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Abstract—Association rule mining is one of the most important 

fields of data mining and knowledge discovery. In this paper, we 
propose an efficient multiple support frequent pattern growth 
algorithm which we called “MSFP-growth” that enhancing the FP-
growth algorithm by making infrequent child node pruning step with 
multiple minimum support using maximum constrains. The algorithm 
is implemented, and it is compared with other common algorithms: 
Apriori-multiple minimum supports using maximum constraints and 
FP-growth. The experimental results show that the rule mining from 
the proposed algorithm are interesting and our algorithm achieved 
better performance than other algorithms without scarifying the 
accuracy.  
 

Keywords—Association Rules, FP-growth, Multiple minimum 
supports, Weka Tool. 

I. INTRODUCTION 

ATA mining, also known as knowledge discovery in 
databases representational techniques for discovering 

knowledge patterns hidden in large databases. Many data 
mining approaches are being used to extract interesting 
knowledge from such huge data like association rule mining. 
Data mining is seen as an increasingly important tool by 
modern business to transform data into the business 
intelligence that giving the informational advantages. Data 
mining is currently used in the wide range of profiling 
practices, such as scientific discovery, marketing, fraud 
detection and surveillance. 

Association rule mining searches for interesting 
relationships among items in a given data set. Association rule 
mining is used in many applications as economic and financial 
time series [1]. It is frequently used in the Market Basket 
analysis [2]. 

 An association rule is an expression of the form X→Y, 
where X, Y are item sets. It shows the relationship between 
the items X and Y, There are two important basic measures for 
association rules, support (sup) and confidence (c): Support 
(sup.) of the rule is the fraction of the transactions that contain 
all items both in X and Y, i.e., sup (X→Y) = P(X ∪ Y), 
Confidence (conf.) is defined as the fraction of transactions 
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containing X also containing Y, i.e., P (Y|X) =P(X ∪ Y)/P(X). 
A rare association rule [14] is one of the association rule 

mining challenges refers to an association rule forming 
between both frequent and rare items that used for the 
knowledge in rare associations [3]. The user defines the 
minimum support criteria for the item to be frequent. If the 
itemset match the minimum support criteria, then it can be 
infrequent patterns. Some items with low support and have 
high confidence; The Mining of these items is called rare 
itemset mining. There is a rare item problem as in Real-world 
databases are mostly non-uniform in nature, containing both 
frequent and relatively infrequent (or rare) items [4], [5]. If the 
items’ frequencies in a database vary widely, we encounter the 
following issues while mining frequent patterns under the 
single minsup framework as following: 
i. If minsup is set too high, we will miss the frequent 

patterns containing rare items. 
ii. If minsup is low, we will find frequent patterns that 

involve both frequent and rare items, however, this may 
cause combinatorial explosion, producing too many 
frequent patterns, because those frequent items will 
combine with many of them are meaningless. The same 
happens with a rare periodic-frequent pattern because it is 
difficult to mine rare periodic-frequent patterns with a 
single minsup. Hence, efforts have been made into mine 
periodic-frequent patterns using multiple minsup 
constraints, where minsup of a pattern is represented with 
the minimum item supports of its items (MIS). 

The remainder of this paper is organized as follows: Section 
II explains mining association rules and describes several 
algorithms including Basic Apriori, multiple minimum 
supports using Maximum constraints (maximum constraints) 
and FP-growth. Section III presents the proposed algorithm 
(MSFP-growth). In Sections IV and V, the Implementation 
and results of evaluating performance of the four algorithms 
are discussed, respectively. The conclusion is presented in 
Section VI. Finally, the expected future work is drawn at 
Section VII.  

II. MINING ASSOCIATION RULES ALGORITHMS 

The mining association rules generate all association rules 
that have support and confidence greater than or equal the 
user-specified minimum support (called minsup) and 
minimum confidence (called minconf). The problem of 
discovering all association rules can be decomposed into two 
sub problems:  
(1) Finding all the frequent itemsets (whose support is greater 

than or equal minsup), also called large itemsets.  
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(2) Generating the association rules derived from the frequent 
itemsets. 

A rule is an implication X=>Y, for the rules to be strong; 
they must satisfy the support threshold (minsup) and the 
confidence threshold (minconf). the following algorithms 
solve this problem. Some of the well-known algorithms for 
association rule mining are Apriori and FP-growth, various 
authors have compared the existing algorithms and various 
others have proposed new algorithms to remove the 
drawbacks of older ones. In this paper, we are comparing the 
algorithms using single minsup like Apriori and FP-growth 
with another which using multiple using multiple minsup 
constraints like algorithm explain in Section B below and the 
proposed algorithm (MSFP-growth). 

A. Apriori Algorithm 

Apriori algorithm is an influential algorithm for mining 
frequent itemsets which has been proposed in [6], [7]. The 
name of the algorithm is based on the fact that the algorithm 
uses prior knowledge of frequent itemsets properties. Apriori 
employs an iterative approach known as a level-wise search, 
where k-itemsets are used to explore (k+1)-itemsets. First, the 
frequent 1-itemset is found, this is denoted by L1, which is 
used to find the frequent 2-itemset L2 and so on.to improve 
the efficiency of the level-wise generation of frequent 
itemsets, a property called Apriori property is used to reduce 
the search space. This property states that all nonempty 
subsets of a frequent itemset must also be frequent. A two-step 
process is used to find Lk-1 from Lk: 
1) The join step: To find Lk, a set of k-itemsets is generated 

by joining Lk-1 with itself. This set of candidate itemsets 
is denoted Ck. 

2) The prune step: Ck is a superset of Lk, that is, its 
members may or may not be frequent, but all the frequent 
k-itemsets are included in Ck. A scan of the database is 
done to determine the count of each candidate in Ck, 
those who satisfy the minsup is added to Lk. To reduce 
the number of candidates in Ck, the Apriori property is 
used. An example of Apriori algorithm is found in [7]. 
This algorithm inherits the drawback of scanning the 
whole databases many times. It also takes the much time, 
space and memory to the candidate generation process. 
Based on the algorithm, many new algorithms were 
designed with some modification or improvements.  

B. Mining Association Rules with Multiple Mining Supports 
Using Maximum Constraints 

Reference [9] proposed mining association rules with non-
uniform minimum support values in 1999. This algorithm is 
an extension of Apriori algorithm which allowed users to 
choose different minsup to different items according to its 
natural frequency. They also defined the MIS as the lowest 
minimum supports among the items in the itemset. This is not 
always useful because it would consider some items that are 
not worth to be considered because one of the items in this 
itemset, its minsup was set too low. In some cases it makes 
sense that the minsup must be larger than the maximum of the 

minimum supports of the items contained in an item set [8]. 
In [8], the authors proposed an algorithm that gives items 

different minimum supports. The maximum constraint is 
adopted in finding frequent item sets [16], [18], [22]. That is, 
the minsup denoted by MIS for an item set is set as the 
maximum of the user specified minimum supports of the items 
contained in the item set. Under the constraint, the 
characteristic of level-by-level processing is kept, such that the 
original Apriori algorithm can be easily extended to find the 
frequent item sets. The algorithm first finds all the frequent 1-
itemsets defined as (L1) for the given data transactions by 
comparing the support of each item with its predefined 
minsup. After that, candidate 2-itemsets C2 can be formed 
from L1. Note that, the supports of all the frequent 1-itemsets 
including each candidate 2-itemset must be larger than or 
equal to the maximum of their user specified minsup. This 
feature provides a good pruning effect before the database is 
scanned for finding large 2-itemsets.The algorithm then finds 
all the large 2-itemsets L2 for the given transactions by 
comparing the support of each candidate 2-itemset with the 
maximum of the user specified minsup of the items contained 
in the item set. The same method is repeated until all frequent 
item sets have been found. An example of the algorithm is 
found in [8]. 

C. FP-growth Algorithm 

Reference [10] proposed a new tree structure, called a FP-
tree, which is an extended prefix-tree structure for sorting 
compressed and crucial information in 2000. Consequently, 
the FP-growth method is a FP-tree based mining algorithm for 
mining frequent patterns. The Fp-growth approach is based on 
divide and conquer strategy for producing the frequent 
itemsets. FP-growth is mainly used for mining frequent 
itemsets without candidate generation shown in [10] to 
remove the drawbacks of the Apriori algorithm. Major steps in 
FP-growth are: 
Step 1. It firstly compresses the database showing frequent 

itemset into FP-tree. FP-tree is built using 2 passes over 
the dataset. 

Step 2. It divides the FP-tree into a set of conditional database 
and mines each database separately, thus extract 
frequent item sets from FP-tree directly. 

The important step of FP-growth algorithm is the process to 
construct the FP- tree [15], which needs to scan the transaction 
itemset twice: scan the database of transaction T once to find 
out the frequent 1-itemset L, then arrange the support count in 
descending order to get the L1 then take the “Null” as the root 
node when scan the transaction itemset for the second time, 
then construct the FP-tree base on L1. 

The next step is mining the frequent itemsets from the FP-
tree after constructing the original FP-tree. The steps as 
following: 
1) Produce conditional pattern base for every node in the FP-

tree. 
2) Build the corresponding conditional FP-tree from the 

conditional pattern base. 
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3) Mine the conditional FP-tree recursively and increase the 
frequent itemset belong to it at the same time by 
producing the involved frequent itemset immediately if 
the conditional FP-tree only contains one path. Otherwise, 
increase the minimum item of support count if the suffix 
pattern. 

 Then construct the conditional pattern base and conditional 
FP-tree (The conditional pattern base is the entire branch 
which takes (E) as their leaf node in the FP-tree. The 
conditional FP-tree of is a new FP-subtree taking the 
conditional pattern base as its transaction and constructed in 
the same way of the original FP-tree An example of the 
algorithm is found in [11]. 

III. MINING ENHANCEMENT FP-GROWTH ALGORITHM WITH 

MULTIPLE MINIMUM SUPPORTS USING MAXIMUM 

CONSTRAINTS: THE PROPOSED ALGORITHM 

Based on the algorithms explained in Section II, a new 
algorithm is proposed for enhancement FP-growth Algorithm 
by making infrequent child node pruning step so that the size 
of the MIS-tree result less than or equivalent to the FP-tree 
constructed by FP-growth approach then mining the proposed 
Algorithm but with specifying different minsup to each 
individual item. The proposed algorithm is an efficient tree-
based algorithm for mining association rules with multiple 
minimum supports using Maximum Constraints (MSFP-
growth). 

A. The Proposed Algorithm 

The MSFP-growth is an extension of single minsup based 
FP- growth approach to multiple minsup values [12], [13], 
[17]. This approach includes two steps. They are a 
construction of MIS-tree [23] and mining frequent patterns 
from the MIS-tree using conditional pattern bases. This 
approach assumes that the MIS values for each item will be 
choosed by the user; the MIS- tree is constructed as: 
1. The items are sorted in descending order of their MIS 

values (L1). 
2. A root node of the tree is constructed by labeling with” 

null”.  
3. For each transaction the nodes represent the items, level 

of nodes in a branch is based on the sorted order and the 
count of each node is set to 1.  

4. Update the frequencies of the items which are present in 
the transaction by incrementing the frequency value of the 
respective item by 1 and each node along a common 
prefix is incremented by 1, the nodes for the items 
following the prefix are created linked to them and their 
values are set to 1. 

To facilitate tree structure, an item header table is built so 
that each item points to its occurrences in the tree via a chain 
of node-links. From the item frequencies, the respective 
support values are calculated using the lowest MIS value 
among all the items, any frequent pattern will have support 
greater than or equivalent to the lowest MIS value among all 
the items. Otherwise, the tree-pruning process is performed on 
the item header and MIS-tree to remove the items that have 

support is less than the lowest MIS value. After tree pruning, 
tree-merging process and mining the MIS-tree result. 

The proposed growth approach involves three steps 
constructing the MIS-tree, Infrequent child node pruning step 
and Mining frequent patterns from MIS-tree. 

1) Constructing MIS-tree 

The construction of MIS-tree in MSFP-growth algorithm 
described as follows. There are input parameters to these 
algorithm transaction dataset (Trans), Itemset (I) and 
minimum item support values (MIS) of the items. Using these 
input parameters, the MSFP-growth creates an initial MIS-
tree. Next, starting from the last item in the item-header table 
(i.e., item having lowest MIS value), it perform tree-pruning to 
remove the infrequent items from the item-header table and 
MIS-tree. The result is an efficient MIS-tree, shown in Fig. 1. 

 

 

Fig. 1 Flow Diagram of MIS-Tree 

2) Infrequent Child Node Pruning 

The MSFP-growth approach skips the construction of 
conditional pattern bases for the infrequent items. So in the 
efficient MIS-tree, the child nodes belong to infrequent items 
have not any importance because its prefix paths (conditional 
pattern bases) are not used. So, if we can’t prune the child 
nodes belonging to infrequent items making the MIS-tree 
result less than or equivalent to the FP-tree constructed by the 
FP - growth approach so in the MIS-tree, “infrequent child 
node pruning” is performed such that every branch ends with 
the node of frequent item. Pruning should be performed only 
on the child nodes belonging to infrequent items. 
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C. The Comparison Procedures between Single and 
Multiple Supports Algorithms 

 The comparison between any mining association rule 
algorithms is either made on a number of rules generated by 
each algorithm or on their processing time. To compare the 
processing time, same algorithm parameters should be used 
which are the minsup and minconf. But using the same minsup 
causes confusion when comparing an algorithm that takes one 
minsup value and another that takes multiple minsup criteria. 
If the output of the single and multiple supports algorithms is 
the same, it means that both had equivalent parameters. The 
procedures show in the flow chart of [Fig. 3] are used to 
specify a minsup to each item in order to unite the output of 
single and multiple supports algorithm. This will make 
comparing the processing times is based on a reliable aspect 
by uniting the output; this procedure has been tested in [21]. 

In Fig. 5, the following steps are taken to decide what 
minsup should be specified for each individual item when 
comparing FP-growth with MSFP-growth. 

The comparison procedures are: 
1. Take the rules generated by FP-growth algorithm with a 

specific minsup. 
2. Get the sup-count of each itemset. 
3. Calculate the values of MIS of each itemset.  
4. For each item in the itemset, specify a minsup equals to 

MIS.  
5. For each rule, determine what itemsets are contained in 

each rule. 
6. To fulfill the condition which says that in any itemset the 

sup-count of each item must be greater than or equal MIS, 
so in backward method MIS must be less than or equal 
sup-count of each itemset to allow the itemset to be 
generated. 

7. After calculating the values of MIS, we can specify the 
same value of MIS as a minsup for each item in the 
itemset. 

8. In this way each item could be specified more than one 
minsup; if this happens the minimum minsup should be 
specified. 

Finally, some items weren’t specified any mix-up which 
means that they were not included in the rules generated so, 
they should be specified a minsup greater than their sup-count 
to be excluded from frequent itemset. 

Example to Explain the Comparison Procedures shown in 
Fig. 5: 

The rules generated by Basic FP-growth Algorithm when 
applied on AdventureWorksDW where the minsup was set to 
2% and minconf is set to 50%: 

[Water Bottle=t, Mountain200=t]: 589 ==> [Mountain 
Bottle Cage=t]: 589 

The following itemsets must be generated first. The 
itemsets and their support count are: 

Mountain-200, Water Bottle = 589 
Mountain-200, Mountain Bottle Cage= 725 
Water Bottle ==> Mountain Bottle Cage = 1623 
Mountain-200, Water Bottle, Mountain Bottle Cage = 589 

 

Fig. 5 Comparison Procedures 
 
For the three items, their max predefined support should not 

exceed any of the support counts specified above, so if their 
specified minsup is equal to their least number = 589, we 
guarantee that those four itemsets are generated and so this 
rule will be generated. 

minsup (Mountain-200) = 589 
minsup (Water Bottle) = 589 
minsup (Mountain Bottle Cage) = 589 
The comparison procedures are applied when comparing 

Apriori with maximum constraints and when comparing FP-
growth with MSFP-growth. 
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