
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:3, 2008

517

Abstract—Efficient modulo 2n+1 adders are important for 
several applications including residue number system, digital signal 
processors and cryptography algorithms. In this paper we present a 
novel modulo 2n+1 addition algorithm for a recently represented 
number system. The proposed approach is introduced for the 
reduction of the power dissipated. In a conventional modulo 2n+1
adder, all operands have (n+1)-bit length. To avoid using (n+1)-bit
circuits, the diminished-1 and carry save diminished-1 number 
systems can be effectively used in applications. In the paper, we also 
derive two new architectures for designing modulo 2n+1 adder, based 
on n-bit ripple-carry adder. The first architecture is a faster design 
whereas the second one uses less hardware. In the proposed method, 
the special treatment required for zero operands in Diminished-1 
number system is removed. In the fastest modulo 2n+1 adders in 
normal binary system, there are 3-operand adders. This problem is 
also resolved in this paper. The proposed architectures are compared 
with some efficient adders based on ripple-carry adder and high-
speed adder. It is shown that the hardware overhead and power 
consumption will be reduced. As well as power reduction, in some 
cases, power-delay product will be also reduced. 

Keywords—Modulo 2 1n  arithmetic, residue number 
system, low power, ripple-carry adders.

I. INTRODUCTION

HE modular characteristic of the Residue Number System 
(RNS) offers the potential for high-speed and parallel 
arithmetic. In RNS logic, each operand is represented by 

its residues with respect to a set of numbers comprising the 
base. Addition, subtraction and multiplication are performed 
in parallel on the residues in distinct design units (often called 
channels) avoiding carry propagation among residues [1], [2]. 
So, arithmetic operations, e.g. addition, subtraction and 
multiplication can be carried out more efficiently in RNS than 
in conventional two’s complement systems. That makes RNS 
a good candidate for implementing a lot of application fields 
[2]. Typical applications of the RNS can be found in Digital 
Signal Processing (DSP) for filtering, convolutions, 
correlations, FFT computation [3], [4], fault-tolerant computer 
systems [5], communication [6], cryptography [7], [8].  

The choice of moduli set is very important and necessary 
for nearly equal delay of the channels. Special moduli sets 
have been used extensively to reduce the hardware complexity 
in the implementation of converters and arithmetic operations 
[9]-[13]. Among which the triple moduli set { 2 1n , 2n ,
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2 1n } has some benefits [14]. Because of operand lengths of 
these moduli, the operation delay of this system is determined 
by the modulo 2 1n  channel. The latter means that, if we cut 
down the time required for modulo 2 1n  addition, we also 
cut down the RNS addition time [15]. 

In order to speed up the modulo 2 1n  arithmetic 
operations the diminished-1 representation of binary numbers 
has been introduced in [16]. In the Diminished-1 number 
system, each number X is represented by X*=X-1, while zero 
is handled separately. In this system, efficient adders have 
been reported in [17], [18]. But in these circuits, it is 
necessary to use special treatment for zero operands. To 
overcome mentioned problem, a number representation so-
called “Carry Save Diminished-1” has been proposed in [19] 
and [20]. In this paper, an addition algorithm in the carry save 
diminished-1 system is proposed. In the proposed addition 
algorithm, the special treatment for zero operands is not 
required.  

Modulo 2 1n  adders can also be designed as a special 
case of general modulo m adders. The most efficient circuits 
for generalized modulo adders have been reported in [15], 
[21], and [22]. It has been shown in [15] that its proposed 
architecture is the most efficient adder in comparison to [21] 
and [22] structures. However, the problem of [15] is the 
existence of a 3-operand adder which is eliminated in our 
method. 

In the following, it is shown that the novel architecture 
removes some significant problems of previous structures and 
reduces both area and power dissipation. In the paper, we 
derive new methodology for modulo 2 1n  adder that leads 
to a ripple-carry adder architecture. Although ripple-carry 
adder has more delay than carry-accelerate adder, it is useful 
for low power and low area applications. Using 
implementation in a CMOS technology, we show that the 
proposed ripple-carry design methodology leads to 
considerably less area and power consumption than those 
reported in the related papers and in some cases, power-delay 
product is also reduced. 

The rest of the paper is organized as follows. The 
conventional methods for modulo 2 1n  adder including 
general modulo adders, diminished-1 and carry save 
diminished-1 modulo adders implemented by ripple-carry and 
parallel-prefix addition are reviewed in the next section. In 
section 3, the modulo 2 1n  addition algorithm is proposed 
and implemented using ripple-carry adder. In section 4 the 
resulted structure is compared to the most efficient 
conventional adders. Conclusions are given in the last section. 
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II. REVIEW ON MODULO 2N +1 ADDERS

Addition delay of moduli set of the form 2 1, 2 , 2 1n n n

is determined by the 2 1n  channel; because this module has 
(n+1)-bit wide operands and the two first moduli have n-bit 
wide operands. Therefore, the design of efficient modulo 
2 1n  adders is very important. 

Modulo 2 1n  adders can be designed as a special case of 
general modulo m adders. The most efficient circuits are 
reported in [21], [22]. To remove the problem of (n+1)-bit
wide circuits for the modulo 2 1n  channel, the diminished-1 
and carry save diminished-1 number systems [16] have been 
proposed.

A. Minimum Hardware Method 
Consider a modulus m satisfying 12 2h hm . All binary 

residues in this modulus are h-bit unsigned numbers in the 
range [0, m).

One way of implementing a residue adder for modulo m is a 
structure composed of one h-bit adder. This adder adds two h-
bit numbers, X and Y in the first step. In the second step, the 
result is added with the two’s complement of modulo m. The 
final result is selected between the two outputs according to 
the two output carries. Since the output depends on the input, 
a combinational loop is created that may lead to an unwanted 
race condition. Two solutions for this problem are as bellow 
[18]:  

a) In some cases, an additional logical operation on the 
feedback carry can eliminate the race condition. 

b) The addition is done in two cycles. The output carry of 
the first cycle is added in the second cycle. 

Other solutions for mentioned problem are introduced in the 
following sections. 

B. Series Method 
One solution for eliminating race condition is to apply two 

adders to compute the results of " "X Y  and " "X Y m
in series. The correct sum is selected afterwards according to 
the output carries.  

Modulo 2n+1 adder in series method is shown in Fig. 1. The 
delay of modulo 2n+1 structure is equal to the delay of two 
(n+1)-bit adders as well as the delay of one (n+1)-bit
2 1 multiplexer.  

Fig. 1 Modulo 2n+1 adder with series method 

C. Parallel Method 
For increasing the speed of Fig. 1 structure, series adders in 

this figure can be operated in parallel [23], [24]. One adder 
adds two h-bit residues, X and Y to form their sum 

11 2 out
h CS . Another one is a 3-operand adder that computes 

“ mYX ”. Note that if m=2n+1, we have h=n+1. It has 
been reported in [25] that if either Cout1 or Cout2 of this 
addition is ‘1’ then the output is mYX  instead of YX .
However, in the following we illustrate that only if the carry 
of “ mYX ” is ‘1’, it is sufficient to select it as the final 
output. The related structure is illustrated in Fig. 2. 

Fig. 2 Modulo m adder with parallel method 

Let us assume 12 , 2h hm  and , 0,X Y m  then, 
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1
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1 1 2 22 2 2h h h
out outX Y X Y m S C S C

It is obvious from above non-equality that if Cout1 = 1 then 
Cout2 = 1. It means that Cout1 + Cout2 = Cout2. So, we cay say 
that if Cout2 = 1 then the output is S = X+Y -m and if Cout2 = 0 
then the correct output is X+Y. One way of implementing the 
3-operand adder is Carry Save Adder (CSA) that is shown in 
Fig. 3. 

Fig. 3 Parallel modulo m adder with CSA 

For modulo 2n+1, this design is shown in Fig. 4. The 
critical path is visualized by an arrow in Fig. 4. Therefore, the 
delay is reduced to the delay of one CSA as well as one n-bit 
adder and multiplexer. 
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Fig. 4 Modulo 2n+1 adder using CSA 

D. Incrementer Method 
In this method, one adder followed by an incrementer is 

used. One implementation of the design has been proposed in 
[15]. This design is based on theorem 1 of [15].  

Theorem 1 of [15]: if X and Y are (n+1)-bit wide numbers 
in the range [0,2n+1) then, 

otherwiseYX
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YX

n

nn

n n

nnnn

1

11

2

1

22
12 12

2121212

 (1) 

Equation (1) reveals that a two-stage combinational circuit 
can be utilized for the modulus addition. The first stage 
computes an intermediate sum “M”. If the most significant bit 
of M is ‘0’, the term 2n +1 is added to the n least significant 
bits of M in the second stage. For computing M, a CSA which 
calculates a carry vector C, and a sum vector S, followed by 
an (n+1)-bit parallel adder, which calculates 2 C S , can be 
utilized. Since 2n-1 in its (n+1)-bit binary representation has a 
‘0’ at its leftmost position and ‘1’s at all other positions, the 
CSA is composed of one half-adder (HA) at its leftmost 
position and n semi half-adders (HA*) in the other ones. An 
HA* is a full-adder which one of its inputs is ‘1’ [15]. This 
structure is shown in Fig. 5. 
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Fig. 5 The incrementer method for modulus addition 

E. Diminished-1 Method 
In the Diminished-1 number system, the number A is 

represented by 1A A  and the value zero is treated 
separately, i.e., it requires an additional zero indication bit 
[16]-[18]. 

S  = (S-1) = (X+Y-1) mod (2n +1)
   = [(X +1) + (Y +1) - 1)] mod (2n +1)
   = (X  + Y + 1) mod (2n +1)

The above equation can be depicted by (2). 
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1 2 1 mod 2 1 2
 1 mod 2 1

1

n n n
n X +Y X +Y if X +Y

X +Y
X +Y otherwise              (2)

Algorithm 1 (Modulo 2n +1 addition in diminished-1 
number system): A number in Diminished-1 is represented by 
n+1 bits. The (n+1)th bit is used to indicate ‘0’. In [16], the 
modulo 2n +1 addition algorithm has been presented for zero 
and non zero operands:

1) If the most significant bit of one addend is ‘1’, inhibit the 
addition and the other addend is the output. 

2) If the msb of both addends are ‘0’, ignore the msb, add 
the n lsb’s, complement the carry and add it to the n lsb’s of 
the sum. 

One structure of diminished-1 addition algorithm is 
depicted in Fig. 6. References [17], [18] and [26] have 
proposed implementations of diminished-1 method. 

( 1,0)Y n ( 1,0)X n

( ,0)X n( ,0)Y n

)0,1(1 nO )0,(2 nO

)0,(nS

)(1 nO

( )X n

( )Y n

( )X nAdderModulo n 12

Fig. 6 The general design of Diminished-1 modulo adder 

A. Carry Save Diminished-1 (CSD-1) Number System 
Definition (Carry Save Diminished-1 modulo 2n +1

encoding): The digit set [0,2n] is composed of n positions with 
two bits in the least significant position and n-1 bits in the 
other ones. 

We have proposed the encoding for modulo 2n+1 in [19], 
[20]. Table I shows the representation of numbers in this 
module.  

TABLE I
THE CSD-1 CODING FOR MODULO 2N +1

Range Bit Representation 

[0 , 2n]
n

A number X is represented as below: 

X = xn-1  . . . x2 x1 x 0

x 0 (3) 
where x 0 and x 0 are two bits in the first position of the 

binary positional number system. We called this system Carry 
Save Diminished-1 or abbreviatly “CSD-1”. If 0 0X X

then
00 1 0x x . When we eliminate 0x  from X

representation in (3), the remaining bits are equal to 
diminished-1 representation of X.

The difference and benefit of the representation have been 
shown in [20]. As shown there, carry save diminished-1 has a 
unique circuit for zero and non zero operands. Also, carry 
save diminished-1 is extendable to any other modulo whereas 
diminished-1 is only defined for modulo 2n +1 [20]. An 
efficient low-power CSD-1 parallel-prefix adder has been 
proposed in [19]. In this paper we try to improve the 
performance (power optimization) of modulo 2n +1 arithmetic 
adders using carry save diminished-1 coding.  

Carry save diminished-1 requires converters from/to the 
normal binary to/from diminished-1 representation. The 
converters are similar to diminished-1 converters. Let us 
assume the normal binary input A. The lsb 0a  of CSD-1 
representation is achieved by the logical XOR of all bits of A.
The other bits are the binary representation of A-1.

CSD-1 multiplication can be done by small changes in 
normal multiplier structure. So, we use a basic modulo 2n +1
multiplier [18] to show that CSD-1 number system is suitable 
for all RNS operations and intermediate results don’t have to 
be translated into the new representation before using in 
another operation. Adder trees can be applied very easily to 
speed up carry-save addition of CSD-1 partial products in 
CSD-1 multiplication. Therefore, other arithmetic operations 
can handle the new representation. For example, a 
multiplication following an addition requires no translation 
step.

III. THE PROPOSED CARRY SAVE DIMINISHED-1 RIPPLE-
CARRY ADDER

Algorithm 2 (Modulo 2n+1 addition in the CSD-1 number 
system) Let X and Y are two carry save diminished-1 numbers 
and their addition is shown by ‘S’. Then we have, 

Two cases can occur depends on the value of X+Y value:

      xn-1  . . . x2 x1 x 0
                            x 0
+   yn-1  . . . y2 y1 y 0

                             y 0

     sn-1  . . . s2 s1 s 0
                         s 0
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Case 1) If 2 1nX Y  then S=X+Y. One adder called 
“Madder#1” is used to calculate this value in CSD-1. In 
Madder#1, the addition range of four bits of the first digits 
(least significant bits: x 0, x 0, y 0 and y 0) is in the range [0, 4] 
which can be represented by two bits in the same position and 
one carry bit. 

Case 2) If 2 1nX Y  then X+Y should be reduced 
from 2 1n . Another adder called “Madder#2” is used to 
calculate this value in CSD-1. As mentioned earlier, in CSD-
1, each number is represented by n digits. Since X, Y [0, 2n], 
the second case leads to the following inequalities:

1 2 2 2 1 2 2n n n n nX Y
So,

22
1 2 1 2 1 nn

n nX Y X Y X Y

Therefore, it is sufficient that (X+Y) be decremented. 
However, this condition occurs when both numbers, X and Y
are non zero. Considering the fact that the least significant 
position (composed of two bits) in each non zero number in 
carry save diminished-1 is 1 or 2, a decrementation can be 
done in the first digit without any carry propagation to the 
other positions. 

Therefore, two special adder cells are required for the 
addition of the first positions in Madder#1 and Madder#2. In 
the other positions i, where 0 < i < n, the addition of xi, yi and
ci-1 (the output carry of previous position) can be implemented 
by a conventional FA. 

A. Addition Cell Design of First Digit of Madder#1 (MFA1)
The MFA1 cell adds the bits of first digits. The inputs are 4 

bits (x 0, x 0, y 0 and y 0). The outputs of the MFA1 are two 
sum bits (s 0)MFA1 and (s 0)MFA1 and one output carry (c0)MFA1.
The addition of four bits is in the range [0,4]. Thus five cases 
can occur as shown in Table II.

TABLE II
MFA1 TRUTH TABLE

Note that for a number ‘A’ in carry save diminished-1, the 
case 0 00 , 1a a  never occurs. Therefore, the equations of 
the outputs are as below, 

0010 yxs MFA

0 0 0 0 0 0 0 0 0 0 01MFA
s x y x y x y y x x y

000010 yxyxc MFA (4)

B. Addition Cell Design of First Digit of Madder#2 (MFA2)
The operation of MFA2 is to calculate (x 0+x 0+y 0+y 0-1). It 

produces two sum bits (s 0)MFA2 and (s 0)MFA2 and one output 
carry (c0)MFA2.

The range of the output is [-1, 3]. So, the MFA2 output 
ranges from 0 to 4. The output '-1' occurs when 
x 0+x 0+y 0+y 0=0, that is, both of inputs are zero. In this case, 
the output of Madder#1 will be selected and the output of 
Madder#2 will be “don’t care” shown by ‘d’ in Table III. Also 
the output  ‘0’ occurs when x 0 + x 0 + y 0 + y 0 =1, that is, one 
input is zero. Similarly, the output of Madder#1 will be 
selected and the output of Madder#2 will be “don’t care”. 
Different cases of this addition are represented in Table III. 

TABLE III
MFA2 TRUTH TABLE

(c0)MFA2(s 0)MFA2(s˝0)MFA2
x 0+x 0+y 0+y
0

0dd0
0dd1
0102
0113
1104

After simplifying the above table, the equations of the 
outputs are as below: 

0 2

0 02 1

'1 '
MFA

MFA MFA

s

s s

0020 yxc MFA  (5) 

In other words, instead of applying a 3-operand adder, we 
design a 2-operand adder for Madder#2 which its first cell is 
MFA2.

If X+Y= 2 1n , then the output should be zero. In this case, 
X and Y are non zero. As shown earlier, if two inputs are non-
zero, the outputs of MFA1 and MFA2 will be 1 and 2, 
respectively. Therefore, the output is not zero and it is 
necessary to remove this problem. Example 1 presents the 
problem. 

Example. Let m=24 + 1, X = 5 and Y = 12 are two carry save 
diminished-1 numbers in this module. Then we have, 

5   0 1 0 1 
12  1 0 1 2 

The outputs are shown in Fig. 7. 

(c0)MFA1(s 0)MFA1(s 0)MFA1x 0+x 0+y 0+y 0

0000
0101
0112
1103
1114
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Fig. 7 The outputs of madder#1 and madder#2 for the example 

As shown earlier, when two inputs are complement 
(X+Y= 2 1n ), none of adders produce the correct output. In 
this case, the output of Madder#1 is always “0001” and the 
output of Madder#2 is “1112”.

With a few modifications in the proposed method, the 
desired zero result can be produced. Two methods are 
proposed to solve this problem which they are introduced in 
the next sections. One architecture has less hardware overhead 
(CSD-RC1) and another one has less propagation delay (CSD-
RC2). 

C. The Proposed Architecture with Lower Area 

As mentioned in the above example, if 2 1nX Y  then 
1 1outC  and 2 0outC . One way to correct the output is to 

invert the 0s  of Madder#1. The solution is shown in Fig. 8.  

Fig. 8 The structure of CSD-RC1 

Therefore, the final output can be corrected using the 
following equations: 

21 outout CCCondition

000 s0ss ConditionConditionCondition            (6) 

D. The Proposed Adder with Faster Architecture 
The desired zero can be produced by the third input of one 

multiplexer. In other words, instead of using extra gates in 
Fig. 8, one 3 1 multiplexer is applied, where 1outC  and 2outC
are its select lines. The operation of the 3 1 multiplexer is 
described in Table IV. 

TABLE IV
THE OPERATION OF 3 1 MULTIPLEXER

This structure is shown in Fig. 9. 

Fig. 9 The structure of CSD-RC2 

IV. COMPARISONS

Two and three-operand adders of modulo 2 1n  adders 
discussed in section 2 can be designed in different ways. They 
can be implemented using ripple-carry addition [21], [22], 
parallel-prefix addition or etc. Efficient parallel-prefix adders 
have been proposed in [15], [17]-[19], [21], [22]. If we want 
to design modulo 2 1n  adder with ripple-carry adder, to 
achieve lower power and lower area, it is obvious that series 
and incrementer methods realize two carry propagations in 
series and thus they are slow, while the delay of parallel 
method is equal to one carry propagation. 
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TABLE V
REAL COMPARISON RESULTS FOR N=8

Adder Architecture Transistor Count Average Power Dissipation (μW) Power–Delay Product (fJ) 
PPREF [17] 1036 293.56 127.54 
TPP [15] 844 278.64 156.80 
CSD-PP [19] 838 214.51 50.53 
CSA-RC 794 152.15 119.76 
CSD-RC1 574 146.89 110.68 
CSD-RC2 612 167.79 119.89 

TABLE VI
IMPROVEMENTS OF CSD-RC1 AND CSD-RC2 VS. OTHER COMPARED ADDERS

Hardware Improvement Power Improvement PDP Improvement 
CSD-RC1 vs. PREF  45%  50% 13.22% 
CSD-RC1 vs. TPP  32%  47% 29% 
CSD-RC1 vs. CSD-PP  31.5%   32% -119% 
CSD-RC1 vs. CSA-RC  27.7%  3.46% 7.6% 
    
CSD-RC2 vs. PREF  41%  43% 6% 
CSD-RC2 vs. TPP  27.5 %  40% 24% 
CSD-RC2 vs. CSD-PP  27 %  22% -137% 
CSD-RC2 vs. CSA-RC  23% -10.3% -0.1% 

In diminished-1, there is a critical path composed of one 
modulo 2 1n  adder as well as one multiplexer. Therefore, 
the parallel method is the fastest method with ripple-carry 
adder architecture. We call this structure as CSA-RC adder 
which has been shown in Fig. 4. 

For hardware overhead evaluation, the transistor numbers 
of proposed CSD-RC1 and CSD-RC2 architectures and the 
CSA-RC adder have been considered. The CSA-RC adder has 
(92 n + 58) transistors. The area of CSD-RC1 adder is equal to 
(70 n + 14) transistors and the proposed CSD-RC2 adder 
offers hardware area equal to (76 n + 4) transistors. So, CSD-
RC1 has the least area among the modular adders. 

Therefore, in this paper, CSA-RC adder based on ripple-
carry adder and 3 efficient modulo 2 1n  adders based on 
parallel-prefix adder [15], [17], [19] with conventional binary, 
diminished-1 and CSD-1 number systems are considered for 
area, power and power-delay-product (PDP) comparisons. We 
compare the proposed adders with CSA-RC, PPREF [17], 
TPP [15] and CSD-PP [19]. For the quantitative comparison, 
HSPICE software is used and all architectures are mapped to 
the 0.18 implementation technology (0.18 m, Vdd=1.8 v).  

We optimize our designs to achieve lower optimized PDP 
and transistor sizing is done (in a 1-bit full-adder cell and 
other components of whole architecture) to obtain more 
efficient PDP. The different designs consumptions measured 
at the same operating frequency. 

As shown in table V, CSD-RC1 has the smallest 
implementation area is the lowest power consumption among 
the compared adders. The power reported by HSPICE 
includes static and dynamic power. Beside, it reduces power-
delay-product parameter of CSA-RC, PPREF and TPP. But 
they don’t improve power-delay product of CSD-PP.  

Table VI clearly describes the comparisons. The proposed 

architectures lead to smaller hardware overhead than the CSA-
RC adder. They both reduce average power consumption of 
all modulo 2n+1 adders based on parallel-prefix addition. The 
proposed CSD-RC1 improves CSA-RC, PPREF, TPP and 
CSD-PP power consumption about 3.46%, 50%, 47% and 
32% respectively. They decrease hardware overhead of the 
compared adders and they also reduce PDP parameter of 
CSA-RC, PPREF and TPP.  

I. CONCLUSION

A novel ripple-carry addition algorithm for carry save 
diminished-1 number system has been proposed. This allows 
for a power and area optimized solution in application that 
lower speed of ripple-carry addition may be tolerated. Two 
new architectures have been presented for designing modulo 
2n +1 addition based on ripple-carry adder. The CSD-RC1 
architecture is a fast architecture whereas the CSD-RC2 
architecture applies less hardware than the first one. For the 
quantitative comparison, HSPICE software has been used. 
VLSI implementations of these architectures have revealed 
that the proposed adders have better efficiency than previous 
solutions based on ripple-carry and parallel-prefix addition in 
both implementation area requirements and power 
consumptions. The proposed architectures lead to faster 
design and smaller hardware overhead than the CSA-RC 
adder. They both reduce average power consumption of all 
modulo 2n+1 adders based on parallel-prefix addition. The 
proposed CSD-RC1 improves CSA-RC, PPREF, TPP and 
CSD-PP power consumption about 3.46%, 50%, 47% and 
32% respectively. They also decrease hardware overhead of 
the compared adders and reduce PDP parameter of CSA-RC, 
PPREF and TPP.
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