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Abstract—We present a taint analysis that can automatically detect
when string operations result in a string that is free of taints, where
all the tainted patterns have been removed. This is an improvement
on the conservative behavior of previous taint analyzers, where a
string operation on a tainted string always leads to a tainted string
unless the operation is manually marked as a sanitizer. The taint
analysis is built on top of a string analysis that uses finite state
automata to approximate the sets of values that string variables can
take during the execution of a program. The proposed approach has
been implemented as an extension of FlowDroid and experimental
results show that the resulting taint analyzer is much more precise
than the original FlowDroid.
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I. INTRODUCTION

ANY path in the code where sensitive information, such

as contact information, location coordinates or SMS

messages, is broadcast though SMS or email or written to

a network socket can constitute a serious breach in security

policy. Static taint analysis tracks suspicious data flows, paths

in the code where a piece of private information leaks through

a public sink. Previous static taint analyzers for Android

applications such as [1]- [2] generate a large number of false

positives. A false positive occurs when the analysis reports

a potential leak when in reality, the path does not constitute

an actual violation of the security policy. Those analyzers are

not precise enough because they use coarse grained labeling

that treats a string operation as either a taint sanitizer or a

taint generator or a taint propagator regardless the context in

which it is applied. This classification cannot handle the case

where the same operation can behave as a taint sanitizer in one

context and as a taint generator / propagator in another context.

For instance, a string replacement operation can behave as a

taint sanitizer or as a taint generator / propagator depending on

the context of invocation. A call to replace, whose effect is to

detect all the occurrences of a tainted pattern and to replace it

with a sanitized string results in a string free of taint. A call to

replace that injects a taint in some previously untainted string

behaves as taint generator. The same applies for the substring

operation. Substring can return parts of the string that do not

contain any taint. Previous approaches treat the return value of

an operation as tainted if it involves a tainted argument. This

is safe but it cannot detect the case where the operation acts

as a taint sanitizer. This paper presents a static taint analysis

that is able to determine if a string operation is used in a

given context as a taint generator, a taint propagator, or a taint
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sanitizer. This is achieved by associating each string expression

with a set of possible taint sources. The taint sources are the

malicious patterns we want to guarantee they do not occur in

the final string.

The main contributions of this paper are as follows:

1) Design and implement a string analysis of Android

applications using finite automata to approximate the

sets of values that string variables might take during

execution.

2) Make use of these approximations to improve the

precision of taint analysis of string expressions and to

discover unreachable code.

3) Implement a prototype analyzer, FlowDroidSTR, on

top of FlowDroid and evaluate it on multiple applications

that handle strings. We also evaluate FlowDroidSTR

on a set of custom benchmarks, TASA [3], specifically

designed for the purpose of this study.

The rest of the paper is organized as follows. Section

II presents some motivating examples. Section III discusses

the related work on taint analysis. Section IV presents the

string analysis of Android programs. Section V describes taint

analysis using string analysis to improve taint propagation.

Section VI presents experimental results. Section VII

concludes with some notes on future work.

II. MOTIVATING EXAMPLES

As a motivating example, consider this code to which line

numbers have been added for purpose of easy exposition.

1 String s = TelephonyManager.getDeviceId();
2 String t = "neutral";
3 t = t.concat(s);
4 (new ConnectionManager())

.publish(t.replace(s, "neutral"));

Fig. 1 Code Snippet 1

The instruction at line 1 reads a piece of sensitive

information and assigns it to variable s. After the first

instruction s is tainted. The instruction at line 4 broadcasts

the result of an operation that involves a tainted argument.

Previous taint analyzers treat it as a leak. A closer inspection

of the replace operation allows us to conclude that every

occurrence of s is replaced with "neutral" and the result does

not carry any sensitive information. The instruction does not

cause an actual leak. FlowDroidSTR tracks the taint s as it

gets injected into the string t. It keeps track of all the atomic

taints that have been used in the computation of the string
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expression t. It precisely approximates replace and substring
operations and concludes that the string that can occur at line

4 does not contain taint.

In the code below, at the entry of the instruction at line

7 the string variable t can either carry the result of the

assignment at line 3 or the result of the assignment at line

4. The conditional expression at line 6 constraints the values

of t and the only possible value of t at line 7 can come from

the assignment at line 4. This assignment does not carry any

sensitive information and the publish does not constitute an

actual leak. FlowDroidSTR is branch sensitive and is capable

of accurately modeling conditional expressions on strings and

uses them to improve the precision of taint analysis.

1 String s = TelephonyManager.getDeviceId();
2 String t = "neutral";
3 if (Math.random() ≤ 0.5) t = t.concat(s);
4 else t = t.concat(t);
5 ConnectionManager cm = new ConnectionManager();
6 if (t.endsWith("neutral"))
7 cm.publish(t);

Fig. 2 Code Snippet 2

III. RELATED WORK

There has been much research into taint analysis of

Android applications, because of its importance in detecting

security violations. FlowDroid [4], [5] is a flow-sensitive,

context-sensitive taint flow analyzer of Android components, it

is able to detect flow from a piece of private information into

a public sink. FlowDroid does not analyze the interactions

among the different components of a given application nor

does it rely on real-time analysis of the code to detect

the lifecycle. The tool constructs a dummy main method to

simulate the lifecycle. This approach builds on predefined

schemes and cannot model every combination of lifecycle

ordering. FlowDroid is not value-sensitive and does not

approximate the runtime values of the variables in the

program. It relies on Soot’s Constant Propagation modules

to optimize its call graph generation and detect unreachable,

dead code. For library method invocation, FlowDroid adopts

a conservative and safe approach. It treats library method

invocation as taint propagators, safely tainting the return value

resulting from a manipulation of a tainted argument.

IccTA [6] is an extension of FlowDroid for inter-component

communication (ICC for short). Android components

communicate using intents. An intent object can target a

component that resides within the current app or outside

the current app and can alter the control as well as the data

flow within the application code. IccTA builds on the results

FlowDroid produces for a single component, detects ICC

links and replaces those links with the target component

of the link. IccTA is flow, object and field-sensitive but

not value-sensitive. A value-sensitive analyzer approximates

runtime values and makes use of these approximations to

refine its main analysis, one such refinement is detecting

infeasible paths in the code, which results in a more precise

analysis and improves the overall performance of analysis

[1].

DidFail [7] is another extension of FlowDroid for

inter-component communication. DidFail builds on Epicc

and FlowDroid to perform a constraint-based taint analysis.

Constraints are added using the intra-component tainted

paths discovered by FlowDroid and the ICC edges to target

components computed using Epicc for intent analysis. These

targets can reside in more than one application. The solution to

these constraints determines the set of taints that might reach

a sink across multiple applications.

Gator [8] is a general-purpose information flow analyzer.

Gator provides its users with a custom data structure called a

callback control flow graph (CCFG for short) and allows them

to discover ill-formed paths and tainted paths. An example of

an ill-formed path is a path where a resource is acquired and

never released or a path where some private information leaks

through a public sink.

Amandroid [2] is a tool that handles the inter-component

control and data flow between different components, even

when they reside in more than one app. Amandroid takes

into account ICC intents and how they affect the control and

flow of data facts. Amandroid is flow and context-sensitive

but does not model some important Android constructs such

as startActivityForResult, nor does it model all components of

an Android application. Amandroid builds a precise model to

compute the effect of critical API calls, such as the calls that

handle intents. Amandroid adopts a conservative approach for

all other library method invocation and assumes that a method

can return any object visible in the scope of the function,

reachable from the method’s parameters and is compatible

with the method’s return type.

HornDroid [1] is another tool for static analysis of Android

programs. HornDroid uses abstract interpretation and builds

a formal abstract model of Horn clauses from the concrete

semantics of the Android operations. The application is

transformed into a set of logical rules, and the security

properties become logical queries that are solved using

off-the-shelf SMT solvers. HornDroid focuses its analysis

on the semantics of Android specific constructs. HornDroid

implements a simple string analysis and uses it to resolve

reflective calls and intent manipulation. HornDroid adopts a

conservative model for library method invocation and treats the

return value of a call as tainted whenever one of the arguments

of the call is tainted.

Epicc [9] analyses the flow of information between

different components of Android applications. Epicc reduces

the problem of inter-component communication of Android

applications to an instance of an IDE [10] problem. Epicc

identifies malicious behavior resulting from the cooperation

of multiple components working side by side to accomplish

a malicious action. Application collusion is an example of

such an attack. Android collusion involves two or more

applications. Although each application individually does

not exhibit any malicious behavior, their aggregate behavior

can result in a dangerous attack. Epicc uses string analysis

to detect communication from one component to another

and approximates the parameters of this communication to

determine the possible receivers of the intent as well as the

data being exchanged. Android components can exchange data
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through the form of a key-value pair within intent objects. An

intent object intercepted by a malicious component can result

in information leakage, and malicious intents can compromise

the security of the system. In Epicc, distributive environment

transformers model the effects of API method calls on the

intents and the data they carry. The problem is solved using

Heroes and Soot.

While FlowDroid [5] and IccTA [6] are value insensitive

and rely completely on Soot modules to optimize their

call graph generation and to eliminate unreachable code.

Gator [8] , Amandroid [2], Epicc [9] and HornDroid [1]

are value sensitive and benefit from a simple constant

propagation analysis. This allows them to evaluate simple

string expressions that evaluate to a literal. The analysis

approximates the value of the string expression to be any

string when the result no longer evaluates to a constant

string literal or when the expression is too complex to be

evaluated by the analysis. The results of string analysis are

used to resolve intents and to approximate receivers of inter

component communication, among other usages.

IV. STRING ANALYSIS

A. Abstract Domain

There has been much work on string analysis of programs

in Java / Android and other programming languages [9],

[11]- [12]. The abstract domains proposed for stings analysis

range from constant propagation [13], to multitrack finite

automata [12], providing different trade-offs between precision

and cost of analysis. We use the domain of deterministic

finite state automata DFA over the alphabet of Unicode

Σ to approximate the sets of strings that variables might

take during program execution. The abstract domain captures

string properties sufficiently precisely and it admits sufficiently

efficient implementation. The string analysis is built on Vasco

[14] - a framework for implementing inter-procedural dataflow

analysis of Java programs. The framework is modified to

support value-based branch-sensitivity and context-sensitivity

and is then instantiated with an abstract domain for string

analysis. The abstract domain is equipped with several abstract

string operations that approximate concrete string operations.

Each concrete string operation is approximated by an abstract

string operation.

B. Abstract Operations

Concrete operations on strings fall into two categories:

those that return string values and those that return boolean

values. We first present abstract operations that approximate

those concrete operations that return string values. These

abstract operations are finite automaton transformers and are

implemented by extending JSA’s [15] library of transducers

with a more elaborate form of string operations on finite

automata. With DFA abstractions, abstract string concatenation

is just the concatenation of two DFAs. A StringBuilder is also

represented with a DFA and the abstract append operation is

modeled using the concatenation of DFAs. In what follows let

L(M) be the language of DFA M, the set of words from Σ∗

that are accepted by the automaton M.

q0start q1

[a− z]

[a− z, 0− 9]

Fig. 3 Finite State Machine 1

1) Abstract Substring operation: The abstract substring

operation is based on an algorithm presented in [16]. It

performs a breadth-first traversal of the state nodes constituting

the DFA and disregards the states that are reachable before the

starting index and those that are reachable after the end index.

A new initial and a new final state are added to the original

automaton. An epsilon transition is created from the initial

state to every state reachable in start index steps. An epsilon

transition is created from any state reachable in end index

steps to the accepting state. If a final state is reached while

looking for states reachable in start index steps, the initial state

is made accepting and the empty string is accepted. If a final

state is reached while looking for sates reachable in end index

steps, the DFA accepts words whose length is less than the end

index and that final state is kept as accepting in the resulting

automaton. The resulting automaton is then converted into an

equivalent DFA.

2) Abstract Replace Operation: The abstract string replace

operation replace(M1,M2, M3 ) from [17] is used in string

analysis. It consists of detecting every path in M1 that accepts

any word from L(M2) and replace that path by a copy of

M3. The algorithm operates in three stages. The first stage

transforms M1 into an automaton M ′
1 that accepts words that

are obtained from inserting pairs of separators into words from

L(M1). The second step transforms M2 into an automaton

M ′
2 that accepts the concatenation of words from M2 and

words that do not contains words from M2 as substrings where

the pairs of the same separators are used to delimit the two

types of words. The last stage operates on the intersection of

M ′
1 and M ′

2 and consists of detecting every path that accepts

any word from M2, which are the paths delimited by the

separator, and replace that path by a copy of M3. Unlike the

replace operator provided by JSA, which is only able to handle

cases where operands are string literals, the replace operator

in [17] operates on finite automata. This greatly improves the

precision of analysis.

To better understand the algorithm, consider the case where

we want to replace every occurrence of numerals in the regular

expression e1 ="[a-z][ a-z,0-9]*" with the replace

string "***". The regular expression e1 corresponds with

the finite state machine presented in Fig.3. The output of the

first transformation phase is M ′
1 shown in Fig.4. The separator

character we used was #, the pound sign. The output of the

second phase is shown in Fig.5. The machine accepts words

where the numerals are delimited by the separator characters.

The last stage detects the paths delimited by the separator

character and replaces them with M2. The final machine

returned by the replace operation is shown in Fig.6.

3) Widening: Given that the lattice of DFAs has an infinite

height, the widening operator from [17] to safely approximate

infinite set of string values generated in a loop is used to
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q′0 q′1

q0start q1

[a− z]

[a− z]

[a− z, 0− 9]

[a− z, 0− 9]

## ##

Fig. 4 Finite State Machine 2

q1start q2 q′1 q′2

[a− z]
[a− z]

# [0− 9]

[0− 9]

#

Fig. 5 Finite State Machine 3

guarantee the convergence of the analysis. We unroll loops

up to some predefined limit. If convergence is not achieved

within the limit, we apply the widening operator.

The widening operator � was initially defined for arithmetic

operations and later applied to DFAs in [17]. The widening of

two finite automata consists of defining an equivalence relation

between the states of the two automata, where two states are

equivalent iff for any word w from Σ∗ both automata transit

into an accepting state starting from these two states. The

states of the resulting automaton are the sets of equivalence

classes. The initial state is the class that contains the initial

states. The final states are equivalence classes that contain at

least a final state and the transfer function is built from the

initial transfer functions to transit from one equivalence class

Ci to another equivalence class Cj on a given symbol iff the

original transfer functions transit on any state from Ci to any

state in Cj on that symbol.

C. Branch Sensitivity

We now present abstract operations that approximate those

concrete operations that return boolean values. They are

abstract store transformers. An abstract store is a mapping

from string variables to finite automata. Let e1 and e2 be

two string expressions and σin be the input abstract store.

A boolean expression of the form e1.op(e2) where op is

a comparison operator transforms the input abstract store

σin to an output abstract store σout as follows. The strings

expressions e1 and e2 are abstractly evaluated in σin to obtain

finite automata a1 and a2 respectively. Then an abstract store

σ1 is obtained from e1 and a2 and another abstract store σ2

q1start q2 q3 q4 q5 q6

[a− z]
[a− z]

ε ∗ ∗ ∗

ε

Fig. 6 Finite State Machine 4

is obtained from e2 and a1. Finally, the output abstract store

σout is obtained as the meet of σin and σ1 and σ2 where the

meet operation on abstract stores is the point-wise extension

of the intersection operation on finite automata. For different

comparison operator op, σ1 and σ2 are obtained differently as

follows.
1) Abstract Equals operation: The sets of the values of the

string variables in e1 are approximated by finite automata, such

that e1 is a string accepted by a2, giving rise to an abstract

store σ1, and the sets of values of the string variables in e2
are approximated by finite automata, such that e2 is a string

accepted by a1, giving rise to an abstract store σ2.
2) Abstract Contains operation: A finite automaton a′2 is

constructed such that a′2 accepts a string w iff a word in

L(a2) occurs as a substring in w, and a finite automaton

a′1 is constructed such that a′1 accepts a string w iff w is

a substring of some string in L(a1). The sets of the values of

the string variables in e1 are approximated by finite automata,

such that e1 is a string accepted by a′2, giving rise to an abstract

store σ1, and the sets of values of the string variables in e2
are approximated by finite automata, such that e2 is a string

accepted by a′1, giving rise to an abstract store σ2.
3) Abstract StartsWith operation: A finite automaton a′2 is

constructed from a2 such that a′2 accepts a string w iff w
contains a string in L(a2) as a prefix, and a finite automaton

a′1 is constructed such that a′1 accepts a string w iff w is a

prefix of a string in L(a1). Then σ1 and σ2 are obtained as in

the abstract contains operation.
4) Abstract EndsWith operation: A finite automaton a′2 is

constructed such that a′2 accepts a string w iff w contains

a string in L(a2) as a suffix, and a finite automaton a′1 is

constructed such that a′1 accepts a string w iff w is a suffix

of a string in L(a1). Then σ1 and σ2 are obtained as in the

abstract contains operation.

V. TAINT ANALYSIS OF STRING EXPRESSIONS

We refine the semantics of taint analysis and we make them

aware of the contextual effect of string operations on taint

propagation. We use source() in place of any instruction that

has the potential of returning a taint, i.e., a piece of sensitive

information, in the program. We refer to the left hand side of

an assignment v = source(), as an atomic taint. Any value

computed in terms of an atomic taint is a potentially tained

value. A taint analyzer typically tracks a taint as it flows to

reach a sink. A sink is any instruction that has the potential

of leaking sensitive information, resulting in disclosure of

critical data. FlowDroidSTR keeps track of a list of variables

that have potentially tainted values. These variables are called

abstract taints. FlowDroidSTR abstractly evaluates a tainted

string expression into a pair consisting of a DFA and a set of

atomic taints. The DFA approximates the set of possible values

of the string expression and the set contains the atomic taints

that were used to compute the value of the string expression.

The set of the atomic taints keeps track of the sources of

the taints that got injected into the string expression through

string operations concat, append, replace and substring. Let

atoms(v) be the set of atomic taints associated with the string

variable v.
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The Android instructions that involve string operations are

analyzed as follows.

Case 0: v = source() where v is a string variable and the

right hand side is a source of taint. The variable v is added to

the list of abstract taints. The set of atomic taints associated

with v is now {v}. atoms(v) = {v}.

Case 1: v = v1.concat(v2) updates the set of atomic taints

of v to become atoms(v) = atoms(v1) ∪ atoms(v2)
Case 2: v1.append(v2) updates the set of atomic taints of

v1 to become atoms(v1) = atoms(v1)
⋃

atoms(v2)
Case 3: v = v1.toString() updates the set of atomic taints

of v to become atoms(v) = atoms(v1)
Case 4: v1 = v2 where v1 and v2 are string variables

updates the set of atomic taints of v1 to become atoms(v1) =
atoms(v2)

Case 5: v = v1.substring(i, j) updates the set of atomic

taints of v to become atoms(v) = atoms(v1)
Case 6: v = v1.replace(v2, v3) updates the set of atomic

taints of v to become atoms(v) = atoms(v1)
⋃

atoms(v3)
Case 7: Any broadcast operation that involves a string

expression e, FlowDroidSTR checks if the value of the

string expression contains any atomic taints as substring. This

is done as follows. For each atomic taint from the set of

atomic taints associated with e and associated with DFA

A, FlowDroidSTR checks if 1.A.1 intersects with E - the

DFA associated with the string expression of e, where 1 is

a constant DFA such that L(1) = Σ∗. If they intersect, the

value of e is potentially tainted, otherwise the automaton E
does not accept any string that can contain a tainted pattern as

a substring. In this case the value being broadcast is definitely

not tainted.

An atomic taint associates one or more malicious patterns

with a string expression; A malicious pattern is a regular

expression that encapsulates the taint. The last check consists

of detecting if those malicious patterns can still occur in the

final string. Reformatting a malicious pattern or attempting to

fragment the atomic pattern are detected by the analysis; An

atomic taint is always associated with the different patterns

in which it can occur and the substring abstract operation is

redefined to always return the entire pattern when its start and

end indexes happen to fall within the boundaries of the atomic

pattern.

State of the art static taint analyzers of Android programs

rely on general, less precise rules to cover most of the cases

of taint propagation resulting from library function calls.

FlowDroid implements the semantics of taint propagation as

defined in [4]. FlowDroid, by default, treats library calls

as taint propagators, unless they are manually classified

as generators or sanitizers. In the case of an assignment,

FlowDroid will consider the left-hand side of the assignment to

be tainted if any of the operands in the right hand side is tainted

regardless of the operation being performed on these operands.

An invocation of taint generator with a tainted argument taints

the base object in the case of an instance method call, it also

taints the return value, and the left-hand side of the assignment

is labeled as tainted as a result of the call. The basic idea of a

taint generator / propagator is that a manipulation of an object

that stores tainted data can potentially return tainted data and

hence, the return value of that method call is labeled as tainted.

FlowDroidSTR implements our approach to taint

propagation, a refinement of the semantics of [4].

FlowDroidSTR benefits from a more precise modeling

of string operations based on finite state automata. It

implements the abstract replace operation from [17], and the

abstract substring operation from [16]. FlowDroidSTR also

models the effect of conditional expressions on automata,

in order to detect the effect of contextual taint sanitizers as

described earlier.

Consider the following example where results of string and

taint analyses are comments.

1 //String: {s←− 1 , t←− 1, u←− 1}
2 //Taint: {}
3 String s = TelephonyManager.getDeviceId();
4 //String: {s←− DFA("IEMI1") , t←− 1, u←− 1}
5 //Taint: {(s,{s})}
6 String u = TelephonyManager.getSubscriberId();
7 //String: {s←− DFA("IEMI1") , t←− 1, u←−

DFA("IMSI1")}
8 //Taint: {(s,{s}),(u,{u})}
9 String t = "neutral";

10 //String: {s←− DFA("IEMI1") , t←−
DFA("neutral"),u←− DFA("IMSI1")}

11 //Taint: {(s,{s}),(u,{u})}
12 if (Math.random() ≤ 0.5){
13 t = t.concat(s).concat(u);
14 //String: {s←− DFA("IEMI1") , t←−

DFA("neutralIEMI1IMSI1"),u←− DFA("IMSI1")}
15 //Taint: {(s,{s}),(u,{u}),(t,{s,u})}
16 else {
17 t = "litteral";
18 //String: {s←− DFA("IEMI1") , t←−

DFA("litteral"),u←− DFA("IMSI1")}
19 //Taint: {(s,{s}),(u,{u})}
20 }
21 //String: {s←− DFA("IEMI1") , t←−

DFA("neutralIEMI1IMSI1|litteral"),u←−
DFA("IMSI1")}

22 //Taint: {(s,{s}),(u,{u}),(t,{s,u})}
23 ConnectionManager cm = new ConnectionManager();
24 if (!t.startsWith("neutral")){
25 //String: {s←− DFA("IEMI1") , t←−

DFA("litteral"),u←− DFA("IMSI1")}
26 //Taint: {(s,{s}),(u,{u}),(t,{s,u})}
27 cm.publish(t);
28 }

Fig. 7 Code Snippet 3

An android app that has been granted the

permission to READ_PHONE_STATE can access the

unique identifiers of an Android device by invoking

operations such as TelephonyManager.getSubscriberId(),

TelephonyManager.getMeid(),

TelephonyManager.getDeviceId(). The instruction

TelephonyManager.getDeviceId() for example, returns

the IMEI ID of the phone, a concrete string that uniquely

identifies the phone. After the instruction at line 3 the string

analysis associates s with the automaton that accepts the

unique ID of the device. After the instruction at line 6

the string analysis associates u with the automaton that

accepts the unique subscriber ID of the device owner.

At the entry of the instruction at line 23, t can be the

result of the assignment at line 13 or the result of the
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assignment at line 17. The conditional expression at line

24 restricts t to only those strings that do not start with

literal "neutral". TelephonyManager.getDeviceId() and

TelephonyManager.getSubscriberId() are taint sources. After

the instruction at line 3, s is added to the list of taints

and atoms(s) = {s}. After the instruction at line 6, u is

added to the list of taints and atoms(u) = {u}. After the

instruction at line 13, t is tainted and the atoms(t) = {s, u}.

Before the publish instruction at line 27, t is associated with

DFA("litteral") and atoms(t) = {s, u}. Since neither s nor u
can occur as a substring of words of t, the publish instruction

does not leak any sensitive information.

Consider the following example with a loop.

1 //String: {s←− 1 , t←− 1}
2 //Taint: {}
3 String s = TelephonyManager.getDeviceId();
4 //String: {s←− DFA("IEMI1") , t←− 1}
5 //Taint: {(s,atoms(s)={s})}
6 String t = "neutral";
7 //String: {s←− DFA("IEMI1") , t←− DFA("neutral")}
8 //Taint: {(s,atoms(s)={s})}
9 while(Math.random() ≤ 0.5) {

10 //String: {s←− DFA("IEMI1") , t←−
DFA("neutral(IEMI1)*")}

11 //Taint: {(s,{s})}
12 t=t.concat(s);
13 //String: {s←− DFA("IEMI1") , t←−

DFA("neutral(IEMI1)+")}
14 //Taint: {(s,{s}),(t,{s})}
15 }
16 //String: {s←− DFA("IEMI1") , t←−

DFA("neutral(IEMI1)*")}
17 //Taint: {(s,{s}),(t,{s})}
18 ConnectionManager cm = new ConnectionManager();
19 if (!t.contains(s)) {
20 //String:{s←− DFA("IEMI1") , t←− DFA("neutral")}
21 //Taint: {(s,{s}),(t,{s})}
22 cm.publish(t);
23 }

Fig. 8 Code Snippet 4

After the instruction at line 3, s is associated with the

automaton that accepts the unique device ID. At the exit

of the while loop, t can have 0 or more s appended to

it and the string analysis approximates t with the regular

expression "neutral(IEMI1)*". The conditional expression at

line 19 restricts t to only those that do not contain s. The

variable t is associated with the regular expression "neutral".

The results of the string analysis are made available to the

taint analyzer. After the first instruction s is tainted and

atoms(s) = {s}. After the instruction at line 12, t the result

of an operation on a tainted argument, it is added to the list of

abstract taints and atoms(t) = {s}. None of the atoms of t
can occur as a substring in a word accepted by the automaton

DFA("neutral") and therefore the publish instruction is not

leaky.

VI. EXPERIMENTAL RESULTS

For the purpose of evaluating our work and showcasing

the benefits of coupling taint analysis with an accurate string

analysis we evaluate our tool on applications from DroidBench

[18], ICC-Bench [19] and UBCBench [20] benchmark suites.

We also extend the set of existing benchmarks with our

own benchmark applications, TASA [3]. We develop a

set of 64 benchmark applications, each representing a

specific scenario of manipulation of a tainted string and

transformation of the taint with string operations. We name

our benchmarks TASA, short for taint analysis of strings with

automata. Each of the benchmark apps embodies a common

scenario of application development where operations such as

string.replace, string.append and string.concat were used to

inject a taint into a previously untainted string. Operations

such as string.replace was used to sanitize the tainted part of a

string. Operations such as string.substring were used to retrieve

parts of a string that fell into the tainted part of the string or fell

into the sanitized part of the string. Conditional expressions

such as string.contains, string.startsWith, string.endsWith were

used to restrict the incoming strings to a given condition

and potentially eliminating tainted patterns from the string so

that it satisfies the conditional expression. We also evaluate

FlowDroidSTR on random apps from the Google Play Store.

The problem with random apps resides in the difficulty in

deciding whether a leak reported by the tool constitutes an

actual breach in the security policy. We report our evaluation

of FlowDroidSTR on TASA because the results are not

ambiguous and we make our detailed results available at [3].
We ran our experiments on a Windows machine with

2.6GHz Intel Core i5 processor and 8GB of RAM. Our

experimental results are summarized in Table I. The two

columns under #FP record the number of false positives

reported by FlowDroid and FlowDroidSTR respectively.

The three columns under Time record the analysis times

reported by FlowDroid, FlowDroidSTR and the ratio of the

analysis time reported FlowDroidSTR to the analysis time

reported by FlowDroid. The two columns under Memory

record the memory consumption reported by FlowDroid and

FlowDroidSTR respectively. The number of expected leaks

for a given app was determined by manually inspecting the

flows of the app. The total number of expected leaks across all

the benchmark apps is 31. FlowDroidSTR reports exactly 31

leaks. FlowDroid reports a total of 63 leaks out of which 32

were false positives. The average run-time FlowDroidSTR

took to analyze a benchmark was 5,769.92ms. The average

run-time FlowDroid took to analyze a benchmark was 4,563.84

ms.
The following observations were made:

1) The precision of the tool is computed as being the

percentage of the ratio of the number of false positives

to the total number of reported flows. FlowDroidSTR

is twice as precise as FlowDroid on TASA.

2) FlowDroid and FlowDroidSTR consumed

approximately the same memory.

3) FlowDroidSTR is 27% slower than FlowDroid.

The experimental results show that a precise string analysis

is very beneficial when it comes to accurately deciding the

effect of string operations on taint sanitization. They also

show that the overhead of coupling taint analysis with a string

analysis based on finite automata is acceptable given that static

taint analysis is often performed offline.
While randomly selected mobile apps from the Google Play
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TABLE I
EXPERIMENTAL RESULTS

Benchmark (# of apps, LOC) #FP Time(ms) Memory (MB)
F FSTR F FSTR Time % F FSTR

TASA (64 apps, 15000) 32 0 4563.84 5769.92 126.42% 73 75

Store may not contain malicious flows, accidental leaks are

common in real world application. Deciding whether a leak

detected by the analyzer constitutes an actual security breach

may require additional considerations to determine if the setup

of the environment in which the app runs prevents the leak

from constituting an actual security vulnerability. In addition

to evaluating FlowDroidSTR on multiple randomly selected

apps from the Google Play Store we evaluate our tool on

InsecureBank [21]. InsecureBank is an Android application

used for penetration testing and developed in the purpose

of simulating a real-world mobile application with embedded

vulnerabilities similar to those found in real-world scenarios.

We inspect the source code and manually identify the different

leak. The version of the code contained 6 leaks. FlowDroid

and FlowDroidSTR successfully find all of them in about

30s.

VII. CONCLUSION AND FUTURE WORK

We have presented a precise taint analysis that keeps track of

sources of taints in string expressions and makes use of a string

analysis based on finite automata. The analysis is implemented

as an extension of Flowdroid and results in a more precise

taint analyzer FlowDroidSTR. FlowDroidSTR is able to

improve on the number of false positives of Flowdroid’s taint

propagation by implementing a precise flow sensitive string

analysis. It is able to detect infeasible paths in the code and

detect the taints that do not occur as a result of the source or

the sink being unreachable. We plan to experiment with other

forms of numerical and string analysis and the effects they

might have when coupled with a state of the art taint analyzer

like FlowDroid. Future work would investigate the tradeoffs

of precision to cost these other analyses might incur on the

original analysis.
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