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Abstract—The dynamics of the Autonomous Underwater
Vehicles (AUVs) are highly nonlinear and time varying and the
hydrodynamic coefficients of vehicles are difficult to estimate
accurately because of the variations of these coefficients with
different navigation conditions and external disturbances. This study
presents the on-line system identification of AUV dynamics to obtain
the coupled nonlinear dynamic model of AUV as a black box. This
black box has an input-output relationship based upon on-line
adaptive fuzzy model and adaptive neural fuzzy network (ANFN)
model techniques to overcome the uncertain external disturbance and
the difficulties of modelling the hydrodynamic forces of the AUVs
instead of using the mathematical model with hydrodynamic
parameters estimation. The models’ parameters are adapted according
to the back propagation algorithm based upon the error between the
identified model and the actual output of the plant. The proposed
ANFN model adopts a functional link neural network (FLNN) as the
consequent part of the fuzzy rules. Thus, the consequent part of the
ANFN model is a nonlinear combination of input variables. Fuzzy
control system is applied to guide and control the AUV using both
adaptive models and mathematical model. Simulation results show
the superiority of the proposed adaptive neural fuzzy network
(ANFN) model in tracking of the behavior of the AUV accurately
even in the presence of noise and disturbance.

Keywords—AUV, AUV dynamic model, fuzzy control, fuzzy
modelling, adaptive fuzzy control, back propagation, system
identification, neural fuzzy model, FLNN.

I. INTRODUCTION

HE AUV have gained importance over the years as
specialized tools for performing various underwater

missions in military and civilian operations. The autonomous
control of underwater vehicles poses serious challenges due to
the AUVs’ dynamics. AUVs dynamics are highly nonlinear
and time varying and the hydrodynamic coefficients of
vehicles are difficult to estimate accurately because of the
variations of these coefficients with different navigation
conditions and external disturbances. The main advantage of
the AUV is that it does not need a human operator. Therefore,
is capable of doing operations that are too dangerous for
humans.
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Applications of AUVs can be divided into three groups [1].
These three groups are maritime (marine) security,
oceanography, and submerged structure inspection and
maintenance. According to [2] the two most significant
technological challenges in AUV’s design are power and
autonomy. Power sources limit the mission time of the vehicle
and autonomy limits the degree to which an AUV can be left
unattended by human operators.

As presented in [1], the fuzzy system is used as a system
identifier for nonlinear dynamic system. They show that the
fuzzy system can be viewed as a three-layer feed forward
network. The neuro-fuzzy modeling techniques are presented
in [2]. The system identification is a powerful approach for
that technique and was demonstrated by its application to the
identification of an Ocean Voyager AUV.

Reference [3] was concerned with practical System
Identification (SI) method in order to obtain a model of AUV
using input-output data obtained from test trials. The autopilot
deployed was an LQG controller. Reference [4] presented a
simple model identification method for UUV and applied this
method to the underwater robot GARBI. The system
identification was aimed at decoupling the different degrees of
freedom in low speed vehicles. The indirect adaptive fuzzy
controller is presented in [5] that do not require an accurate
mathematical model of the system. The simulation results
show that the adaptive controller is capable to track the system
without using any linguistic information and after
incorporating some linguistic fuzzy rules, the adaption speed
became faster.

A neural fuzzy system based on modified differential
evolution for nonlinear system control is discussed in [6]. This
controller is applied to the planetary-train-type inverted
pendulum system and the magnetic levitation system. As
presented in [7], The FLNN (functional link NN) is capable of
estimation of pressure quite accurately irrespective of
nonlinear characteristics of the CPS (capacitor pressure
sensor) and its temperature dependence.

The FLNN is a single-layer neural structure capable of
forming arbitrarily complex decision regions by generating
nonlinear decision boundaries with nonlinear functional
expansion. The FLNN [8] was conveniently used for function
approximation and pattern classification with faster
convergence rate and less computational loading than a
multilayer neural network.

ADFA AUV has been developed and built in
UNSW@ADFA. The hydrodynamic coefficients of this AUV
are calculated under certain conditions using CFD method to
derive the exact mathematical model. Simulation program is
built up to simulate the dynamic behaviour of the AUV based
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upon the calculated mathematical model of the AUV. This
work is going to deal with system identification based upon
on-line adaption techniques of AUV dynamics. The only
information required for training the fuzzy and neural fuzzy
systems is the input -output data with very simple prior
knowledge of the physical relationship inside the system and it
offers a ‘black box’ modeling tool.

This study proposes an online system identification of AUV
dynamics as a black box that has an input-output relationship
instead of using the mathematical model with hydrodynamic
parameters to obtain an accurate dynamic model to overcome
the uncertaininaty, nonlinearity and the difficulties of
modeling the AUVs. The development of the AUV dynamic
model identification is based upon fuzzy and hybrid neural
fuzzy techniques with online adaptive and learning algorithm.

The general dynamic equation describing the mathematical
model of the ADFA AUV is provided in Section II. The
design details of the system identification using fuzzy system
and adaptive fuzzy model are discussed in section III. The
design details of identification of AUV using adaptive neural
fuzzy network (ANFN) techniques are presented in section IV.
Moreover, the convergence analysis is discussed in section V.
Numerical simulation results are presented in section VI.
Finally, the paper is concluded in Section VII.

II. AUV’S MATHEMATICAL MODEL

Fig. 1 shows a typical underwater vehicle model. One
electrical thruster powers the vehicle for forward motion. Two
electrical pumps are used for maneuvering in the horizontal
plane. In addition, two electrical pumps help the AUV to
navigate in the vertical plane. The middle section is used for
carrying the sensors, battery and the electronic accessories.

The hydrodynamic forces per unit mass acting on each axis
will be denoted by the uppercase letters X, Y and Z. u, v and
w represent the forward, lateral and vertical velocities along x,
y and z axes respectively. Similarly, the hydrodynamic
moments on AUV will be denoted by L, M and N acting
around x, y and z axis respectively. The angular rates will be
denoted by p, q and r along x, y and z axes respectively.

Fig. 1 Australian Defense Force Academy AUV

Dynamics of AUVs, including hydrodynamic parameters
uncertainties, are highly nonlinear, coupled, and time varying.
According to [9], the six degrees-of-freedom nonlinear
equations of motion of the vehicle are defined with respect to
two coordinate systems as shown in Fig. 2.

Fig. 2 Six degrees of freedom of an AUV

The equations of motion for the AUV are derived from
Newton’s second law of motion. The equation of motion for
underwater vehicle can be written as follows [12]:

(1)

where is a 6x6 inertia matrix as a sum of the rigid body
inertia matrix, MR and the hydrodynamic virtual inertia (added
mass) MA. is a 6x6 Coriolis and centripetal matrix
including rigid body terms and terms due to
added mass. is a 6x 6 damping matrix including terms
due to drag forces. G(q) is a 6x1 vector containing the
restoring terms formed by the vehicle’s buoyancy and
gravitational terms. τ is a 6x1 vector including the control
forces and moments.

The dynamic models of thrusters and pumps have been
included in the present study. The AUV model is simulated by
a mathematical model based on physical laws and design data
of the ADFA AUV.

III. FUZZY SYSTEM IDENTIFICATION OF AUV

The nature of fuzzy logic does have a good dynamic
performance and offers a control solution when a
mathematical model is not well known or not known at all.
Fuzzy systems are known for their capabilities to approximate
any nonlinear dynamic system [11]. The main idea of fuzzy
control is to build a model of a human control expert who is
capable of controlling the plant without thinking in
mathematical model terms [12].

Fuzzy Modeling is the method of describing the
characteristics of a system using fuzzy rules, and it can
express complex non-linear dynamic systems by linguistic if-
then rules [13].

The fuzzy rule base consists of a collection of fuzzy IF-
THEN rules.

(2)

where are the inputs
and outputs of the fuzzy system, respectively, are
labels of fuzzy sets in U, and R, respectively, and l = 1, 2,…,
M.

As [14], the AUV’s fuzzy modeling is constructed based
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Fig. 3 The configuration of the fuzzy modeling
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(4)

where E(k) is error between the fuzzy model and the actual
plant outputs. If represents the parameter to be adapted
at iteration k in the fuzzy controller, the back propagation
algorithm seeks to minimize the value of the objective
function by [15];

(5)

To train ;

(6)

where

(7)

Similarly, the update rule for parameters and is derived. The
learning rate in (5) [16] has a significant effect on the
stability and convergence of the system. A higher learning rate
may enhance the convergence rate but can reduce the stability
of the system.  A smaller value of the learning rate guarantees
the stability of the system but slows the convergence. The
proper choice of the learning rate is therefore very important.
The convergence analysis of the models will be discussed
later.

IV. ANFN SYSTEM IDENTIFICATION OF AUV

The ANFN uses a nonlinear combination of input variables
(FLNN) [7] with the fuzzy system. Each fuzzy rule
corresponds to the FLNN, comprising a functional expansion
of input variables. The FLNN, initially proposed by [8], is a
single-layer ANN structure capable of forming complex
decision regions by generating nonlinear decision boundaries.
In a FLNN, the need of hidden layer is removed. In contrast to
linear weighting of the input pattern produced by the linear
links of a MLP, the functional link acts on an element or the
entire pattern itself by generating a set of linearly independent
functions.

In this study, the functional expansion block comprises of a
subset of orthogonal polynomials bases function. The FLNN
has been inserted to the consequent part of the fuzzy rules.
The local properties of the consequent part in the ANFN
model enable a nonlinear combination of input variables to be
approximated more effectively.

A. Functional Link Neural Network Structure

The FLNN is a single-layer network while the input
variables generated by the linear links of neural networks are
linearly weighted, the functional link acts on an element of
input variables by generating a set of linearly independent

functions, orthogonal polynomials for a functional expansion,
and then evaluating these functions with the variables as the
arguments. Therefore, the FLNN structure considers
trigonometric functions.

The theory behind the FLNN for multidimensional function
approximation has been discussed in [6]. Consider a set of
basis functions , K = {1, 2 . . .}. Let

be a set of basis function. The FLNN comprises
M basis functions . The linear sum
of the jth node is given by

(8)

where is the input vector and
is the weight vector associated with

the jth output of the FLNN. denotes the local output of the
FLNN structure and the consequent part of the jth fuzzy rule in
the ANFN model. In the FLNN structure as shown in Fig. 7, a
set of basis functions Φ and a fixed number of weight
parameters W represent fW(x).

The m-dimensional linear output may be given by
, where , m denotes the number of

functional link bases, which equals the number of fuzzy rules
in the ANFN model, and W is an (m×M)-dimensional weight
matrix of the FLNN given by .

Fig. 7 FLNN structure

B. ANFN Model Structure

The ANFN model uses a nonlinear combination of input
variables (FLNN). Each fuzzy rule corresponds to a sub-
FLNN, comprising a functional link. The structure of the
ANFN model is presented in Fig. 8. The ANFN model
changes a fuzzy IF–THEN rule in the following form.

(9)

where xi and are the input and local output variables,
respectively; is the linguistic term of the precondition part
with Gaussian membership function, N is the number of input
variables, is the link weight of the local output, is the
basis trigonometric function of input variables, M is the
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number of basis function, and rule j is the jth fuzzy rule.
The output of the fuzzy model in (3) with that

representing the centre and width of Gaussian memberships
for input variable xi is changed to meet the requirement for
ANFN model and become following form:

(10)

The learning process involves determining the minimum of
a given cost function (4). The gradient of the cost function is
computed and the parameters are adjusted with the negative
gradient. The back propagation algorithm is adopted for this
supervised learning method to adapt the ANFN model
parameters ( based on the objective function.
The adaption equations for parameters are
described before in (5). By following the same sequence, the
equation for adapting parameter w is derived as shown in (11
and 12).

Fig. 8 ANFN structure

(11)

(12)

where is the learning rate parameter of the FLNN weight
and E(k) is error between the fuzzy model and the actual plant
outputs.

In this study, both the link weights in the consequent part
and the parameters of the membership functions in the
precondition part are adjusted by using the back propagation
algorithm. Each degree of freedom of underwater vehicle
dynamics is represented by one ANFN model. Therefore,
there are six SISO ANFN models to represent six degree of
freedom of AUV.

In the precondition part, the input is represented by five

Gaussian membership functions that mean five means and
variance needed to be adapted.  In the consequent part, the
output is generated by FLNN. The function expansion in
FLNN uses trigonometric functions, given by

for one input variable. It leads to
the of the weight variables, w, is (4x5) matrix needed to be
adapted.

V. CONVERGENCE OF AUV MODEL

Each learning rate parameter of the weight, the mean, and
the variance, α, has a significant effect on the convergence. To
ensure a quick and stable convergence of fuzzy controller
parameters a convergence analysis of the learning rate α will
be considered according to the following theorem.

Theorem [19]: Let α be the learning rate for the parameters
of fuzzy controller and be defined as

where and ||.|| is the usual
Euclidean norm in and let . Then the
convergence is guaranteed if α is chosen as;

(13)

VI. SIMULATION RESULTS

A MATLAB program is conducted to simulate the
dynamics of the AUV by using Runge-Kutta fifth order
method with tolerance 0.00001. The same fuzzy controller is
applied on mathematical model, adaptive fuzzy model and
ANFN model.

Fig. 9 and Fig. 10 show the motion of the AUV in square
trajectory in XY plane and in straight-line motion in XZ
respectively . It is seen that the motion of the AUV with
ANFN model does a better job compared to the performance
of the AUV with adaptive fuzzy model in terms of accuracy as
well as the speed.

Fig. 11, Fig. 12 and Fig. 13 provide an example of the
performance of ANFN model and its tracking capability of the
mathematical model. These figures show the angular velocity
in pitch motion, q, the error between the mathematical and
adaptive fuzzy model, and the error between the mathematical
and ANFN model in that motion respectively. It is clearly seen
that the behaviour of the ANFN model has similar behavior as
the mathematical model. The ANFN system identification has
the capability to track the plant successfully whatever the
change in the operating conditions.

The learning rates, for all models were initially set to 1 to
train the model parameters. Then the convergence conditions
were verified at every sampling time. In the present work, it
was found that of “1” value was always within the limit of
convergence for the fuzzy model and in the range 0.009 to
0.236 for FLNN parameters in ANFN model.
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Fig. 9 AUV square motion in XY plane with ANFN model and fuzzy
model based on fuzzy control

Fig. 10 AUV motion in XZ plane with ANFN model and fuzzy
model based on fuzzy control

Fig. 11 The actual pitch angular velocity of the mathematical model,
q

Fig. 12 The error between mathematical model and adaptive fuzzy
model in q

Fig. 13 The error between mathematical model and ANFN model in
q

A. Open Loop Accuracy Evaluation of AUV Model

The most widely used method for measuring performance
and the accuracy indicators of the AUV system is the root
mean square error (RMSE). The root mean square error is
defined as:

(14)

where n is the number of data pairs and di is the difference
between ith desired and measured values, which means, it is
the error between actual data that generated by the
mathematical model and date that generated by the identified
model.

The RMSE is said to provide information on the short-term
performance of a model by allowing a term-by-term
comparison of the actual difference between the desired value
and the measured value. The smaller the value is, the better the
model's performance.
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Table I shows the RMSE values of the modeling error in
velocity in each degree of freedom. Those errors are the error
between the actual velocities generated from the mathematical
model and velocities generated from both models (ANFN,
fuzzy) while trying to track and model the original one.

Same operating conditions have been applied on all models.
Generally, it is clear that the performance of the ANFN model
is more accurate and more effective   for identifying the
mathematical model rather than fuzzy model.

It is obviously seen from the RMSE values for errors in q
and r that the ANFN model has more flexibility in identifying,
modeling and tracking the nonlinear and dynamics for q and r
more than adaptive fuzzy system.

TABLE I
THE RMSE VALUES FOR AUV ANFN MODEL AND FUZZY MODEL IN EACH

VELOCITY COMPONENT

Velocity Error
ANFN Model with

FLNN
Fuzzy Model with

BP
u 6.6162e-004 4.0067e-004
v 8.6219e-005 3.9190e-004
w 2.5028e-006 1.7111e-004
q 2.7449e-004 0.0130
r 4.6631e-004 0.0017

VII. CONCLUDING REMARKS

The paper presents the numerical simulation results of the
online adaptive fuzzy modelling and online adaptive neural
fuzzy network (ANFN) as system identification of the
mathematical modelling of the AUV using fuzzy controllers.

System identification with the ANFN with FLNN structure
is found to be quite effective for the coupled nonlinear, six
degree of freedom dynamic model. Performance comparison
between an adaptive fuzzy and ANFN structure in terms of
computational complexity and modeling error between the
plant and model outputs has been carried out. It is shown that
the overall performance of a suitably chosen ANFN structure
is superior to an adaptive fuzzy structure for identification of
nonlinear dynamic systems.

Fuzzy modeling is used to identify the model of the AUV
using input-output data. The back propagation as a training
algorithm for the fuzzy system proves the fast convergence of
the fuzzy system and the fuzzy identifier successfully
achieved a similar performance of the process.
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