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Abstract—In the closed quantum system, if the control system is 

strongly regular and all other eigenstates are directly coupled to the 

target state, the control system can be asymptotically stabilized at the 

target eigenstate by the Lyapunov control based on the state error. 

However, if the control system is not strongly regular or as long as 

there is one eigenstate not directly coupled to the target state, the 

situations will become complicated. In this paper, we propose an 

implicit Lyapunov control method based on the state error to solve the 

convergence problems for these two degenerate cases. And at the same 

time, we expand the target state from the eigenstate to the arbitrary 

pure state. Especially, the proposed method is also applicable in the 

control system with multi-control Hamiltonians. On this basis, the 

convergence of the control systems is analyzed using the LaSalle 

invariance principle. Furthermore, the relation between the implicit 

Lyapunov functions of the state distance and the state error is 

investigated. Finally, numerical simulations are carried out to verify 

the effectiveness of the proposed implicit Lyapunov control method. 

The comparisons of the control effect using the implicit Lyapunov 

control method based on the state distance with that of the state error 

are given. 

 

Keywords—Implicit Lyapunov control, state error, degenerate 

cases, convergence.  

I. INTRODUCTION 

N the last 30 years, the control theory of quantum systems 

have developed rapidly, and it has been widely used in 

quantum chemistry, nanotechnology, quantum information, 

and quantum physics. Up to now, there have been many 

quantum methods, such as quantum optimal control, adiabatic 

control, the Lyapunov-based control, Optimal Lyapunov-based 

quantum control. The design idea of the Lyapunov-based 

control is based on the Lyapunov stability theorem, i.e., the 

control laws are designed by means of ensuring the first order 

time derivative of a selected Lyapunov function not to be 

positive. The control system based on the Lyapunov stability 

theorem is at least stable. However, the probability control in 

the quantum system requires a convergent control strategy, 

because a stable quantum control method may result in that the 

control system cannot reach the desired target state. Therefore 

in order to make the control system converge to the target state, 

it is necessary to study the convergence of the control system, 
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which is one of research focus of the Lyapunov-based control 

method.  

Existing research results have indicated that: for the 

Schrödinger equation, in the case that the target state is an 

eigenstate, by using the Lyapunov control method based on the 

state distance [1] or the state error [2], [3], the control system 

can be asymptotically stabilized if two conditions are satisfied: 

i) The control system is strongly regular; ii) All other 

eigenstates, which are different from the target state, are 

directly coupled to the target state. The condition i) means that 

all differences of two energy levels are not mutually equal, i.e. 

the spectrum of the internal Hamiltonian is non-degenerate. 

And by using the Lyapunov method based on the average value 

of an imaginary mechanical quantity, two conditions which 

make the control system asymptotically stable are: i) The 

control system is strongly regular; ii) Every eigenstate of the 

internal Hamiltonian 0H  is directly coupled to other 

eigenstates [1], [4]. If the control system satisfies these two 

convergence conditions, it is called a non-degenerate case. 

Actually, many actual systems do not satisfy these conditions. 

These cases are called degenerate cases. In order to solve the 

convergence problems of the degenerate cases, several 

researchers introduced an implicit function to make the single 

control Hamiltonian quantum system converge to an eigenstate 

from any pure state [5]-[7]. In the multi-control Hamiltonians 

system, for the case that the target state is an eigenstate, by 

introducing a series of perturbations which are implicit 

functions and choosing an implicit Lyapunov function based on 

the state distance [8]. 

So far, for the Schrodinger equation, in the degenerate cases, 

the existing Lyapunov control methods can only make the 

control system converge to an eigenstate from any pure state. In 

the case that the target state is a superposition state, the 

convergence problem of the control system has not been 

resolved. 

The main purposes of this paper are two points, the first is: 

For the Schrödinger equation, in the degenerate cases and the 

case that the target state is an arbitrary pure state, by using an 

implicit Lyapunov quantum control method based on the state 

error, we’ll solve the convergence problem of the multi-control 

Hamiltonians system. Thus in the degenerate cases, the control 

system can completely transfer between two arbitrary pure 

states. Our basic idea is as follows: in order to solve the 

convergence problem of the degenerate cases for the 

multi-control Hamiltonians system, we introduce a series of 

implicit function perturbations and select a state error-based 

Lyapunov function which is an implicit function, too. This 
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method is not a simple extension from the single control 

Hamiltonian case [7] to the multi-control Hamiltonians case. 

For the multi-control Hamiltonians case, the derivation process 

of the control laws and the convergence proof will become 

more complex, especially in the calculation of the first order 

time derivative of the Lyapunov function. On the other hand, to 

make the control system can also converge to a superposition 

state, we introduce a series of constant disturbances. The 

second contribution of this paper is to analyze the relationship 

between the implicit Lyapunov functions based on the state 

distance and the state error, and compare the control effects of 

these two implicit Lyapunov control methods.  

The remainder of this paper is arranged as follows: In 

Section II, a convergent implicit Lyapunov control method 

based on the state error for the multi-control Hamiltonians 

system, and the convergence theorem of the control system are 

proposed, respectively. In Section III, the convergence theorem 

is proved by the LaSalle invariance principle. In Section IV, the 

relation between the implicit Lyapunov functions of the state 

distance and the state error is analyzed. In Section V, some 

numerical simulations are investigated. Some concluding 

remarks are drawn in Section VI.  

II.  CONTROL DESIGN 

A N-level closed quantum system with multi-control 

Hamiltonians can be modeled as the following bilinear 

Schrödinger equation: 

 

0

1

( ) ( ( ) ) ( )
r

k k

k

i t H H u t I tψ ω ψ
=

= + +∑ɺ          (1) 

 

where ( )tψ  is the state vector, 0H  is the internal 

Hamiltonian, , ( 1, , )kH k r= ⋯  are the control Hamiltonians, 

and ( )ku t  are scalar and real control laws, ω  is the global 

phase control law.  

For the Schrodinger equation, in the degenerate cases, the 

existing Lyapunov control methods can only make the control 

system converge to an eigenstate from any pure state. In order 

to making the control system can also converge to the target 

superposition state fψ , we introduce a series of constant 

disturbances kη . The dynamical equation (1) will become 

 

( )0

1

( ) ( ( ) ) ( )
r

k k k

k

i t H H v t I tψ η ω ψ
=

= + + +∑ɺ        (2) 

 

where ( )kv t  and kη  are the control laws which need to design. 

Our basic idea is: we add kη  to make the target state fψ  is 

an eigenstate of 0
1

r

k k
k

H H η
=

+ ∑ , i.e., 

0
1

( )
r

k k f f f
k

H H η ψ λ ψ
=

′+ =∑               (3) 

where fλ′ is the eigenvalue of 0 0

1

r

k k

k

H H H η
=

′ = + ∑  

corresponding to the target state fψ . We can view 0H ′  as the 

new internal Hamiltonian of the control system.  

In the degenerate cases, in order to solve the convergence 

problem of the control system, we introduce perturbations 

( )k tγ  which are implicit functions in the control laws 

( ), ( 1, , )ku t k r= ⋯  of (1). The dynamical equation (2) will 

become  

 

( )0

1

( ) ( ( ) ( ) ) ( )
r

k k k k

k

i t H H t v t I tψ γ η ω ψ
=

= + + + +∑ɺ    (4) 

 

where ( ) ( )k k k kt v t uγ η+ + =  and ω  are the total control laws. 

The basic idea is as follows: Denote the system with the 

internal Hamiltonian 0H , the control Hamiltonians 

, ( 1, , )kH k r= ⋯ , and the control laws ( ) ( )k k k kt v t uγ η+ + =  

as system 1, the system with the internal Hamiltonian 

0 0

1

r

k k

k

H H H η
=

′ = + ∑ , the control Hamiltonians 

, ( 1, , )kH k r= ⋯ , and the control laws ( ) ( )k kt v tγ +  as system 

2, and the system with the internal Hamiltonian 

03 0

1

( ( ) )
r

k k k

k

H H H tγ η
=

= + +∑ , the control Hamiltonians 

, ( 1, , )kH k r= ⋯ , and the control laws ( )kv t  as system 3. All 

these three systems can be depicted by (4). Denote the 

eigenvalues and eigenstates of 
0H ′  as 1 2, , , Nλ λ λ′ ′ ′⋯  and 

1 2, , , Nφ φ φ′ ′ ′⋯ , respectively. Denote the eigenvalues and 

eigenstates of 
03H  as 

1 11, , , , , ,, ,
r rNγ γ γ γλ λ′ ′⋯ ⋯⋯  and 

1 11, , , , , ,, ,
r rNγ γ γ γφ φ′ ′⋯ ⋯⋯ , respectively, which are functions 

of the perturbations ( )k tγ . Without loss of generality, assume 

,1f g g Nψ φ= ≤ ≤ . Denote 
1 1, , , , , ,r rf gγ γ γ γψ φ′ ′=⋯ ⋯ . If 

one can design the perturbations ( )k tγ  such that i) 

{ }
1 1, , , , , , , ( , ) ( , ), , , , 1, 2, ,

r rl m i j l m i j i j l m Nγ γ γ γω ω′ ′≠ ≠ ∈⋯ ⋯ ⋯ , 

where 
1 1 1, , , , , , , , , ,r r rl m l mγ γ γ γ γ γω λ λ′ ′ ′= −⋯ ⋯ ⋯  holds; ii) For any 

1 1, , , , , , , ( 1,2, , )
r ri f i Nγ γ γ γφ ψ′ ′≠ =⋯ ⋯ ⋯ , there exists at least a 

{ }1, ,k r∈ ⋯  satisfying 

1 1, , , , , , 0, ( 1, , )
r ri k fH k rγ γ γ γφ ψ′ ′ ≠ =⋯ ⋯ ⋯ , and select the 

specific Lyapunov function based on the state error as 

 

1 1, , , , , ,

1
( )

2 r rf fV γ γ γ γψ ψ ψ ψ ψ′ ′= − −⋯ ⋯               (5) 
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then system 3 will converge to 
1, , , rf γ γψ ′ ⋯ . When system 3 

converge to 
1, , , rf γ γψ ′ ⋯ , if the perturbations ( )k tγ  at 

1, , , rf γ γψ ′ ⋯  are designed to equal zero, then system 3 will 

become system 2, and 
1, , , rf γ γψ ′ ⋯  will become fψ . 

Because the convergence of system 2 to fψ  is equivalent to 

that of system 1 to fψ , the convergence of system 1 to fψ  

will be ensured. In fact, the evolution of system 1 can be viewed 

as a composite of two evolution processes. One is system 3 

converge to 
1, , , rf γ γψ ′ ⋯  from the initial state 0ψ , another 

one is ( )k tγ  converge to 0. In order to make the introduced 

perturbations take effect to make system 1 in the 

non-degenerate case converge to fψ , the speed of 

( ), ( 1, , )k t k rγ = ⋯  converging to 0 must be slower than the 

speed at which system 3 converges toward 
1, , , rf γ γψ ′ ⋯ . For 

convenience, the control system in the following Sections 

means system 1. 

From the above analyses, we can design ( )k tγ  to be a 

monotonically increasing function on ( )V t  as 
 

1 1, , , , , ,

( ) ( ( ))

1
( ), ( 1, , )
2 r r

k k

k f f

V

k rγ γ γ γ

γ ψ θ ψ

θ ψ ψ ψ ψ

=

′ ′= − − =⋯ ⋯ ⋯
  (6) 

 

where functions ( )kθ ⋅  satisfy '(0) 0, ( ) 0, ( ) 0k k ks sθ θ θ= > >  

for every 0s > , s is the independent variable of the function 

( )kθ ⋅ . From (5) and (6), one can see that when we introduce 

implicit functions perturbations in the control laws to solve the 

convergence problems of the degenerate cases, accordingly, the 

selected Lyapunov function should be a implicit function of the 

time t . The existence of these implicit functions perturbations

( )kγ ψ  in (6) can be depicted by lemma 1. 

Lemma 1. Let ( ;[0, ]), 1, , , 0k k kC R k rθ γ γ∞ + ∗ ∗∈ = >⋯  satisfy 

(0) 0kθ = , ( ) 0k sθ > , ' ( ) 0k sθ >  for every 0s > , 

' 1k rCθ ∗

∞
< , and 1C C∗ = + , 

( )
( )1
10 0

, , , 0
, ,

max / ; 0,
r

r

f k k kC γ γ
γ γ

ψ γ γ γ ∗

∞

   ′= ∂ ∂ ∈    
⋯

⋯
, 

0 (0)k kγ γ= . Then for every state 

{ }2 1 ; 1N NS x C xψ −∈ = ∈ = , there exists a unique 1γ , 2γ , 

…, and rγ  with ( [0, ]), ( 1, , )k k kC k rγ γ γ∞ ∗∈ ∈ = ⋯  satisfying 

1 1, , , , , ,

1
( ) ( )

2 r rk k f fγ γ γ γγ ψ θ ψ ψ ψ ψ′ ′= − −⋯ ⋯  where R+  

represents the positive real number domain. 

Proof:  

Assume 
1, , , rf γ γψ ′ ⋯  are analytic functions of 

( ) 0,k kγ ψ γ ∗ ∈   ， 
1, , , /

rf kγ γψ γ′∂ ∂⋯  is bounded on 0, kγ ∗ 
  , 

thus C < ∞ . The derivative of kθ  on kγ  is 

 

1 1

1

, , , , , ,

'
, , ,

1
( ) /
2

( / ).

r r

r

k f f k

k f k

γ γ γ γ

γ γ

θ ψ ψ ψ ψ γ

θ ψ γ ψ

′ ′∂ − − ∂

′= − ℜ ∂ ∂

⋯ ⋯

⋯

               (7) 

 

Let us define 

1 11 , , , , , ,

1
( , , , ) ( ),

2 r rk r k k f fF γ γ γ γγ γ ψ γ θ ψ ψ ψ ψ′ ′= − − −⋯ ⋯⋯

where 1( , , , )k rF γ γ ψ⋯  are regular. 

For a fixed { }2 1 ; 1N NS x C xψ −∈ = ∈ = , we have

1( ( ), ( ), ) 0, ( 1, , ).k rF k rγ ψ γ ψ ψ = =⋯ ⋯ Some deduction 

shows that 

 

1

1

, , ,'
, , ,1 ( )

( )

r

r

fk
k f

k k

F γ γ
γ γ

ψ
θ ψ ψ ψ

γ ψ γ

′∂∂
′= + ℜ

∂ ∂
⋯

⋯       (8) 

 

where 

 

1 1 1, , , , , , , , ,
( ) .r r rf f f

k k k

γ γ γ γ γ γψ ψ ψ
ψ ψ

γ γ γ

′ ′ ′∂ ∂ ∂
ℜ ≤ ≤

∂ ∂ ∂
⋯ ⋯ ⋯

  

 

According to the given condition, we have 

 

1

'
, , ,( ) 1,

rk f kγ γθ ψ γ ψ′ℜ ∂ ∂ <⋯                     (9) 

 

Then 

 

1( ( ), , ( ), ) 0.
( )

k r
k

F γ ψ γ ψ ψ
γ ψ

∂
≠

∂
⋯         (10) 

 

According to the implicit theorem [9], Lemma 1 is proved.  

Next, on the basis of the Lyapunov stability theorem, let us 

design the control laws ( )kv t  and ω . The basic idea is that we 

design control laws to make the time derivative of the selected 

Lyapunov function be less than or equal to 0, i.e., ( ) 0V t ≤ɺ . 

Denote the eigenvalue of 03 0

1

( ( ) )
r

k k k

k

H H H tγ η
=

= + +∑  

correspond to 
1, , , rf γ γψ ′ ⋯  as 

1, , , rf γ γλ′ ⋯ . By (4) and (5), the 

time derivative of the selected Lyapunov function defined by 

(5) is 
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( )1 1

1 1

, , , , , ,

1

, , , , , ,

1

( / ) ( ) ( )

( ) ( ) ( ).

r r

r r

r

f k k f

k

r

f f k k

k

V t

H v t

γ γ γ γ

γ γ γ γ

ψ γ ψ γ λ ω

ψ ψ ψ ψ

=

=

′ ′= − ℜ ∂ ∂ − + ⋅

′ ′ℑ − ℑ

∑

∑

⋯ ⋯

⋯ ⋯

ɺ ɺ

 

(11) 

 

Equation (11) contains the time derivative of the implicit 

function perturbation γɺ , which needs to be eliminated. For the 
multi-control Hamiltonians system, the elimination of γɺ  will 
become more complicated than the single control Hamiltonian 

system proposed in [5]-[7]. By (6), one can deduce 

 

( )1 1

1 1

'
, , , , , ,

1

, , , , , ,

1

( ) ( ( / ) ( ) (

) ( ) ( ) ( )).

r r

r r

r

j j f k k f

k

r

f f k k

k

t t

H v t

γ γ γ γ

γ γ γ γ

γ θ ψ γ ψ γ λ

ω ψ ψ ψ ψ

=

=

′ ′= − ℜ ∂ ∂ +

′ ′+ ℑ + ℑ

∑

∑

⋯ ⋯

⋯ ⋯

ɺ ɺ

  

(12) 

 

Sum each item in both sides of (12), one has 

 

( )1

1 1

1

'
, , ,

1 1 1

, , , , , ,

, , ,

1

( ) ( ( / ) ( )

( ) ( )

( ) ( )).

r

r r

r

r r r

j j f k k

j j k

f f

r

f k k

k

t t

H v t

γ γ

γ γ γ γ

γ γ

γ θ ψ γ ψ γ

λ ω ψ ψ

ψ ψ

= = =

=

′= − ℜ ∂ ∂

′ ′+ + ℑ

′+ ℑ

∑ ∑ ∑

∑

⋯

⋯ ⋯

⋯

ɺ ɺ

  (13) 

 

Assume 
1 1, , , 1 , , ,/ /

r rf f rγ γ γ γψ γ ψ γ′ ′∂ ∂ = = ∂ ∂⋯ ⋯⋯ , and 

by (12), (13) becomes 

 

1

1 1

1

'
, , ,

1

, , , , , ,

, , ,

1

1/ (1 ( ( / ) ) )

(( ) (

( ) ( )).

r

r r

r

r

f k j

j

f f

r

f k k

k

V

H v t

γ γ

γ γ γ γ

γ γ

ψ γ ψ θ

λ ω ψ ψ

ψ ψ

=

=

 
′ = − + ℜ ∂ ∂ ⋅

 
 

′ ′+ ℑ +

′ℑ

∑

∑

⋯

⋯ ⋯

⋯

ɺ

  (14) 

 

By the condition '
1 ( )j r Cθ ∗<  in Lemma 1, 

1

'
, , ,

1

(1 ( ( / ) ) ) 0
r

r

f k j

j

γ γψ γ ψ θ
=

′+ ℜ ∂ ∂ >∑⋯  holds. In order to 

ensure 0V ≤ɺ , let us design ω  and ( )kv t  as: 

 

1 1, , , 0 , , ,( ( )),
r rf fcfγ γ γ γω λ ψ ψ′ ′= − + ℑ⋯ ⋯          

 (15) 

1, , ,( ) ( ( )), ( 1, , ),
rk k k f kv t K f H k rγ γψ ψ′= ℑ =⋯ ⋯

   
 (16) 

 

where 0kK > , 0c >  and ( ), ( 0,1, , )k k ky f x k r= = ⋯  are 

monotonic increasing functions through the coordinate origin 

of the plane k kx y− .  

Equations (15) and (16) are the designed control laws by 

using the Lyapunov stability theorem for the control system (4) 

with the Lyapunov function (5). 

In fact, the above designed control laws can only ensure that 

the control system (4) is stable. In order to make the control 

system converge to the target state, we must analyze the 

convergence of the control system. Next, let us study the 

convergence of the control system. The results are described by 

Theorem 1. 

Theorem 1: Consider the control system (11) with control 

fields ( )k tγ  designed in Lemma 1, kη  defined by (3), ( )kv t  

designed in (17) and ω  designed in (16). If the control system 

satisfies i) 

{ }
1 1, , , , , , , ( , ) ( , ), , , , 1, 2, ,

r rl m i j l m i j i j l m Nγ γ γ γω ω′ ′≠ ≠ ∈⋯ ⋯ ⋯ , 

where 
1 1 1, , , , , , , , , ,r r rl m l mγ γ γ γ γ γω λ λ′ ′ ′= −⋯ ⋯ ⋯  holds; ii) For any 

1 1, , , , , , , ( 1,2, , )
r ri f i Nγ γ γ γφ ψ′ ′≠ =⋯ ⋯ ⋯ , there exists at least a 

{ }1, ,k r∈ ⋯  satisfying 

1 1, , , , , , 0, ( 1, , )
r ri k fH k rγ γ γ γφ ψ′ ′ ≠ =⋯ ⋯ ⋯ , then any state 

trajectory of the control system will converge toward 

2 1NS E− ∩ , { },i
fE e Rθψ ψ θ= = ∈ .  

This convergence theorem will be proved in Section III. 

III. CONVERGENCE PROOF 

According to the LaSalle invariance principle, as t → ∞ , 

any state trajectory will converge to the largest invariant set 

contained in the set E in which the states satisfy 0V =ɺ .  

The basic idea of the proof of Theorem 1 is: at first, the state 

set satisfying 0V =ɺ  at some specific evolving moment is 

characterized. Then, whether 0V =ɺ  holds after that moment is 

considered. At last, by using the LaSalle invariance principle, 

the convergence theorem is proved. 

By means of ω  designed in (15) and ( )kv t  designed in (16), 

one can obtain 

 

1 1, , , , , ,0 ( ) 0, ( ) 0.
r rf f kV Hγ γ γ γψ ψ ψ ψ′ ′= ⇔ ℑ = ℑ =⋯ ⋯

ɺ  (17) 

 

Without loss of generality, assume ( ) 00,( )V t t t= ≥ɺ . After the 

time 0t , ( ) 0V t =ɺ holds, V  is constant, thus , ( 1,2, , )k k rγ = ⋯  

are constants, denoted by k kγ γ= .  

By means of (17) and ignoring higher order terms of dt  in 

the Taylor expansion formula of the state at the time 0t , 

1 0t t dt= + , 2 1t t dt= + , …, we can obtain in turn: 

 

1

1

0

, , , 0

, , , 0

:

( ( ) ) 0,

( ( ) ) 0

r

r

f

f k

t

t

H t

γ γ

γ γ

ψ ψ

ψ ψ

′ℑ =

′ℑ =

⋯

⋯

                   (18) 
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( )1 1

1

1

, , , 0 , , , 0

, , , 03 0

:

( ( ) ) ( ) 0,

( [ , ] ( ) ) 0.

r r

r

f f

f k

t

t dt t

i H H t

γ γ γ γ

γ γ

ψ ψ ψ ψ

ψ ψ

′ ′ℑ + = ℑ =

′ℑ =

⋯ ⋯

⋯

  (19) 

⋮  

1

1

, , , 0

( )
, , , 03 0

( ( ) ) 0,

( [ , ] ( ) ) 0, ( 0,1, ),

r

r

f

n n
f k

t

i H H t n

γ γ

γ γ

ψ ψ

ψ ψ

′ℑ =

′ℑ = =

⋯

⋯ ⋯
 

(20) 

 

where 03 0

1

( )
r

k k k

k

H H H γ η
=

= + +∑  and 

( )
03 03 03 03

times

[ , ] [ ,[ , ,[ , ]]]n
k k

n

H H H H H H= ⋯
�����������

. Set 

( )1 11, , , , , ,, ,
r rNU γ γ γ γφ φ′ ′= ⋯ ⋯⋯ , then the system in the 

eigenbasis of 03H  is 

 

( )0

1

( ) ( ( ) ( ) ) ( ) ,
r

k k k k

k

i t H H t v t I tψ γ η ω ψ
=

= + + + +∑ɺ   (21) 

 

where 

 

† †
0 0( ) ( ) , , .k kt U t H UH U H UH Uψ ψ= = =

     
 (22) 

 

Denote 
1 1

†
, , , , , ,1r rf fUγ γ γ γψ ψ′ ′=⋯ ⋯ . Substituting (22) into 

(20) gives 

 

1

1

, , , 0

( )
, , , 03 0

( ( ) ) 0,

( [( ) , ] ( ) ) 0, ( 0,1, 2, ),

r

r

f

n n
f k

t

i H H t n

γ γ

γ γ

ψ ψ

ψ ψ

′ℑ =

′ℑ = =

⋯

⋯ ⋯
 (23) 

 

where  

 

1 103 0 1, , , , , ,

1

( ( )) [ , ]
r r

r

k k k N

k

H H H diag γ γ γ γγ η λ λ
=

′ ′= + + =∑ ⋯ ⋯⋯ .  

 

Set 0 1( ) [ , , ]TNtψ ψ ψ= ⋯ . By condition i), the spectrum of 

03H  is not degenerate, then N eigenstates of 03H  can be 

written as [1,0, ,0]T⋯ , …, and [0,0, ,1]T⋯ . For convenience, 

assume
1, , , [0,0, ,1]

r

T
f γ γψ ′ =⋯ ⋯ . Then (23) can be written as 

 

( )

1

1 1

, , , 0

, , , , , ,

1

( ( ) ) 0,

( ( ) ) 0.

r

r r

f

N
n n

N j k jNj
j

t

i H

γ γ

γ γ γ γ

ψ ψ

λ λ ψ
=

′ℑ =

′ ′ℑ − =∑

⋯

⋯ ⋯

  (24) 

 

Set 

( ) ( ) ( )1 2 11 2 1
, , , ,

T

k k k NN N NN
H H Hξ ψ ψ ψ −−

 =  ⋯   (25a) 

1 1,1, , , ,( 1), , ,[ , , ],
r rN N Ndiag γ γ γ γω ω −′ ′Λ = ⋯ ⋯⋯   (25b) 

1 1

1 1

2 2
,1, , , ,( 1), , ,

2( 2) 2( 2)
,1, , , ,( 1), , ,

1 1

.
r r

r r

N N N

N N
N N N

M
γ γ γ γ

γ γ γ γ

ω ω

ω ω

−

− −
−

 
 

′ ′ 
=  

 
 ′ ′ 

⋯ ⋯

⋯ ⋯

⋯

⋯

⋮ ⋮ ⋮

⋯

  (25c) 

 

By condition i) and ii), one can obtain  

 

0,( 1, , 1).j j Nψ = = −⋯
               

 (26) 

 

Therefore (20) is equivalent to  

 

1 10 , , , , , ,( ) .
r r

i
N f ft e θ

γ γ γ γψ ψ ψ ψ′ ′= =⋯ ⋯       
 (27) 

 

Thus one can obtain 

 

10 , , ,( ) .
r

i
ft e θ

γ γψ ψ ′= ⋯                  
 (28) 

 

If 
1, , ,( ) 0

r

i
k fe θ

γ γγ ψ ′ =⋯ , then  

 

0( ) i
ft e θψ ψ=
                    

 (29) 

 

 holds.  

According to the LaSalle invariance principle [10], as 

t → ∞ , any state trajectory of the control system will converge 

toward { },i
fE e Rθψ ψ θ= = ∈ . Theorem 1 is proved.  

IV. RELATION BETWEEN TWO LYAPUNOV FUNCTIONS 

In the Liouville space, the Hilbert-Schmidt distance between 

two density operators 1ρ  and 2ρ  is 

 

2
1 2 1 2( , ) ( ) .HSd trρ ρ ρ ρ= −                       (30) 

 

The inner product of two operators A and B is defined as 

†| ( )A B tr A B<< >>= , where the operation †A  refers to the 

conjugate transpose of A. And by ρ ψ ψ= , the square of the 

Hilbert-Schmidt distance between the density operator ρ  and 

the target density operator 
1, , , rf γ γρ ⋯  is  

 

1 1

2
2

, , , , , ,( , ) 2(1 ).
r rHS f fd γ γ γ γρ ρ ψ ψ ′= −⋯ ⋯

    
 (31) 

 

By (31) and the implicit Lyapunov functions based on the 
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state distance 
1

2

, , ,

1
( ) (1 )

2 rfV γ γψ ψ ψ ′= − ⋯  [8] and the state 

error 
1 1, , , , , ,

1
( )

2 r rf fV γ γ γ γψ ψ ψ ψ ψ′ ′= − −⋯ ⋯  used in this 

paper, we can conclude that two implicit Lyapunov functions 

are equivalent in the sense of replacing the pure states with their 

equivalent density operators. 

V. NUMERICAL SIMULATIONS 

In this section, a 4-level multi-control Hamiltonians quantum 

system in a degenerate case is considered. The experiment is 

done to verify the effectiveness of the implicit Lyapunov 

control method proposed in this paper, and compare the control 

effectiveness of implicit Lyapunov control based on the state 

error with that of the state distance in [8].  

In the numerical simulation experiment, the Hamiltonians of 

the selected 4-level quantum system are 

 

0

1 2

(1.1,1.83,2.56,3.05),

0 0 1 1 0 1 0 0

0 0 1 0 1 0 0 1
, .

1 1 0 0 0 0 0 1

1 0 0 0 0 1 1 0

H diag

H H

=

   
   
   = =
   
   
           

 (32) 

 

Assume the initial state is a superposition state: 

( )0 0.5 1 1 1 1
Tψ = , and the target state is an eigenstate: 

( )0 0 0 1
T

fψ =  .  

According to the design idea proposed in this paper, control 

laws based on the state error are 

( ) ( ) ( ) , ( 1, 2)k k k ku t t v t kγ η= + + =  and ω . The implicit 

functions ( ), ( 1, 2)k t kγ =  are designed according to Lemma 1 

as
1 2 1 2, , , ,

1
( ) ( ), ( 1, 2),

2
k k f f kγ γ γ γγ ψ θ ψ ψ ψ ψ′ ′= − − =  where 

1 1( )s C sθ = , and 2 2( )s C sθ = . According to (3), kη  are 

designed as 1 2 0η η= = . The control fields ( )v t  are designed 

according to (12) as 
1 21 1 , , 1( ) ( ),fv t K Hγ γψ ψ′= ℑ  

1 22 2 , , 2( ) ( ).fv t K Hγ γψ ψ′= ℑ ω  is designed according to 

(11) as: 
1 2 1 2, , ,( ).fcγ γ γ γω λ ψ ψ′ ′= − + ℑ  After tuning these 

control parameters repeatedly and carefully, we choose the 

control parameters as: 1 0.04C = , 2 0.02C = , 1 0.3K = , 

2 0.7K =  and 0.16c = .  

In the numerical simulation experiment, the sample step is 

set to be 0.01 a.u., and the control duration is 50 a.u.. Results of 

the numerical simulation experiment are shown in Figs. 1, 2 

and 3. Fig. 1 is the population evolution curves of the control 

system, 
2
, ( 1,2,3,4)ic i =  is the population of level i Fig. 2 

shows the designed control fields 1( )u t  and 2 ( )u t . Fig. 3 

shows the designed ω . 

 

Fig. 1 Populations of four energy levels 

 

 

Fig. 2 Control fields 1( )u t and 2 ( )u t  

 

 

Fig. 3 Imaginary control field ω  

 

One can see from Fig. 1 that at the time 31 a.u., the 

populations of four energy levels are: 
2 5

1 2.4334 10c
−= × , 

2 6
2 1.1384 10c −= × , 

2 7
3 2.6292 10c −= × , and 

2
4 0.99997c = , respectively. And the transition probability is 

99.997% . In the numerical simulation experiment of [8], the 

same multi-control Hamiltonians quantum system and an 

implicit Lyapunov control based on the state distance were 

applied. Results of the numerical simulation experiment in [8] 
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are: at the time 31 a.u., the populations of four energy levels 

are: 
2 7

1 2.9111 10c −= × , 
2 6

2 8.9707 10c −= × , 

2 7
3 8.841 10c

−= ×  and 
2

4 0.99999c = , respectively. The 

shortest time that the transition probability is maintained above 

99.999%  by using the state error method is 35 a.u., and that of 

the state distance method in [8] is 31 a.u. 

From the comparison of numerical simulation experiments, 

one can see that the proposed implicit Lyapunov control 

method in this paper is effective. And at a fixed specific time, 

the transition probability in the case of using the implicit 

Lyapunov control method based on the state distance is a little 

better than that in the case of using the implicit Lyapunov 

control method based on the state error method in the numerical 

simulation given in this section. As being discussed the 

relationship, the transition probabilities of these two methods 

have the same order of magnitude. They have the similar 

control effect according to the analysis in Section IV.  

VI. CONCLUSION 

In this paper, according to the basic idea of the implicit 

Lyapunov control method, a convergent Lyapunov control 

method based on the state error has been proposed. The 

proposed method is also suitable for multi-control Hamiltonian 

systems, the degenerate cases and the case that the target state is 

a superposition state. In the degenerate cases, the multi-control 

Hamiltonian system can converge to any pure target state form 

any pure initial state. The experimental results have indicated 

that the proposed implicit Lyapunov control method based on 

the state error is effective, and the control effect of the implicit 

Lyapunov control methods based on the state distance and that 

of the state error are basically the same.  
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