRNAs were predicted as potential miRNAs targeting
influenza A virus subtype HIN1 (A/Thailand/104/2009). The
details of hybridization patterns and the paring of energy
between each miRNA and target viral gene were summarized
in Table II. These 25 miRNAs can be divided into 3 groups
according to the patterns of hybridization including
5’canonical (16 miRNAs), 5’seed (5 miRNAs) and
3’compensatory (4 miRNAs). In addition, the cellular
miRNAs were mostly found to target the polymerase genes of
HINI influenza A virus (5 miRNAs for PB2, 5 miRNAs for
PB1 and 6 miRNAs for PA) whereas a few miRNAs were
observed to target other genes (4 miRNAs for NP, 2 miRNAs
for NS, 1 miRNAs for HA and only 2 miRNA for NA). No
predicted miRNA targeted to the M gene of HIN1 influenza A
virus. The numbers of cellular miRNAs targeting each gene of
HINTI influenza A virus were shown in Table V.
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TABLE V
AMOUNT OF CELLULAR MIRNAS TARGETING EACH GENE OF INFLUENZA A
VIRUS
ment
PB2 | PB1 | PA | HA | NP | NA | M | NS | Genome
Subt;
HIN1 5 5 6 1 4 2 0 2 25
H5N1 9 9 3 4 2 2 1 1 31
H3N2 6 5 7 2 1 3 0 3 27
Total 20 19 16 7 7 7 1 6 83

B. References Specific miRNAs targeting influenza A virus
subtype H5N1

According to the result of hybridization pattern and pairing
energy between human miRNAs and their target viral gene, 31
cellular miRNAs were analyzed as potential miRNAs
targeting influenza A virus subtype H5NI1
(A/Thailand/NK165/2005). Table III illustrates in details of
the hybridization pattern and paring energy between each
miRNA and target viral gene. These miRNAs were classified
as S’canonical (23 miRNAs), 5’seed (only 1 miRNA) and 3’
compensatory (7 miRNAs) based on their hybridization
patterns with target viral gene. Moreover, these 31 miRNAs
were found to be predominantly targeted to PB2 and PB1 (9
miRNAs for each gene) of HSN1 influenza A virus. The other
genes were significantly less targeted by miRNAs (4 targets in
HA, 3 targets in PA, 2 targets in each NP and NA and only 1
target for each M and NS). Table V summarizes the numbers
of cellular miRNAs targeting each gene of HSN1 influenza A
virus.

C. Abbreviations and Acronyms Specific miRNAs Targeting
Influenza A Virus Subtype H3N2

Table IV demonstrates the result of hybridization patterns
and pairing energy between potential cellular miRNAs and
their target H3N2 influenza viral genes. Based on our analysis
and prediction, there were 27 miRNAs targeting influenza A
virus subtype H3N2 (A/Thailand/CU-H1817/2010). There
were 19 and 8 miRNAs targeting viral gene with 5’canonical
and 3’compensatory hybridization pattern, respectively. In
spite of this, there was no miRNA targeting the subtype H3N2
influenza viral gene with 5’seed pairing pattern.

Furthermore, these 27 miRNAs were obviously targeted to
polymerase genes of H3N2 influenza A virus (6 miRNAs for
PB2, 5 miRNAs for PB1 and 7 miRNAs for PA). Instead, only
a few of miRNAs were found to target other genes (3 miRNAs
for each NA and NS, 2 miRNAs for HA, and only 1 miRNAs
for NP). None of the predicted miRNA targeted the M gene of
H3N2 influenza A virus. Table V indicates the numbers of
potential miRNAs targeting each gene of H3N2 influenza A
virus.

D. Equations Potential miRNAs Targeting Multiple Subtypes
of Influenza A Virus

As revealed in the Table II, III and IV, miRNAs targeting
multiple subtypes of influenza A virus is being marked with
an asterisk (*) sign at the name of each miRNA. There were 6
miRNAs targeting multiple subtypes of influenza A viruses

including hsa-miR-4753, hsa-miR-3682, hsa-miR-4513, hsa-
miR-216b, hsa-miR-5693 and hsa-miR-3145. The hsa-miR-
4753 targeted to PB1 gene of HIN1 subtype and PA gene of
H5N1 subtype. The hsa-miR-3682 was anticipated as a
potential miRNA for pairing to NA gene of HIN1 subtype and
NS gene of H3N2 subtype. The hsa-miR-4513 was analyzed
as a potential miRNA to hybridize with PA gene of both
HIN1 and H3N2 subtypes. The hsa-miR-216b and hsa-miR-
5693 targeted both HS5N1 and H3N2 subtypes that
complements with NA and PA gene, respectively. Finally, the
hsa-miR-3145 was the only potential miRNA targeting all
three subtypes (HIN1, HSN1 and H3N2) of influenza A virus.
This subtype targeted to PB1 gene of HIN1, HSN1 and H3N2
subtypes with similar paring energy (-18.2, -18.2 and -18.1
kecal/mol, respectively). Interestingly, the 5’ portion (the 1st to
12th nucleotides from 5’ end) of hsa-miR-3145 (5°-
AGAUAUUUUGAG-3") targeted to similar region within
PB1 gene for all three viral subtypes. It seemed that this
targeting region is highly conserved in the PB1 gene among
different subtypes of influenza A viruses. Therefore, hsa-miR-
3145 might be the human cellular miRNA targeting PB1 gene
of influenza A viruses and might be involved in the inhibition
of viral replication.

E. Viral Genes Targeted by Human Cellular miRNAs

Table V shows the amount of cellular miRNAs targeting
influenza viral genes. PB2 genes became the most targeting
sites for 20 miRNAs to bind to. PB1 and PA genes had 19 and
16 targeting sites for miRNAs, respectively. These three genes
show the most targeting regions for human cellular miRNAs
as 55 miRNAs from total 83 predicted miRNAs (66.67%).
These three genes encoded for polymerase enzyme complex
which are necessary for viral replication and therefore
conserved among different subtypes. Moreover, these genes
are the 3 longest genes with 2.2-2.3 kb in length. These may
be the reason why most predicted human miRNAs can target
these genes of influenza A virus.

Previous study confirmed that PB1 gene of HIN1 influenza
A virus (A/WSN/1933) was the specific target for human
miRNAs: hsa-miR-323, hsa-miR-491 and hsa-miR-654. [28]
However, these 3 miRNAs was not predicted as potential
miRNAs targeting HIN1 human pandemic influenza
(A/Thailand/104/2009), H5N1 avian influenza
(A/Thailand/NK165/2005) and H3N2 seasonal influenza
(A/Thailand/CU-H1817/2010) in our study may be due to
viral genetic variation among different subtypes (H3N2 and
HS5N1) and accumulations of point mutations. The viral
genome observed in this study was more than 75 years and has
different form of the HIN1 influenza A virus (A/WSN/1933)
and thus the viral genome became significantly different. Even
the “A/WSN/1933” and “A/Thailand/104/2009” are belong to
the same subtype but they also contain different viral genome
because of the human pandemic influenza subtype HINI1
(A/Thailand/104/2009) that was a new re-assorted virus
containing combined genetic materials from human, avian,
and swine influenza A viruses. [29] Therefore, the prediction
of potential miRNAs targeting multiple subtypes of influenza
A virus seems to be more useful than determination of
miRNAs targeting individual subtypes.
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IV. CONCLUSION

In conclusion, this study utilizes the information obtained
form miRNAs database and using bioinformatic software for
the searching and the prediction of candidate potential cellular
miRNAs targeting the genes of several subtypes of influenza
A virus. The result divulges that hsa-miR-3145 might be the
best candidate human cellular miRNA targeting conserved
region within PB1 gene of 3 subtypes (HIN1, H5N1 and
H3N2) of influenza A viruses. It seems that this miRNA may
have a potential for inhibition of viral replication by silencing
the function of PB1. However, further in vitro analysis should
be performed in order to test for inhibition of influenza viral
replication by the effect of hsa-miR-3145.
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