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Improving Image Segmentation Performance via 

Edge Preserving Regularization

Ying-jie Zhang    Li-ling Ge

Abstract—This paper presents an improved image segmentation 

model with edge preserving regularization based on the 

piecewise-smooth Mumford-Shah functional. A level set formulation 

is considered for the Mumford-Shah functional minimization in 

segmentation, and the corresponding partial difference equations are 

solved by the backward Euler discretization. Aiming at encouraging 

edge preserving regularization, a new edge indicator function is 

introduced at level set frame. In which all the grid points which is used 

to locate the level set curve are considered to avoid blurring the edges 

and a nonlinear smooth constraint function as regularization term is 

applied to smooth the image in the isophote direction instead of the 

gradient direction. In implementation, some strategies such as a new 

scheme for extension of u+ and u- computation of the grid points and 

speedup of the convergence are studied to improve the efficacy of the 

algorithm. The resulting algorithm has been implemented and 

compared with the previous methods, and has been proved efficiently 

by several cases. 

Keywords—Energy minimization, image segmentation, level sets, 

edge regularization. 

I. INTRODUCTION

HE segmentation of structure from 2D and 3D images is 

one of the most important steps in analyzing image data. 

For example, in medical fields, it is necessary to segment the 

brain in an MR image, before it can be rendered in 3D for 

visualization purposes. The main goal of segmentation is to 

identify an image as a collection of features, each of which has 

a strong correction with real-world objects. Another important 

application is registration. It may be easier or at least less error 

prone to segment objects in multiple images prior to 

registration. This is especially true in images from different 

modalities.  

Mumford-Shah functional is a widely used variational model 

for image analysis [1]. It minimizes an energy functional 

involving a piecewise smooth representation of an image by 
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viewing an active contour as the set of discontinuities, resulting 

in simultaneous linear restoration and segmentation [2]. 

However, on one hand, a potential problem with this approach 

is that the topology of the region to be segmented must be 

known in advance. An algorithm to overcome these difficulties 

was first introduced by Osher and Sethian [3]. They model the 

propagating curve as a specific level set of a higher dimensional 

surface. It is common practice to model this surface as a 

function of time. So as time progresses, the surface can change 

to take on the desired shape. On the other hand, the 

Mumford-Shah functional is based on Bayesian linear 

restoration, so the resultant homogenous smoothing may blur 

true boundaries [15]. The situation becomes worse for poor 

quality images like medical images with low contrast and 

artifacts, making the coupled segmentation unreliable. 

Researchers have done a lot of works [4, 5] on Mumford-Shah 

functional to obtain edge-preserving regularization. In [4], an 

edge function varying from zero to one is defined over the 

entire image and an elliptic approximation for arc lengths is 

introduced. The functional can perform edge-preserving 

diffusion controlled by the edge function, but it cannot develop 

shocks. Aiming at this point, Jayant Shah [5] proposed a new 

segmentation functional where the smooth constraint and the 

data fidelity are defined by the norm functions instead of 

quadratic functions. It can develop singular points and deblur 

the edge. However, these models use the elliptic approximation 

and -convergence. It results in solving a family of the 

coupled partial differential equations: one for the intensity 

image, the other for edge, which may bring expensive 

computational cost. Moreover, the obtained boundary is not 

continuous by introducing the edge function. In [6], an 

edge-preserving regularization model based on the 

half-quadratic theorem is proposed that can perform both 

edge-preserving restoration and edge detection. Although the 

elliptic approximation is not used in this model, it is similar to 

the previous work [4, 5] and the numerical implementation still 

involves in solving a set of the coupled partial differential 

equations. 

Regularization algorithms have attracted a growing interest in 

computer vision community. It consists in simplifying data in a 

way that only interesting features are preserved. On basis of the 

key idea of the diffusion theory, the improved Mumford-Shah 

functional is introduced by using a piecewise non-linear 

function as regularization terms instead of the smooth 

constraint term. Roughly speaking, the regularization term may 

be seen as non-linear filters that simplify the image little by 
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little and minimize then image variations. Note therefore that it 

allows the coupled edge-preserving diffusion and image 

segmentation. Different from the previous work as follows. 

First, the non-linear constraint function is applied as 

regularization term to make images close to the ideal 

restoration, thus facilitating the boundary finding. Second, all 

the grid points that is used to locate the evolving front are 

considered in the smoothing process. Thus, the better 

edge-preserving properties may be obtained. Finally, in 

implementation, some strategies such as the improved scheme 

for extension of the function and , computation of the 

discrete points and speedup of the convergence are also studied  

u u

The rest of this paper is organized as follows. Section 2 

introduces the level set theory and Mumford-Shah functional. 

Section 3 describes the proposed approach, and Section 4 

studies some new strategies such as an improved scheme for the 

extension of as well as , computation of the grid points 

and speedup of the convergence. Some results of numeric 

experiments are given in Section 5, which is followed by 

conclusion in Section 6. 

u u

II.LEVEL SET AND MUMFORD-SHAH MODEL 

In this section, let’s briefly review the level set model and 

Mumford-Shah functional in image process. 

A. Level Set Model 

Let  be a bounded open subset of 2R , with  as its boundary. 

Then a two dimensional image  can be defined as 

. In this case  is just a fixed rectangular grid. 

Now consider the evolving curve  in , as the boundary of 

an open subset  of . In other words, 

0u

Ru :0

, and  is the 

boundary of . This idea is to embed this propagating curve as 

the zero level set of a higher dimensional function , which is 

defined as follows: 

dtyx )0,,(                             (1) 

where d is the distance from (x, y) to  at  t = 0, and the plus or 

minus sign is chosen if the point (x, y) is outside or inside the 

subset . Now, the goal is to make an equation for the evolution 

of the curve. Evolving the curve in the direction of its normal 

amounts to solving the partial differential equation [3]: 

),()0,,( 0 yxyx

F
t                       (2)

where the set }0),(),,{( 0 yxyx defines the initial 

contour, and F is the speed of propagation.  

For certain forms of the speed function F, this reduces to a 

standard Hamilton-Jacobi equation. There are several major 

advantages to this formulation. The first is that ),,( tyx

always remains a function as long as F is smooth. As the 

surface  evolves, the curve  may break, merge, and 

change topology. 

B. Mumford-Shah Model 

Let  be the given image, under the assumption that the 

desired contours (denoted by ) in the image can be 

represented by level set functions. The Mumford-Shah 

functional is defined as the minimization of the functional [1]:  

0u

dxudxuuLengthuEMS

2

\

2

0
)(),(

(3)

where  ,  and  are non-negative constants, and u is a 

cartoon image that is locally smooth, except for near . Image 

segmentation can be carried out by 

minimizing ),(uEMS over an appropriate space. In fact, 

denotes the set of discontinuity points of u and the length of 

denotes the cardinal of .

As discussed earlier in the level set models, let 

}0),(),,{( yxyx  define the contour  and two 

functions and  are introduced, such that [8]:u u

                (4) )))((1())(()( xHuxHuxu

where H(x) is the Heaviside function, )(z  as its 

derivativeness.  

These two functions replace the two unknown constants used in 

[8]. For the piecewise-smooth Mumford-Shah functional, this 

two functions and  are assumed that are functions 

on

u u 1C

0 and 0 , respectively, and with continuous 

derivatives up to all boundary points, i.e. up to the boundary 

{ 0 }. Therefore, the following minimization problem is 

obtained from the piecewise-constant Mumford-Shah 

functional [1]: 

)())(1(

)())(1(

)(),,(inf

2

22

2

,,

0

0

0

HdxHu

dxHudxHuu

dxHuuuuEMS
uu

 (5) 

Then with  fixed, the equation (3) leads to the two 

Euler-Lagrange equations for and  written as  u u

}0),(:){(0

}0),(:){(

}0),(:){(0

}0),(:){(

0

0

txx
n

u

txxuuu

txx
n

u

txxuuu

        (6) 

Notice that  and  act as denoising process on the 

homogeneous regions only. No smoothing is done across the 

boundary {

u u

0 }, which is very important in image analysis. 

Now, keeping  and  fixed, and minimizing 

 with respect to the function

u u

),,( uuE MS
, one can 
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obtain the motion of the zero level set as following: 

)

)()((

22

22

0

0

uuu

uuu
t           (7)   

The above equation (7) with some initial guesses (t=0, x) is 

actually computed at least near a narrow band of the zero level 

set. As a result, computationally, one has to continuously 

extend both  and from their original domain u u

}0{ to a suitable neighborhood of the zero level 

set }0{ . Although   and  can be easily obtained by 

solving Euler-Lagrange equations (6), the extensions of 

and  are difficult to be obtained as solution of the following 

degenerate elliptic linear equations:  

u u

u

u

0

}0{),(2

n

u

NNuut

                    (8) 

and

0

}0{),(2

n

u

NNuut

                     (9) 

Chan and Vese [9] had pointed out three possible ways to solve 

the problem, but all of them were difficult to carry out 

practically. 

III. IMPROVED MODEL

Consider that under level set frame, the evolving front is 

obtained from some grid points in image spaces. In previous 

works [4, 5], the edges are supposed as a precise curve, the 

corresponding edge indicator function [6,13] is determined 

based on points of the ideal curves. However, the edges which 

are traced by level set curve at level set frame are given by some 

grid points with signed distance close to zero. It is impossible to 

find theoretically the precise boundary at discrete image space. 

Therefore, some approximate approaches should be searched to 

close to the ideal curves.

Zero Level 

set curve

u+

u-

+ + + --

+ + --

- - -

- -

- + + -

Fig. 1 The level set front and the corresponding grid points at image space 

Aiming at this point, as shown in Fig. 1, let denotes the set 

of the grid points. A new edge indicator function is defined as 

follows:  

otherwise

xx
x

1

)(
)(                      (10) 

where )(x is a non-negative function with values from 0 to 1. 

If a point is on the ideal curve then 0)(x , otherwise 

)(x is applied to calculate how much the point’s contribution 

for the ideal curves. Let )(x  denote the signed distance 

function of the current point, )()( 12 xx  denote the 

distance of the nearest two points to the ideal curve, then )(x

can be obtained by: 

)()(

)(
)(

12 xx

x
x                            (11) 

Furthermore, the smooth constraint term
2

u in (3) is 

replaced by a nonlinear function )( u . There are a lot of 

)(x  functions listed in [8], together with some of their 

properties. The improved Mumford-Shah function is given by:  

dxux

dxuuLengthuE MS

)()(

)(),(

\

2

0

       (12) 

where )(x  is a nonlinear function as regularization energy 

term. To encourage edge-preserving regularization, 
)(x

should be close to constant in the interior of the region and 

close to zero on boundaries. The Euler-Lagrange equation 

corresponding to this minimization problem is given by: 

0)
)(

()(
2

1
0 u

u

u
divuu

du

dE
     (13) 

This equation corresponds to the steady state of the following 

diffusion process: 

)()
)(

( 0 uuu
u

u
div

t

u
       (14) 

Then as known in section 2, let 

, embedding the 

evolving front as the zero level set of a higher dimensional 

function

)))((1())(()( xHuxHuxu

and normal of the curve is given as N ,

the corresponding level set evolution equation is given as 

follows: 

)(

)()()()(

2

0

2

0 uuuu

uu
t (15)

where and  represent the points in the interior and 

exterior of the current curve respectively. 

u u
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IV. SOME STRATEGIES IN IMPLEMENTATION 

A. Strategy for the extension of functions  and u u

Known from the previous sections, Chan and Vese in [8] 

proposed an approximate approach for extensions of and

 as following: 

u

u

4/)( ,

1,

,

1,

,

,1

,

,1

1,
,

n

ji

n

ji

n

ji

n

ji

n uuuuu ji        (16) 

Note that the differences between the images  and  or 

 in (7) are an important component for evolution of the level 

set function

0u u

u

. Equation (16) shows two major drawbacks. One 

is that the current point doesn’t be taken into account and some 

important information such as boundary points may be skipped 

in the diffusion process. As a result, the true boundaries may be 

blurred, even disappear in finite number of iterations. Another 

is that although the noises can be removed efficiently by this 

method, however, the evolving curves can sway around the true 

boundaries because of lost of true boundary information. For 

attack these problems, in our scheme, a new approach to 

extensions of both and  are introduced. The modified 

extending function is given by: 

u u
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 (17) 

The modified extending function considers the current point 

and its 8-neighbour points. As a result, more information is 

remained. Combining with the edge preserving function, even 

at weak boundaries, this approach can provide proper speed to 

propagate the front. 

B. Strategy to determine the involved points of the boundary 

curves

It should be noted that under level set frame, the level set 

functions is obtained by using signed distance function at some 

discrete points. To encourage edge preserving regularization, 

all of these discrete points should be avoided blurring in 

smoothing process to avoid blurring true edges. In our 

implementation, a temporary buffer which has the same size 

with the segmented image size is defined to store as the signed 

distance function and in which the corresponding positions of 

the discrete points are set as zero so that it can be used to locate 

and process the discrete points for the smoothing process.

Therefore only points with non-zero values in the temporary 

are allowed to carry out smoothing or diffusion process.  

C.Strategy for speedup of the convergence 

As the piecewise Mumford-Shah approach, for general noisy 

images, since its global minimization properties of the energy 

function speed of the convergence may become more and more 

slowly with evolution of the curves and the image diffusion. 

Especially, when the evolving curve is close to convergence, 

most of the time (tens or even hundreds times), has to be spent 

up to steady state. For example, as shown in Fig 2, here, n is the 

number of iterations.  For attacking this problem, consider that 

diffusions of and  are performed on interior of and 

exterior of the regions, respectively. Therefore difference of 

energy at both sides of the boundaries would be increased if 

different number of iterations are applied to calculate the 

extension of and . Consequently, the convergence can 

be speeded up and it has been demonstrated by experiment. As 

determination of the number of iterations in the classical 

Mumford-Shah approach, however, how to determine the 

different numbers of iterations for extension of and still

needs to be researched further. In contrast, for the same image, 

the segmentation process shown in Fig. 2 with the same 

iteration 50 for the extensions of both and  is slower 

than that shown in Fig. 3 with different iterations for extensions 

of and as 50 and 10, respectively.  

u u

u u

u u

u u

u u

n=0 n=500 n=1000 n=2900 n=7300

Fig 2 Segmentation process with the same the number of iterations for extensions of andu u

n=0 n=300 n=800 n=1200 n=1500

Fig 3 Segmentation process with the different iterations for extensions of andu u
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V.NUMERIC EXPERIMENTS

To demonstrate the validity of the proposed approach, several 

images are also applied to test it. One of examples is a CT 

pulmonary vessel image where the vessels and their branches, 

which exhibit much variability with low contrast and artifacts, 

make the segmentation difficult. Here )11()( 2xx

with  as positive constant is selected in order to encourage 

smoothing within a region and preserving the boundaries and 

the other parameters are the same with Chan-Vese approach in 

[8] as comparison. As shown in Fig. 4, for the same an image, 

the result by the proposed approach with nonlinear diffusion 

and coupled edge-preserving regularization is shown in (a) and 

the result by the piecewise smooth Mumford-Shah approach 

(coupled homogenous linear diffusion) is shown in (b). It can 

be seen that the proposed approach performs edge-preserving 

regularization better. The vessels even their thin branches could 

be extracted precisely by using smoothing the interior of the 

vessel branches and holding the boundary deblurred. In 

contrast, the important edge site is blurred in the classical 

approach; therefore, the boundaries become obscure, thereby 

misleading the curve deforming. As a result, thin vessel 

branches could not be extracted precisely.

Figure 5 compares the classical method with the proposed 

algorithm on an image which some object with weak edge. The 

results show that the proposed algorithm, combined with 

different number of iterations for extension of and , can 

find the object with weak edges, as shown in Fig. 5a and the 

result by the piecewise smooth Mumford-Shah approach is 

shown in (b), it can be noticed that the weak object has been 

disappeared from the resulting segmentation.  

u u

(a)

(b)
Fig. 4 Coupled diffusion and curve evolution (a) by the improved algorithm (b) by classical approach 

(a)

(b)

Fig. 5 Coupled diffusion and curve evolution for an image with weak objects (a) by the improved algorithm (b) by classical approach
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VI. CONCLUSION

In this paper, an image segmentation model for image 

segmentation with edge preserving regularization is proposed. 

By introducing a new edge indicator function and nonlinear 

smoothing function at the piecewise smooth Mumford-Shah 

functional. And some strategies are purposed to improve the 

smoothing process and accelerate the evolution of curves. 

However, as the previous works [8], there are still some 

difficulties to be solved, such as the segmented results 

depending on the initial signed distance function, speed of the 

evolving curve connecting closely choice of the parameters, 

and so on, they will be research further in our future work.  
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