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Improved Stability Criteria for Neural Networks
with Two Additive Time-Varying Delays

Miaomiao Yang, Shouming Zhong

Abstract—This paper studies the problem of stability criteria
for neural networks with two additive time-varying delays.A new
Lyapunov-Krasovskii function is constructed and some new delay
dependent stability criterias are derived in the terms of linear
matrix inequalities(LMI), zero equalities and reciprocally convex
approach.The several stability criterion proposed in this paper is
simpler and effective. Finally,numerical examples are provided to
demonstrate the feasibility and effectiveness of our results.
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I. INTRODUCTION

RECURRENT years neural networks have been studied

extensively and have been widely applied within various

engineering fields such as associative memories,neuro-biology,

population dynamics,and computing technology[1-5].Existing

stability criteria can be classified into two categories,that

is, delay-independent ones and delay-dependent ones. It is

well known that delay-independent ones are usually more

conservative than the delay-dependent ones, so much attention

has been paid in recent years to the study of delay-dependent

stability conditions[6-8].It should be pointed out that the

stability results mentioned are based on systems with one

single delay in the state.
In this paper, we consider the stabilization of the system

described by

ẋ(t) = Ax(t) +Bx(t− τ(t)) (1)

where τ(t) is a time delay in the state x(t),A ∈ �n×n,and

B ∈ �n×n are known real constant matrices,0 ≤ τ(t) ≤ τ ,and

τ̇(t) ≤ u.In recent years ,there are many people propose

the model with multiple additive time-delays,the model as

following:

ẋ(t) = Ax(t) +Bx(t−
n∑

i=1

τi(t))

The paper in[5, 9]analysis the stability of system with two

additive time-varying delay components.which is

ẋ(t) = Ax(t) +Bx(t− τ1(t)− τ2(t))
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The stability of the system (2) was studied in [5], and a

delay-dependent stability criterion was obtained. An improved

stability criterion was derived in [9] by construct a Lyapunov

functional to employ the information of the marginally delayed

statex(t− τ),where u = u1 + u2.However,another marginally

delayed statex(t − τ1) was not considered,do not make full

use of the information about τ(t), τ1(t), τ2(t),which would

be inevitably conservative to some extent.What is more, the

purpose of reducing conservatism is still limited due to the

existence of multiple coefficients the number of the LMIs

decision variables,from a theoretical point of view,still remains

challenging.

In this paper, we first consider delay-dependent stability for

the system (2) by constructing a new Lyapunov functional

which employs information of the marginally delays state

x(t−τ1) as well as x(t−τ) By construction a new Lyapunov

Krasovskii functional,obtain the identical maximum allowable

delay bounds,we derived a new and less conservative delay

dependent stability condition for a system with two additive

delay components. Finally a numerical examples given to

illustrate the effectiveness of the proposed methods.

Notation:Throughout this paper, the superscripts ′ − 1′ and
′T ′ stands for inverse and transpose of matrix, respectively;�n

denotes an n-dimensional Euclidean space;�m×n is the set

of all m × n real matrices; P > 0 means that the matrix

P is symmetric positive definite,diag(·, ·, ·) denotes a block

diagonal matrix.In block symmetric matrix or long matrix

expression,we use (∗) to represent a term that is induced by

symmetry,I is an appropriately dimensional identity matrix.

II. PROBLEM STATEMENT.

Consider the following neural networks system with two

additive time-varying delays:

ẋ(t) = Ax(t) +Bx(t− τ1(t)− τ2(t))

x(t) = φ(t), t ∈ [−τ, 0]
(2)

where τ1(t), τ2(t) is a time delay in the state x(t),A ∈ �n×n,

B ∈ �n×n are known real system constant matrices of

appropriate dimensions corresponding to non-delayed and

delayed.φ(t)is the initial condition on the segment[−τ, 0].

0 ≤ τ1(t) ≤ τ1, 0 ≤ τ2(t) ≤ τ2, τ̇1(t) ≤ u1, τ̇2(t) ≤ u2

τ(t) = τ1(t) + τ2(t), τ̇(t) = u

τ = τ1 + τ2, u = u1 + u2

(3)

where τ1, τ2, u1, u2,are constants.
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Lemma 1.[10].For any positive constant matrix Z = ZT > 0,

Z ∈ �n×n ,scalars h1 > h2 > 0 such that the following

integrations are well defined, then

−(h2 − h1)

∫ h1

h2

xT (s)Zx(s)ds

≤ −
∫ h1

h2

xT (s)dsZ

∫ h1

h2

x(s)ds

−1

2
(h2

2 − h2
1)

∫ h1

h2

∫ t

t+θ

xT (s)Zx(s)dsdθ

≤ −
∫ h1

h2

∫ t

t+θ

xT (s)dsZ

∫ h1

h2

∫ t

t+θ

x(s)ds

(4)

Lemma 2.[11].For any constant matrixX ∈ �n×n, Y ∈ �n×n,

Ω =

[
R XT

X R

]
, scalars 0 ≤ τ0 ≤ τ(t) ≤ τM ,and vector

function ẋ : [−τM ,−τ0] → �n,such that the following

integrations are well defined,then

−
∫ t−τ0

t−τM

ẋT (s)Rẋ(s)ds ≤ −
[
xT (t− τM )− xT (t− τ(t)
xT (t− τ(t)− xT (t− τ0)

]T

× Ω

[
xT (t− τM )− xT (t− τ(t)
xT (t− τ(t)− xT (t− τ0)

]
(5)

III. MAIN RESULTS

Theorem 1.For given scalars 0 ≤ τ < ∞, 0 ≤ τ1 < ∞,and

0 ≤ τ2 < ∞,u > 0, u1 > 0, u2 > 0,then the system(2) is

asymptotically stable with delays τ(t), τ1(t), τ2(t) , if exist

positive-definite matrices Qi(i = 1, 2, · · ·, 6),
[
P11 P12

∗ P22

]
,

Ri(i = 1, 2, 3, 4, 5)and P ,for any matrices X1, X2, X3,with

appropriate dimension such that the following LMIs hold:

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 e12 X1 e14 X5 e16 X3 e18 e19
∗ e22 e23 0 0 0 0 e28 e29
∗ ∗ e33 0 0 0 0 e38 e39
∗ ∗ ∗ e44 e45 0 0 0 0
∗ ∗ ∗ ∗ e55 0 0 0 0
∗ ∗ ∗ ∗ ∗ e66 e67 0 0
∗ ∗ ∗ ∗ ∗ ∗ e77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ e88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ e99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e11 = PA+APT +
6∑

i=1

Q6 + τ2ATR1A+ τ21A
TR2A

+ τ22A
TR3A−R1 −R2 −R3 + τ2R4 +

τ4

4
ATR5A

e12 = PB + τ2ATR1B + τ21A
TR2B + τ22A

TR3B +R1

+
τ4

4
ATR5B −X1

e14 = R2 −X2, e16 = R3 −X3

e18 = P11 − P12 − P12A, e19 = P12 − P22 − P22A

e22 = −(1− u)Q1 + τ2BTR1B + τ21B
TR2B + 2X1

+ τ22B
TR3B +

τ4

4
BTR5B − 2R1

e23 = R1 −X1, e28 = P12B, e29 = P22B

e33 = −R1 −Q2, e38 = P12 − P11, e39 = P22 − P12

e44 = −(1− u1)Q3 − 2R2 + 2X2, e45 = R2 −X2

e55 = −Q4 −R2, e67 = R3 −X3

e66 = −(1− u2)Q5 − 2R3 + 2X3

e77 = −Q6 −R3, e88 = −R4, e99 = −R5

Proof: Construct a Lyapunov function as follows:

V (xt) =
6∑

i=1

Vi(xt)

where

V1(xt) = xT (t)Px(t)

V2(xt) =

∫ t

t−τ(t)

xT (s)Q1x(s)ds+

∫ t

t−τ

xT (s)Q2x(s)ds

+

∫ t

t−τ1(t)

xT (s)Q3x(s)ds+

∫ t

t−τ1

xT (s)Q4x(s)ds

+

∫ t

t−τ2(t)

xT (s)Q5x(s)ds+

∫ t

t−τ2

xT (s)Q6x(s)ds

V3(xt) = τ

∫ 0

−τ

∫ t

t+θ

ẋT (s)R1ẋ(s)dsdθ

+ τ1

∫ 0

−τ1

∫ t

t+θ

ẋT (s)R2ẋ(s)dsdθ

+ τ2

∫ 0

−τ2

∫ t

t+θ

ẋT (s)R1ẋ(s)dsdθ

V4(xt) = τ

∫ 0

−τ

∫ t

t+θ

xT (s)R4x(s)dsdθ

V5(xt) =
τ2

2

∫ 0

−τ

∫ t

t+θ

∫ t

t+λ

ẋT (s)R5ẋ(s)dsdθdλ

V6(xt) =

[ ∫ t

t−τ
x(s)ds∫ 0

−τ

∫ t

t+θ
ẋ(s)dsdθ

]T [
P11 P12

∗ P22

]

×
[ ∫ t

t−τ
x(s)ds∫ 0

−τ

∫ t

t+θ
ẋ(s)dsdθ

]

The time derivative of V (xt) along the trajectory of system

(2) is given by

V̇ (xt) =

6∑
i=1

V̇i(xt)

where

V̇1(xt) = 2xT (t)Pẋ(t) (6)

V̇2(xt) = xT (t)
6∑

i=1

Qix(t)− xT (t− τ)Q2x(t− τ)

− xT (t− τ2)Q6x(t− τ2)− xT (t− τ1)Q4x(t− τ1)

− (1− u)xT (t− τ(t))Q1x(t− τ(t))
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− (1− u2)x
T (t− τ2(t))Q5x(t− τ2(t))

− (1− u1)x
T (t− τ1(t))Q3x(t− τ1(t))

(7)

V̇3(xt) ≤ ẋT (t)[τ2R1 + τ21R2 + τ22R3]ẋ(t)

− τ

∫ t

t−τ

ẋT (s)R1ẋ(s)ds

− τ1

∫ t

t−τ1

ẋT (s)R2ẋ(s)ds

− τ2

∫ t

t−τ2

ẋT (s)R3ẋ(s)ds

(8)

Based on the lemma 1 ,we have

− τ

∫ t

t−τ

ẋT (s)R1ẋ(s)ds ≤ −
[
xT (t− τ)− xT (t− τ(t)
xT (t− τ(t)− xT (t)

]T

×
[
R1 XT

1

X1 R1

] [
xT (t− τ)− xT (t− τ(t)
xT (t− τ(t)− xT (t)

]
(9)

− τ1

∫ t

t−τ1

ẋT (s)R2ẋ(s)ds ≤ −
[
xT (t− τ1)− xT (t− τ1(t)

xT (t− τ1(t)− xT (t)

]T

×
[
R2 XT

2

X2 R2

] [
xT (t− τ1)− xT (t− τ1(t)

xT (t− τ1(t)− xT (t)

]
(10)

− τ2

∫ t

t−τ2

ẋT (s)R3ẋ(s)ds ≤ −
[
xT (t− τ2)− xT (t− τ2(t)

xT (t− τ2(t)− xT (t)

]T

×
[
R3 XT

3

X3 R3

] [
xT (t− τ2)− xT (t− τ2(t)

xT (t− τ2(t)− xT (t)

]
(11)

V̇4(xt) = τ2xT (t)R4x(t)− τ

∫ t

t−τ

xT (s)R4x(s)ds

≤ τ2xT (t)R4x(t)−
∫ t

t−τ

xT (s)dsR4

∫ t

t−τ

x(s)ds

(12)

V̇5(xt) ≤ τ4

4
ẋT (t)R5ẋ(t)− (

∫ 0

−τ

∫ t

t+θ

ẋ(s)dsdθ)TR5

× (

∫ 0

−τ

∫ t

t+θ

ẋ(s)dsdθ)

(13)

V̇6(xt) =2

[ ∫ t

t−τ
x(s)ds∫ 0

−τ

∫ t

t+θ
ẋ(s)dsdθ

]T [
P11 P12

∗ P22

]
[

x(t)− x(t− τ)
τ ẋ(t)− x(t) + x(t− τ)

] (14)

Then,from (6)-(14),we can obtain

V̇ (xt) ≤ gT (t)Eg(t) (15)

where,

gT (t) = [x(t), x(t− τ(t)), x(t− τ), x(t− τ1(t)), x(t− τ1),

x(t− τ2(t)), x(t− τ2),

∫ t

t−τ

xT (s)ds,

∫ 0

−τ

∫ t

t+θ

ẋT (s)ds]

(16)

Corollary 1.For given scalars 0 ≤ τ < ∞, 0 ≤ τ1 < ∞,and

0 ≤ τ2 < ∞,then the system(2) is asymptotically stable

with delays τ(t), τ1(t), τ2(t) ,if there exist positive-definite

matrices P ,Q2, Q4, Q6,Ri(i = 1, 2, 3, 4, 5),

[
P11 P12

∗ P22

]
, for

any matrices X1, X2, X3,with appropriate dimension such that

the following LMIs hold:

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e11 e12 X1 e14 X5 e16 X3 e18 e19
∗ e22 e23 0 0 0 0 e28 e29
∗ ∗ e33 0 0 0 0 e38 e39
∗ ∗ ∗ e44 e45 0 0 0 0
∗ ∗ ∗ ∗ e55 0 0 0 0
∗ ∗ ∗ ∗ ∗ e66 e67 0 0
∗ ∗ ∗ ∗ ∗ ∗ e77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ e88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ e99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

e11 = PA+APT +
6∑

i=1

Q6 + τ2ATR1A+ τ21A
TR2A

+ τ22A
TR3A−R1 −R2 −R3 + τ2R4 +

τ4

4
ATR5A

e12 = PB + τ2ATR1B + τ21A
TR2B + τ22A

TR3B +R1

+
τ4

4
ATR5B −X1

e14 = R2 −X2, e16 = R3 −X3

e18 = P11 − P12 − P12A, e19 = P12 − P22 − P22A

e22 = τ2BTR1B + τ21B
TR2B + 2X1 + τ22B

TR3B

+
τ4

4
BTR5B − 2R1

e23 = R1 −X1, e28 = P12B, e29 = P22B

e33 = −R1 −Q2, e38 = P12 − P11, e39 = P22 − P12

e44 = −2R2 + 2X2, e45 = R2 −X2

e55 = −Q4 −R2, e67 = R3 −X3

e66 = −2R3 + 2X3

e77 = −Q6 −R3, e88 = −R4, e99 = −R5

Proof: Choosing Q1 = 0, Q3 = 0 and Q5 = 0 in

Theorem 1,one can easily obtains this result.

IV. NUMERICAL EXAMPLES

In this section,we provide the simulation of examples to

illustrate the effectiveness of our method.

Example 1. Considering the system (2) with the following

parameters:

A =

[−2 0
0 −9

]
, B =

[−1 0
−1 −1

]
,
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and we suppose thatτ̇1(t) ≤ 0.1, τ̇2(t) ≤ 0.8.

First,the maximum delay bounds τ2 are shown under different

τ1 are list in Table I.

Then,the maximum delay bounds τ1 are shown under different

τ2 are list in Table II.

The maximum delay bounds τ2 are shown under different τ1
about corollary 1 are list in Table III.

TABLE I
ALLOWABLE UPPER BOUND OF τ2 WITH VARIOUS τ1

Method τ1 = 1.0 τ1 = 1.1 τ1 = 1.2 τ1 = 1.5
[12] 0.180 0.080 - -
[13] 0.378 0.278 0.178 -
[14] 0.415 0.376 0.340 0.248
[15] 0.512 0.457 0.406 0.283
[16] 0.519 0.486 0.453 0.378

this works 0.810 0.710 0.610 0.310

TABLE II
ALLOWABLE UPPER BOUND OF τ1 WITH VARIOUS τ2

Method τ2 = 0.3 τ2 = 0.4 τ2 = 0.5
[12] 0.880 0.780 0.680
[13] 1.078 0.978 0.878
[14] 1.324 1.039 0.806
[15] 1.453 1.214 1.021

this works 1.510 1.410 1.310

TABLE III
ALLOWABLE UPPER BOUND OF τ2 WITH VARIOUS τ1

Method τ1 = 0.3 τ1 = 0.5 τ1 = 1.0
Corollary 1..088 0.888 0.388
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