
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:6, 2017

741

 

 

 
Abstract—This paper describes the use of the Internet as a 

feature to enhance the security of our software that is going to be 
distributed/sold to users potentially all over the world. By placing in a 
secure server some of the features of the secure software, we increase 
the security of such software. The communication between the 
protected software and the secure server is done by a double lock 
algorithm. This paper also includes an analysis of intruders and 
describes possible responses to detect threats. 
 

Keywords—Internet, secure software, threats, cryptography 
process. 

I. INTRODUCTION 

HIS paper describes how we can use the Internet in the 
design and implementation of secure software. This is 

done by having in a secure server some of the more sensitive 
software features of the secure software. This secure software 
will communicate and execute the sensitive features now 
located in the secure server via the Internet. This process will 
provide procedures to increase the security of our standalone 
software when this software is distributed and used by users 
all over the world. 

When designing secure software, it is difficult to gage and 
prevent all possible outcomes when the user is in complete 
control of all your software. The only possible defenses are 
imbedded into the software leaving this software to its own 
self-protect features [1], [6]-[8]. 

Internet servers today have improved their security and 
provide reasonable security for users. If we assume that we 
have a server, and that such a server is under our control and is 
using server protection technology, it is therefore better 
protected than a software program in the hands and control of 
a user. Then, using the Internet to host part or parts (the most 
sensitive, crucial, secret, etc.) of the delivered software is a 
sensible idea. 

II. REQUIREMENTS 

Following is a list of requirements for the use of this 
proposed technology and methodology: 
 Internet Access: It is required for the use of this 

technology and methodology that our secure software be 
able to have access and make use of the Internet. If this is 
not the case, this technology will not work. 

 
Carlos Gonzalez is with the Universidad Autonoma de Coahuila, Arteaga 

Mexico (e-mail: gonzalezc757@gmail.com). 

 Hard Real-time Requirements: Knowing that 
communications over the internet do not guarantee a set 
response time. The response times may vary over-time. 
Therefore, any software requiring strict real-time response 
times will not be a candidate to use the Internet as an 
internal security feature. 

III. METHODOLOGY 

We have several advantages in using the Internet. One such 
advantage is having most of the critical or sensitive code 
protected in a secure server under our control [3], [4]. 

From a design point of view, first it is necessary to decide 
what we need to send to the secure server. 

A. Secure Server Features 

Here is a partial list of the features that can be in our secure 
server, which we will call “Secure Server Features” (SSF) [2], 
[5]: 
 The most sensitive algorithms or procedures. 
 The most crucial algorithms or procedures for running of 

the software. 
 The most secret algorithms or procedures of the software 
 The most important data (i.e. all or part of a database) 

It is understood that our secure software communicates with 
the secure server using the Internet via secure protocols. These 
protocols like https and other crypto algorithms will provide 
security for the communications of the server to/from the 
secure software. 

B. Security Risks 

Following is a list of security risk types for the software 
features that are identified as security risks. 
 Maximum: These features are very high risk. If a feature 

is known to any non-authorized user the result could be 
loss of life, materials, or security integrity. 

 High: These features, if known by non-authorized users, 
may cause for example economic losses for the company/ 
country/individual, or divulge valuable proprietary 
information. 

 Medium: For these features, we prefer no access be 
available to non-authorized users, but if obtained, the 
situation is not catastrophic. 

 Confidential: These features utilize algorithms or 
procedures publicly known, but it is better for the overall 
security of the system to keep them hidden. 

Improving Security by Using Secure Servers 
Communicating via Internet with Standalone Secure 

Software 
Carlos Gonzalez 

T



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:6, 2017

742

 

 

C. Simple Algorithm 

A simple algorithm and methodology that can be used is as: 
 At the entrance of the secure software, the user is going to 

be required to be authenticated, and this is done by the 
secure software sending to the server the user’s password 
(encrypted) and waiting for a response, which will be in 
the form of a token with information generated by the 
server that could be for example a combination of the user 
ID and password (see complete communication algorithm 
below). 

 With the returned token, the secure software will add this 
token when calling to perform any of the SSF existent in 
the secure software. For example, an algorithm 
calculation, when the server receives this request, it 
checks to see if the sent token (the one returned with the 
password authentication) is the same as the token 
currently received. If the tokens are not the same, an 
“Enemy on Board” (EOB) signal is sent back to the 
secure software. If the tokens agree, then the algorithm 
will be executed, and a result is sent back to the secure 
server. In the following sections of this paper, we will 
explore some of the actions that the secure server can take 
having detected an EOB signal. 

 With the previous actions, at least we know that no 
answer from the server will go out un-authenticated. 

The decision of which features will be in the secure server 
(the selection of the SSF) will be made at the time of the 
software design and development. The designers will have 
basically three options for each of the selected at risk features: 
 Have the features in the server be static. The code in the 

secure software will be hard coded for calls to the secure 
server whenever that feature is called (executed). In other 
words, if a feature like an algorithm is decided to reside in 
the secure server, then all the call in the secure software 
of this algorithm will be calls for the remote execution of 
this algorithm in the remote secure server, which is the 
only place where the executable code of such algorithm 
exists. 

 Have the features in the server be dynamic. The 
executable code of the feature resides in the secure 
software, and a copy of such an executable code will 
reside in the secure server. The idea here is that if the 
software detects a situation of risk, then it will 
immediately erase the executable code for the feature, and 
replace it with a call to the secure server to execute from 
now on this feature remotely from the secure server. The 
advantage of this dynamic mode is that when the secure 
software is detected to be used by friendlies, then it will 
not need to interact (spend time) communicating over the 
Internet. The disadvantage is that we need to be sure of 
the type of user of our software, and when at risk, have 
the time to do the erasing and changing of all the features 
using this mode. 

 Have all the security features located in the server. The 
Maximum and High security type features will never be 
removed from there. The other features may migrate to 
the secure software when the secure software feels with 

high certainty that the user is a friendly user. The first 
features to migrate will be the confidential features and 
the medium type last. 

In case of any migration from the server to secure software 
is required, this will be done following cyber-ecological 
procedures. This concept is explained later on. 

We propose that on the first user interaction with the secure 
software, the secure software should contact the secure server 
and establish a user ID, maybe set up a cookie. On all other 
interactions, it uses the user ID to communicate with the 
secure server. We recommend establishing a procedure to 
change the user ID (i.e. after every n interaction, at random 
intervals, etc.). This is done for security purposes to make sure 
the user was not hacked himself/herself and some other user 
has access to their ID without their knowledge. All the 
changes for the ID will be done transparently and without the 
user’s knowledge. 

Once the user ID is set, the next question is: 
 Is the user type and location well established? 
 Yes, the location and user type have been properly 

established, then: 
 If it is a friendly location and a non-threatening user, keep 

the secure software as it is now. 
 If either the location is unfriendly or the user type is a foe, 

implement all the proper responses to such a threat (i.e. if 
dynamic features are present, react as described above)? 
The response should include a signal to the secure server 
of the responses taken. 

 No, either the location has not been properly established 
or the user type not clearly defined. Keep the system as it 
is now, and keep taking user and location measurements. 

If the Internet usage is part of self-protected software [9], 
[10], then we will send to the secure server all the information 
we have about the user and the location of the software. The 
IP address could give good location information, except in the 
case of virtual IPs. At the moment, there are no good technical 
solutions for the virtual IP problem. What we propose is to 
have a list of the known virtual IP providers, and make the 
secure software unworkable whenever any of these virtual IPs 
try to use our secure self-protected software. It is not a 
complete or clean solution, but it will help in many cases. 

D. Communications Process 

The software and the Secure Server communicates via a two 
locks algorithm. This algorithm works as follows: 
 When the software needs to communicate with the Secure 

Server, it first sends an encrypted request to the Secure 
Server using the Public Key of the Secure Server (PSS) 

 The Secure Server decrypts the request using his secret 
key (SSS). Once this server sees that it is a request to start 
communication, it generates an ID for the message. 

 The Secure server encrypts the generated ID for the 
software using the software public key (PSO), and sends 
the message to the software. 

 Upon receiving the response from the Secure Server, the 
software decrypts the message using its secure key (SSO), 
and saves the value of the ID sent by the Secure Server. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:6, 2017

743

 

 

 The software now generates a message which contains the 
sent ID, and the processing request M encrypted using the 
secure server key (PSS). 

 The Secure Server decrypts the message using the user’s 
secure key (SSO). This message contains an ID, and the 
request for processing M. If the IDs match (i.e. the one 
sent and the one received are the same), it proceeds to do 
the processing of request M. 

 Once the processing of M is done, it proceeds to generate 

an answer back for the software. The message will 
contain the ID, and the results of the processing N. This 
information is encrypted using PSO and sent to the 
software. 

 The Software receives the message from the Secure 
Server and decrypts it using the user’s SSO. If the ID 
coincides, then the software proceeds to manipulate and 
continue with the response N. This concludes the 
algorithm cycle. 

 

 

Fig. 1 Software and Secure Server Communication 
 

Fig. 1 shows a diagram of the previously described 
algorithm. 

IV. INTRUDERS 

We define four types of intruders: 
 Level-1: A casual attacker. The attacker has the software 

and he/she is not technically knowledgeable to retrieve 
data or algorithms from the machine code software. 

 Level-2: A hacker attack. This attacker has the 
knowledge to retrieve data or algorithms from the 
machine code sources of the software. Attacks of this kind 
need to have security procedures used for the 
development of code. 

 Level-3: An institution attack. This attack is done by an 
institution with all the resources of such an institution. 
The most common cases are industrial espionage 

 Level-4: A government attack. This attack is done by a 
government agency with all the resources (technical and 
legal) available for such an agency. 

To define the level of user’s threat, we have to evaluate all 
the information available about the user and the current 
location. 

When analyzing the user's threat level, we should keep the 
following in mind: 
 Level-1: A casual attacker. A minimum of security is 

needed. 

 Level-2: A hacker attack. This intruder may or may not 
have initial plans for economic gains for the intrusion. In 
most cases, it is the intellectual challenge that motivates 
this intruder (i.e. hacker), but economic gains may not be 
very far behind. 

 Level-3: An institution attack. The economic gains are the 
main reason for the intrusion. In most cases with enough 
time and money, any secure self-protected software may 
be cracked. Therefore, the developing team should always 
work with the goal of making the intruder's effort needed 
to break the secure code high enough for them not to be 
cost effective. 

 Level-4: A government attack. Since in most cases with 
enough time and money any secure self-protected 
software may be cracked, it is recommended that 
techniques for intruder detection [11], [12] as well as the 
user detection described in this paper with the respective 
actions to take (covert and not-covert) be included in the 
secure code This level of protection requires the use of the 
most sophisticated security algorithms. 

V. THREATS AND ACTIONS 

A. Threats 

To define the level of user's threat we have to evaluate all 
the information available about the user and the current 
location of the device that is running the secure software. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:6, 2017

744

 

 

Following is a list of situations that help us determine the 
level of user threat: 
1) If we detect that our software has been modified (i.e. the 

routine to use the GPS was by-passed), then we know that 
we are at least at threat level-2. We suggest having at least 
two different locations inside our software where we do 
this checking. 

2) Sometimes our current geographical location can tell us 
that the level is 3 or 4. In general it is very difficult to 
differentiate between level 3 and 4. Therefore, if our 
software is expected to survive a level 4 attack, then even 
if we have a level 3 threat, we should treat it as level 4. If 
on the other hand the maximum level we are trying to 
protect against is level 3 (not a national security threat), 
then our reaction to the threat could be economically-
based (see actions below). 

3) If our device has a heartbeat component and the heartbeat 
device reports an anomaly. The threat should be level 3 or 
4. 

4) If our computer is connected to any foreign device [10] 
(like a foreign type of computer, strange keyboards, 
printers, etc.). The threat should be level 3 or 4. 

5) If we are at a non-friendly location. Minimum threat level 
is 2. Here the software can be designed to differentiate 
between non-friendly (i.e. Venezuela), bad-non-friendly 
(i.e. Iran) and very-bad-non-friendly (i.e. China), and set 
the threat accordingly. 

6) If we are at a friendly location, and there are no signs of 
tampering, then we can consider at this time the user to be 
friendly and of no-threat. 

B. Actions 

General rules of what to do if the secure self-protected 
software has detected a threat [10]: 
 Act accordingly to the defined rules of the self-protected 

software. 
 Notify the secure server of such a threat, including the 

response given to such a threat. 
 Ask the secure server to send back a signal responding to 

the threat, and either ok or give new response orders. This 
is done because in all cases, the secure server is the one 
up-to-date on threats and responses to threats. All 
individual secure self-protected software will update their 
response to threats periodically. 

On the following actions we are going to suggest a list of 
possible actions to the given scenario. The actions are: 
1) Minimum: This is the minimum action that should be 

taken. 
2) Mild: An action that recognizes the threat but acts in a 

manner that the damage to the user is minimal. 
3) Strong: Act as violently as possible against the user. 

Independently of the design decision of location and 
migration strategies, the actions to take will be: 

For a Level-1 casual attacker on any location, we 
recommend taking all or some of the following actions: 
1) Erase all files related to our software located in the user’s 

secure software (Mild). 

2) Block any future connections of the user’s secure 
software to our server. Use user’s IP and/or user’s ID 
(Minimum). 

3) Erase most of the user files (Strong). 
4) Send a signal home reporting the issue (Minimum). 
5) Display a message to the user saying that a malicious 

virus has taken control (the idea is to scare the user and 
mislead him/her on the source of the problem) (Strong). 

For a level-2 hacker attack when we are at a friendly 
location and are guarding a maximum level-2 attack, we 
recommend taking all or some of the following actions: 
1) Same as actions 1-3 of casual attacker. 
2) Display a message to the user saying that his/her actions 

are being reported to the FBI, CIA, Interpol, etc. (Mild). 
If on the other hand a hacker attack is detected, and we are 

guarding against Level-3 or Level-4 attack, or we are at an 
unfriendly location, we propose the following actions, and that 
most of the actions be done covertly. 
1) Change the software slightly (these actions should be 

determined at the design stage of the secure software) so 
it produces results, but the wrong results (Strong). 

2) Insert a malicious virus that spreads to all the contacts of 
this user (Strong). 

3) Start a time bomb to damage the local equipment. The due 
time could be up to a couple of days in order to give time 
in case the threat changes to a friendly location. If a 
physical bomb is not possible, then at the due time destroy 
as much software and information as possible. The 
destruction of the local equipment should never include 
human lives (Strong). 

VI. CYBER-ECOLOGY 

Cyber-Ecology refers to both the scientific analysis and 
study of the interaction among cyber users and their 
environment, and the political movement that seeks to protect 
cyber-space, especially from pollution (i.e. garbage data, 
viruses, frivolous usage, etc.) [13]-[16]. With this in mind, our 
model will try to use the Internet at such times at which the 
load causes less problems for us and for others. In other 
words, we will use whenever possible the loading and 
downloading from the server at times when the traffic in the 
Internet is at low points. 

Our software will be monitoring Internet traffic for the 
specific user and select the best times to do the loading or 
downloading. 

VII. CONCLUSIONS 

The main contribution of this paper is the explicit use of a 
web server to protect some of our software that is going to be 
used as a standalone software by all kinds of users in many 
countries around the world. We defined an encryption 
processing algorithm that will increase the security of the 
software process. We also outline some of the threats and 
actions that could be taken for different scenarios. 

Looking at the state of the cyber world as it is today, we can 
safely say that the proposed methodology will not work for all 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:11, No:6, 2017

745

 

 

cases of secure software. We have stated that for applications 
that need a hard response time, this methodology will not 
work. But it should also be clear that as the speed of the 
Internet increases more and more, and if in the future there are 
policies and procedures for which a response time is 
guaranteed, then this technology becomes a very basic option. 

If in the future, the speed of the Internet is not an issue for 
the use as a software safety methodology, then we have to 
concentrate our security worries and research in the 
transmission of the data [17], [18] between the server and the 
secure software. Also, we have to include in these concerns 
and research, the security of the web server [2], [19]-[21]. 

REFERENCES 
[1] Intel Corp., “Intel® Data Protection Technology for Transactions “, 

http://www.intel.com/content/www/us/en/embedded/technology/security
/secure-payment-transactions/overview.html, Viewed Jun 2016. 

[2] Microsoft,” Secure Windows Server”, https://technet.microsoft.com/en-
us/library/dd548350(v=ws.10).aspx, Viewed June 2016. 

[3] Microsoft, “What’s New in DHCP”, https://technet.microsoft.com/en-
us/library/dn765482.aspx, Viewed June 2016. 

[4] Hewlett Packard, “HP Advanced Memory Protection technologies”, 
ftp://ftp.hp.com/pub/c-products/servers/options/c00256943.pdf, 
technology brief, 5th edition, April 2008. 

[5] Trend Micro, “Devising a Server Protection Strategy with Trend Micro”, 
http://www.trendmicro.com/cloud-content/us/pdfs/business/white-
papers/wp_devise-a-server-protection-strategy.pdf, January 2012. 

[6] Yuan E., et al., “A Systematic Survey of Self-Protecting Software 
Systems”, ACM Transactions on Autonomous and Adaptive Systems 
(TAAS), Volume 8 Issue 4, January 2014, Article No. 17. 

[7] Lavasoft, “Potentially Unwanted Program Self-Protection 
Technologies”, 
http://lavasoft.com/mylavasoft/securitycenter/whitepapers/potentially-
unwanted-program-selfprotection-technologies, October 2014. 

[8] Lavasoft, “Potentially unwanted programs that use rootkit components, 
http://lavasoft.com/mylavasoft/securitycenter/whitepapers/pups-with-
rootkit, September 2014. 

[9] Feiman Joseph, “Runtime Self Protection: A Must Have, Emerging 
Security Technology”, Gartner Group, 24 April 2012. 

[10] Gonzalez C. “User Detection in Secure Self-Protected Software”, 
Submitted to ROMJIST Sep 2015. 

[11] Denning, Dorothy E., "An Intrusion Detection Model," Proceedings of 
the Seventh IEEE Symposium on Security and Privacy, May 1986, 
pages 119-131. 

[12] Scarfone, Karen; Mell, Peter. "Guide to Intrusion Detection and 
Prevention Systems (IDPS)". Computer Security Resource Center 
(National Institute of Standards and Technology) (800-94) (February 
2007). 

[13] Jorgensen J., et al., “Cyber Ecology: Looking to Ecology for Insights 
into Information Assurance”, Proceedings of DISCEX 2001, IEEE, 287-
296. 

[14] Gorman SP., and Malecki EJ.,” Fixed and fluid: stability and change in 
the geography of the Internet”, Telecommunications Policy 26 (7), 389-
413. 

[15] Gupta Ajay and Sekar R.,” An Approach for Detecting Self-Propagating 
Email Using Anomaly Detection”, Recent Advances in Intrusion 
Detection, 2003 – Springer. 

[16] Wang Y., et al., “Software Diversity Measurement for Security 
Evaluation: An Ecological Approach”, I. J. Computer Network and 
Information Security, 2015, 4, 37-43. 

[17] Mukherjee B., Heberlein L.T, Levitt K. N.,”Network Intrusion 
Detection”, IEEE Network May 1994. 

[18] Creston News Advertiser, “Protect yourself in the online, social network 
community”, 11 Feb 2011. 
http://www.crestonnewsadvertiser.com/articles/ara/2011/02/11/8044960
708/index.xm 

[19] Scarfone Karen, Mell Peter., "Guide to Intrusion Detection and 
Prevention Systems (IDPS)", Computer Security Resource Center 
(National Institute of Standards and Technology), February 2007. 

[20] Microsoft, "Improving Web Application Security: Threats and 
Countermeasures", msdn.microsoft.com. Viewed June 2016. 

[21] University of Alabama at Birmingham Business Program. "Information 
Security: A Growing Need of Businesses and Industries Worldwide". 
http://businessdegrees.uab.edu/resources/infographics/mis-security-
infographic/, Viewed May 2016. 


