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Impulse Response Shortening for Discrete Multitone
Transceivers using Convex Optimization Approach
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Abstract—In this paper we propose a new criterion for solving
the problem of channel shortening in multi-carrier systems. In a
discrete multitone receiver, a time-domain equalizer (TEQ) reduces
intersymbol interference (ISI) by shortening the effective duration of
the channel impulse response. Minimum mean square error (MMSE)
method for TEQ does not give satisfactory results. In [1] a new
criterion for partially equalizing severe ISI channels to reduce the
cyclic prefix overhead of the discrete multitone transceiver (DMT),
assuming a fixed transmission bandwidth, is introduced. Due to
specific constrained (unit morm constraint on the target impulse
response (TIR)) in their method, the freedom to choose optimum
vector (TIR) is reduced. Better results can be obtained by avoiding
the unit norm constraint on the target impulse response (TIR). In
this paper we change the cost function proposed in [1] to the cost
function of determining the maximum of a determinant subject to
linear matrix inequality (LMI) and quadratic constraint and solve the
resulting optimization problem. Usefulness of the proposed method
is shown with the help of simulations.

Keywords—Equalizer, target impulse response, convex optimiza-
tion, matrix inequality.

I. INTRODUCTION

THE discrete multitone transceiver (DMT) has attracted
considerable attention recently as a viable technology

for high-speed transmission on spectrally shaped channels [8].
DMT partitions a broadband channel into a large number of
virtually independent, narrowband subchannels. Ideally each
narrowband subchannel would have a flat frequency response
and could be modeled as gain plus additive white Gaussian
noise (AWGN). The total number of bits transmitted in a
broadband channel would be sum of the bits transmitted in
each narrowband subchannel. Modulation by the inverse fast
Fourier transform (IFFT) and demodulation by fast Fourier
transform (FFT) create orthogonal subchannels. The orthogo-
nality is destroyed by spectrally shaped channel so that they
cannot be fully separated at the receiver and causes ISI and
inter carrier interference (ICI). The ISI can be avoided by
adding long guard period at the beginning of each DMT
symbol. When the guard period is a cyclic prefix, i.e, a copy
of last ν samples of a DMT symbol, ISI can be reduced. For
highly dispersive channels, the length of the cyclic prefix is
large resulting in an appreciable bit rate loss, especially for a
moderate size FFT.
A channel shortening equalizer commonly known as a time
domain equalizer (TEQ) is required to shorten the length of
the effective channel to the cyclic prefix length ν. The TEQ
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is finite impulse response filter (FIR). The equalized channel,
which is the cascade of the channel and the TEQ, can be
modeled as delay by ∆ samples followed by an FIR filter
whose impulse response is the target impulse response (TIR)
of ν + 1 samples. The TIR would fit into a target window of
ν +1 samples starting at sample index ∆+1 in the shortened
impulse response (SIR). The rest of the SIR would ideally be
zero.
The MMSE method for channel shortening is used to reduce
the complexity in Maximum likely receivers and has since
been extensively utilized by designers as a suboptimal but cost
effective solution for TEQ in multitone systems [9]. In this
approach, the TEQ is chosen to minimize the MSE between
the equalized signal and the signal as seen by communication
over the virtual channel with short TIR. The advantage of this
method is that the quadratic formulation of the error terms
of the TEQ coefficients allows efficient eigensolution for the
channel shortener. The MMSE method prevents trivial solution
by imposing unity norm tap constraint on the TIR, does not di-
rectly maximizes bit error rate (BER) [1]. The second method
which is used for channel shortening maximizes shortening
signal to noise ratio (SSNR), which also does not maximizes
the BER.
In [2], a method is proposed for channel shortening to maxi-
mize BER but unfortunately this method does not avoid trivial
solution. In this paper, using method proposed in [1], we arrive
at another criterion for channel shortening with no constraint
on TIR, thus having more freedom to solve the resulting
optimization problem.
The rest of the paper is organized as follows:
In section 2, we give overview of the DMT transceiver and
give the method proposed in [1] for channel shortening.
Section 3 is devoted to the proposed method and explains
interior point method. Simulations are given in section 4 and
conclusions are drawn in the last section.

II. SYSTEM MODEL

An input bit stream of rate RDMT b/s is buffered into blocks
of bDMT = RDMT T bits, where T is the multicarrier symbol
period. These bDMT bits are distributed optimally across N̄ ≤
N
2 subchannels. The bits assigned to the ith subchannel, bi, are
mapped by the DMT encoder to the ith complex subsymbol
of the kth transmitted symbol, which is denoted by Xi,k.
These N̄ complex subsymbols are then transformed by an
N-point IFFT into real samples by imposing the Hermitian
symmetry condition Xi,k = X∗

N−i,k (1 ≤ i ≤ N̄). The N
samples are then converted from parallel to serial format and
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applied, after adding a cyclic prefix and passing them through
the digital to analog converter (DAC) and lowpass filter, to
the channel h(t). We shall deal with the equivalent discrete-
time representation of the channel, which will be assumed an
FIR filter. At the receiver , the output signal is first low-pass
filtered and sampled and then cyclic prefix is removed. The
resultant N real output samples are converted from serial to
parallel format and then transformed, through an N-point FFT,
to N̄ complex subsymbols that are individually decoded.

A. Geometric TEQ Method

In [1], the authors proposed a method to incorporate the
optimization of achievable bit rate into TEQ design. The goal
is to use the ultimate performance measure as an objective
function in the TEQ design procedure. In their derivation they
considered the definition of Geometric SNR (GSNR) which is
a useful measure related to the bit error rate (BER)

GSNR = Γ

⎛
⎜⎝
⎡
⎣ N̄∏

i=1

(
1 +

SNREQ
i

Γ

)⎤
⎦

1/N̄

− 1

⎞
⎟⎠ (1)

where Γ is the SNR gap for achieving Shannon channel
capacity and is assumed to be constant over all subchannels,
N̄ = N/2, where N is the number of samples. In [1] it is
shown that maximizing the GSNR is equivalent to maximizing
the BER. In the above equation, the subchannel SNR is
modified to include the effect of equalization [1]

SNREQ
i =

Sx,i|Bi|
2

Sn,i|Wi|2
(2)

where
Sx,i signal power;

Sn,i noise power;

Bi gain of “b” (TIR impulse response) in the ith subchannel;

Wi gain of “w” (TEQ impulse response) in the ith
subchannel.

The equalized channel can be modeled as delay by ∆
samples followed by an FIR filter whose impulse response
is the TIR. The problem statement for optimum TIR problem
in [1] is

bopt = arg maxb
1

N̄

N̄∑
i=1

ln |Bi|
2 s.t. ||b|| = 1 and

bT R∆b ≤ MSEmax (3)

where

Bi =

Nb∑
k=0

b∗ke−j 2π

N
ik = b∗g

(Nb+1)
i (4)

where Nb + 1 is the length of TIR and where (.)∗ denotes
Hermitian transpose.

g
(Nb+1)
i = [1 e−j 2π

N
i . . . e−j 2π

N
iNb ]T (5)

Now let

L(b) =
1

N̄

N̄∑
i=1

ln(b∗G
(Nb+1)
i b), (6)

where
G

(Nb+1)
i = g

(Nb+1)
i g

∗(Nb+1)
i (7)

The above equation can also be written as

G
(Nb+1)
i =

⎛
⎜⎜⎜⎝

1 ej 2π

N
i . . . ej 2π

N
iNb

e−j 2π

N
i 1 ej 2π

N
i . . .

...
e−j 2π

N
iNb . . . e−j 2π

N
i 1

⎞
⎟⎟⎟⎠ (8)

Here, R∆ is the channel dependent matrix, and MSEmax

is the channel dependent parameter that limits the MSE. The
above equation is nonlinear constrained optimization problem.
It does not have closed form solution but it can be solved
numerically.
The MGSNR TEQ method is not optimum (in sense of
maximizing the BER) due to several approximations. One
approximation is the definition of the GSNR itself- the method
maximizes an approximation to the actual GSNR. The objec-
tive function is derived based on the assumption that the TIR
and the TEQ coefficients are independent. However, this is not
the case because the optimal TEQ coefficients are calculated
from the optimal TIR coefficients by using the following
formula

wT
0 = bT

0 RxyRyy−1 (9)

where
w0 is the optimal TEQ vector

b0 is the optimal TIR vector

Rxy is the cross correlation between input and output

Ryy is the output autocorrelation matrix.

The most important approximation, however, is the defini-
tion of the subchannel SNR, SNREQ

i in eq(2), which includes
the effect of the equalizer but not the effect of the ISI, even
though the objective function of the TEQ is to minimize ISI.
This issue has been addressed in [3] by modifying the SNR
definition to include an ISI term

SNRISI
i =

Sx,i|Bi|
2

Sx,i|Bi − WiHi|2 + Sn,i|Wi|2
(10)

However, this definition is used to evaluate the performance
of the MGSNR TEQ method only, which is still based on the
definition given in eq (2). We summarize the drawbacks of
MGSNR TEQ method as follows:
- Its derivation is based on a subchannel SNR definition
SNREQ

i that does not include the effect of ISI.
- It depends on the parameter MSEmax that has to be tuned
for different channels.
- Its objective function assumes that b and w are independent.
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However, they are related by eq(11).
- It requires constrained nonlinear optimization solution,
which limits its optimality because of the constraint.

In [2], the authors propose new equalizer and present new
subchannel SNR definition based on their derivation of equiv-
alent signal, noise, and ISI paths in the DMT system. Based
on the subchannel SNR definition, they derived the channel
capacity as a nonlinear function of equalizer weights. They
developed optimal bit rate solution, which requires a constraint
nonlinear optimization and, thus, is not implementable in
real time. Their method outperforms MMSE and the method
proposed in [1]. The draw back in their method is that it does
not avoid trivial solution as it does not pose any constraint on
optimal TIR vector, b.

III. PROPOSED METHOD
The method proposed by us is variant of the method
proposed in [1]. In order to proceed derivation of the our
method we write the cost function proposed in [1]

L(b) =
1

N̄

N̄∑
i=1

ln(b∗G
(Nb+1)
i b) (11)

where G matrix are defined by eq(7,8). The above equation
can also be written as

L(b) =
1

N̄

N̄∑
i=1

ln Tr(G
(Nb+1)
i B) (12)

where B = bb∗. Now let us evaluate further the
Tr(G

(Nb+1)
i B) function. The matrix G

(Nb+1)
i is positive

semidefinite. To make it positive definite we add a very small
term on its diagonal elements. For simplicity the positive
definite matrix is also represented by G

(Nb+1)
i . The matrix B

is given by , B = bb∗. This matrix is of rank-1. We relax this
rank-1 constraint by assuming that B > bb∗. That is matrix
B is positive definite. Since matrix G

(Nb+1)
i is diagonalizable,

there exists an orthogonal matrix P and a diagonal matrix Σ
such that (for the sake of simplicity we denote Nb + 1 = n,
so the size of matrix B becomes n × n ).

Σ = P T G
(Nb+1)
i P (13)

So if eigenvalues of G
(Nb+1)
i are

λ1, λ2, . . . , λn (14)

Then
Σ = diag(λ1, λ2, . . . , λn) (15)

Let b11, b22, . . . , bnn denotes the elements of PBP T . Then
1

n
Tr(G

(Nb+1)
i B) =

1

n
Tr(PΣP T B),

using cyclic property of trace, we have
1

n
Tr(G

(Nb+1)
i B) =

1

n
Tr(ΣP T BP )

which can be written as
1

n
Tr(G

(Nb+1)
i B) =

1

n
[λ1b11 + λ2b22 + . . . + λnbnn] (16)

Using the Geometric-Arithmetic mean equality [6], which
states that

Theorem [6]:

If a and w are two positive n-tuples then

Gn(a; w) ≤ An(a; w) (17)

with equality iff a1 = . . . = an. Where Gn(a; w) and
An(a; w) are geometric mean and arithmetic mean respec-
tively. Using this inequality we have

1

n
Tr(G

(Nb+1)
i B) ≥ [λ1λ2 . . . λn]

1

n [b11b22 . . . bnn]
1

n (18)

Since
detA ≤ a11a22 . . . ann, (19)

for any positive definite matrix A [7], we conclude that

det(P T BP ) ≤ b11b22 . . . bnn (20)

and
detΣ = λ1λ2 . . . λn. (21)

Therefore from eq(18) it follows that
1

n
Tr(G

(Nb+1)
i B) ≥ [detΣ]

1

n .[det(P T BP ]
1

n (22)

1

n
Tr(G

(Nb+1)
i B) ≥ [det(P T G

(Nb+1)
i P )]

1

n .[det(P T BP )]
1

n

(23)
The above inequality gives

Tr(G
(Nb+1)
i B) ≥ n(det(G

(Nb+1)
i ). detB)

1

n (24)

Plugging the above inequality in eq(14) we get

L(b) ≥
1

N̄

N̄∑
i=1

(ln n + ln(det(G
(Nb+1)
i ). detB)

1

n ) (25)

L(b) ≥
1

nN̄

N̄∑
i=1

(ln(det(G
(Nb+1)
i )) + ln(detB)) (26)

Now 1
nN̄

∑N̄
i=1 ln(det(G

(Nb+1)
i )) is independent of parameter

to be optimized, that is B. Hence our cost function is propor-
tional to ln(det B). Hence our overall optimization problem
is follows:

L(b) ≥ K + ln(detB)

subject to B − bb∗ > 0 and b∗R∆b ≤ MSEmax. (27)

In the above optimization problem we are able to avoid
unity norm constraint on the TIR. Thus giving more freedom
to maximize the cost function. On the other hand our cost
function is also relaxed version of the cost function proposed
in [1]. The first constraint can be expressed as an linear matrix
inequality (LMI) in B and b.(

B b
b∗ 1

)
> 0 (28)
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So eq(31) is a max-det problem in B and b.

The problem of maximizing the determinant of a matrix
subject to linear matrix inequality arises in many fields, includ-
ing computational geometry, statistics, system identification,
information and communication theory [5]. It can also be
considered as generalization of the semidefinite programming
(SDP). The max-det problem is a convex optimization prob-
lem, i.e., the objective function K + ln(detB) is convex (on
{B(b) > 0}), and the constraint set is convex. Indeed, LMI
constraints can represent many common convex constraints,
including linear inequalities, convex quadratic inequalities, and
matrix norm and eigen value constraints. The max-det problem
can be solved very efficiently using interior point method.
Interior point algorithms are efficient in theory and practice.
As the name suggests, these algorithms generate a sequence
of iterates which moves through the relative interior of the
feasible region. Many interior point methods have polynomial
complexity. Computationally, interior point methods usually
require less time than their worst-case bounds. For more
information on interior point method see [4].
Suppose that after solving max det problem we have {B, b} as
optimal solution set. We generate z from normal distribution,
N(b, B − bb∗) and take bopt = z as solution of the max det
problem. We can repeat many times and take the best. In our
simulations we did it for five times and took the best.

IV. SIMULATIONS
For the comparison purposes, we use the same simulation
environment as used in [2], namely DMT modulation for
the eight standard asymetrical digital subscriber loop (ADSL)
carrier serving area (CSA) test configurations [1,2]. We add
a fifth-order Chebychev high pass filter with cutoff frequency
5.4 KHz and passband ripple of 0.5 dB to each CSA loop to
take into account the effect of the splitter at the transmitter. We
consider an N=512 tone system, each tone having the same
bandwidth Bi = 4.3125 kHz, corresponding to the transmitter
signaling at a frequency 2.208 MHz. The input signal power of
23 dBm is distributed equally over all used subchannels. The
added white Gaussian noise has spectral density -140 dBm.
Near end crosstalk (NEXT) noise is modeled as eight ADSL
disturbers. We assume a modulation SNR gap γm = 9.8 dB
, coding gain γc = 4.2 dB , and design margin γd = 6 dB ,
giving over all SNR gap Γ = γm +γc +γd dB. TheMSEmax

was fixed to -17 dB as in [1].
We attempt to reproduce the results of [2] for MMSE, and
MGSNR, in order to demonstrate relative performances. The
percentage of bit rate results relative to the matched filter
bound (MFB) for all methods on the eight test loops are
listed in table 1 (upper table) for a q=17 tap TEQ, attempting
to shorten the channel to length L = 32 . In table 1 and
table 2, the last column shows the bit rate in Mb/s. Table 2
(lower table) gives the percentage of the achievable bit rates
for the eight CSA-Loops equalized with MMSE, MGSNR and
proposed method as percentage of the matched filter bound
RMFB for q = 3. Using h = [h(0)h(1) . . . h(N − 1)]T , we
define the following :
MFBi Subchannel matched Filter Bound (maximum SNR)

MFBi =
Sx(2πi

N )|q∗i h|2

Sn(2πi
N )

(29)

Where qi is DFT vector. Maximum bit rate assuming SNR
gap Γ is

RMFB =
N−1∑
i=0

Bi log2(1 +
MFBi

Γ
) b/s (30)

TABLE I
ACHIEVABLE BIT RATES FOR THE EIGHT CSA-LOOPS EQUALIZED WITH
THE MMSE, MGSNR AND PROPOSED METHOD, IN PERCENTAGE OF THE

MATCHED FILTER BOUND. NUMBER OF TEQ TAPS IS q = 17.

Loops MMSE MGSNR Proposed meth. MFB
1 59 82 87 8.46
2 72 74 85 9.68
3 79 91 98 8.10
4 63 69 87 8.05
5 70 84 97 8.53
6 80 92 94 7.77
7 76 79 94 7.75
8 70 89 94 6.91

TABLE II
ACHIEVABLE BIT RATES FOR THE EIGHT CSA-LOOPS EQUALIZED WITH
THE MMSE, MGSNR AND PROPOSED METHOD, IN PERCENTAGE OF THE

MATCHED FILTER BOUND. NUMBER OF TEQ TAPS IS q = 3.

Loops MMSE MGSNR Proposed meth. MFB
1 55 70 85 8.46
2 63 74 88 9.68
3 70 83 93 8.10
4 74 92 95 8.05
5 89 94 95 8.53
6 93 92 96 7.77
7 82 87 93 7.75
8 78 85 90 6.91

V. CONCLUSION

In this paper we proposed a new criterion for solving the
problem of channel shortening in multi-carrier systems. In
[1] a criterion for partially equalizing severe ISI channels to
reduce the cyclic prefix overhead of the discrete multitone
transceiver (DMT), assuming a fixed transmission bandwidth,
is introduced. Due to specific constrained (unit norm constraint
on the target impulse response) in their method there is limited
freedom for the optimum vector (TIR). Better results can
be obtained by lifting the unit norm constraint on the target
impulse response (TIR). Our criterion is the maximization of
the determinant subject to convex constraints. This problem
can be solved very efficiently using interior point algorithm.
Simulation results shows usefulness of our method. Future
research will be focused on devising adaptive schemes for
channel shortening.
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