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Implementation of State-Space and Super-Element
Techniques for the Modeling and Control of Smart

Structures with Damping Characteristics
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Abstract—Minimizing the weight in flexible structures means
reducing material and costs as well. However, these structures could
become prone to vibrations. Attenuating these vibrations has become
a pivotal engineering problem that shifted the focus of many research
endeavors. One technique to do that is to design and implement
an active control system. This system is mainly composed of a
vibrating structure, a sensor to perceive the vibrations, an actuator
to counteract the influence of disturbances, and finally a controller to
generate the appropriate control signals. In this work, two different
techniques are explored to create two different mathematical models
of an active control system. The first model is a finite element model
with a reduced number of nodes and it is called a super-element.
The second model is in the form of state-space representation, i.e.
a set of partial differential equations. The damping coefficients are
calculated and incorporated into both models. The effectiveness of
these models is demonstrated when the system is excited by its first
natural frequency and an active control strategy is developed and
implemented to attenuate the resulting vibrations. Results from both
modeling techniques are presented and compared.

Keywords—Finite element analysis, super-element, state-space
model.

I. INTRODUCTION

IN modern engineering, weight optimization has always

the highest priority during the design of structures. On

one hand, it has the advantage of minimizing the amount of

raw material used and thus reducing the manufacturing and

operational costs. On the other hand, this results in lower

stiffness and less internal damping and thus, the structures

become more sensitive to vibrations. These vibrations, which

are usually introduced by external disturbances, can lead to

additional unwanted noise, a decrease in stability, and even

to the failure of the structure itself [1]. One of the means

to overcome this problem is the implementation of active or

smart materials which can be controlled in accordance to the

disturbances or oscillations that are sensed by the structure.

Structures with these smart elements are then called smart

structures. Recent innovations in smart materials coupled

with developments in control theory have made it possible

to control the dynamics of the concerned structures. This

field has experienced a big growth in terms of research and

development [2]. The coupled electromechanical properties of

the smart materials, used in this work in form of piezoelectric

ceramics, make them well suited for use as distributed
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sensors and actuators for controlling structural response. In

the sensor application, mechanically induced deformations can

be determined from measurement of the induced electrical

potential (direct piezoelectric effect), whereas in actuator

applications deformation or strains can be controlled through

the introduction of appropriate electric potential (converse

piezoelectric effect) [3]. At the beginning, active vibration

control has been applied on ships [4]. The first control

technique was to reduce the vibrations on a steam ship by

synchronizing two engines in opposite phase [5]. Aircraft

and spacecraft have had a great impact on investigations in

active control of structural vibration as well. The damping

of air craft skin or other parts vibration was performed by

dampening the critical vibrations with power transmitted by

supersonic waves which may be controlled with an electric

or a quartz crystal oscillator [6]. The rapid development

in this field lead later to the use of point actuators and

sensors to control flexible systems based on the knowledge

of the elastic mode frequencies and mode shapes at their

location [7]. Although the piezoelectric effect was firstly

mentioned by Haüy in 1817, demonstrated by Pierre and

Jacques Curie in 1880, yet the use of piezoelectric materials

as actuators and sensors for noise and vibration control

has been demonstrated extensively over the past 30 years

[8]. Bailey [9] designed an active vibration damper for

a cantilever beam using a distributed parameter actuator

which was a piezoelectric polymer. Bailey and Hubbard [10]

developed and implemented three different control algorithms

to control the cantilevered beam vibration with piezoelectric

actuators. On the other hand, Crawley and de Luis [11] and

Crawley and Anderson [12] presented a rigorous study on

the stress-strain-voltage behavior of piezoelectric elements

bonded to beams. Moreover, they observed that the effective

moments resulting from piezoelectric actuators can be seen

as concentrated on the two ends of the actuator when the

bounding layer is assumed to be very thin.

Many other researchers have also performed significant

research on the implementation and use of the piezoelectric

actuators like [13]-[15]. All these works emphasize the

capabilities and applications of piezoelectric elements as

distributed vibration actuators and sensors by simultaneously

controlling a finite number of modes. It must be mentioned

here that most of the investigations done in this field were

based either on experimental results from the laboratory, or on

using physical laws to derive the structural analytical model

of the smart structure. Moreover, the damping coefficients are
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not calculated but rather assumed, which may not reflect the

exact performance of the real model.

In the present work, the finite element (FE) method is used.

The work comprises the modeling and design of active linear

controller to control the vibrations of a smart beam at its tip

when its excited with its first natural frequency. Firstly, the

piezoelectric actuator is modeled and the relation between

voltage and moments at its ends is derived. After that, a

modified finite element (FE) model of the smart beam based

on the first order shell deformation theory (Mindlin theory)

is created. The damping coefficients are then calculated and

added to it prior to the reduction to a super element (SE)

model with a finite number of degrees of freedom (DOF).

Both FE- and SE models are validated by performing a

modal analysis and comparing the results with those from the

experiments. With the help of a suitable FORTRAN-code, the

state-space model is extracted from the SE model. In the last

step, a controller based on the Lyapunov stability theory is

defined and implemented on both the SE- and the state-space

model of the smart beam. Results from both models are

shown and then compared. The FE-Program SAMCEF R©
is used for the creation of the FE and SE models, and

MATLAB-SIMULINK R© is used for the implementation of

the controllers in the state-space model.

II. MODELING

The corresponding analytical model of any structure can

be derived either from physical laws (i.e. Newton’s motion

laws, Lagrange equations of motion, etc.), or from test

data using system identification methods (stochastic subspace

identification, prediction error method, etc.), or by using the

FE modeling [16]. In this work, the FE modeling is used.

The smart beam which will be investigated consists of a steel

beam, a bonding layer and an actuator (Fig. 1).

Fig. 1 The smart beam

A. Actuator Modeling

The application of an actuator means the implementation

of an appropriate electric potential to control the vibrations

or strains in smart structures (converse piezoelectric effect).

Commercial FE programs do not give the possibility to create

finite elements with electrical DOF. However, the voltage

which is applied by the actuator can be replaced by two

Fig. 2 The induced stresses from a piezo-ceramic actuator lead to the same
effect as a moment pair

equal moments concentrated at its end [13]. The piezoelectric

material used is assumed linear throughout this work. The

relation between actuator moments and voltage will be derived

and the moments will then act as the controlling forces on the

smart structure (Fig. 2).

Taking the schematic layout of the middle part of the

smart beam (Fig. 3) and considering a one dimensional

deformation, if a voltage V is applied across the piezoelectric

actuator which is composed of a piezo-ceramic material, a

piezoelectric strain εp will be introduced in the piezo as:

Fig. 3 A schematic layout of the composite beam

εp =
d31
t1

· V (1)

V is the voltage of the piezoelectric actuator, d31 is the electric

charge constant and t1 is the thickness of the piezoelectric

layer.

The longitudinal stress is expressed with Hooke’s law as:

σp = E1 · εp (2)

where E1 is the Young’s modulus of elasticity of the piezo.

This stress generates a bending moment Mp around the

neutral axis of the composite beam given by:

Mp =

∫ (t1+t2+t3−D)

(t2+t3−D)

σp · b · z dz (3)

where t2 is the thickness of adhesive layer, t3 is the thickness

of beam, b is the width of the composite layer at the beam

middle, and D is the distance between the beam bottom and

the neutral axis.

Considering moment equilibrium about the neutral axis:∫
beam

σbeam dA +

∫
adh.

σadh. dA +

∫
piezo

σpiezo dA = 0

(4)

this means:

E3b

∫ (t3−D)

(−D)

z dz + E2b

∫ (t2+t3−D)

(t3−D)

z dz +
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TABLE I
PARAMETERS OF THE COMPONENTS OF SMART BEAM

Beam Bonding Layer Actuator
Material steel epoxy resin PIC 151
Thickness [mm] 0.5 0.036 0.25
Density [kg/m3] 7900 1180 7800
Young’s mod. [MPa] 210000 3546 66667

E1b

∫ (t1+t2+t3−D)

(t2+t3−D)

z dz = 0 (5)

hence, t1 is the thickness of the beam, E2 and E3 are the

Young’s modulus of the adhesive and the beam.

After integrating (5), the position of the neutral axis D is

found:

D =
E1t

2
1 + 2E1t1t2 + 2E1t1t3 + E2t

2
2 + 2E2t2t3 + E3t

2
3

2E1t1 + 2E2t2 + 2E3t3
(6)

now, combining (1)-(3) and (6) together will determine the

bending moment generated by the piezo Mp as a function of

the voltage V :

Mp =
E1E2(t1t2 + t22) + E1E3(t

2
3 + t1t3 + 2t2t3)

E1t1 + E2t2 + E3t3
· d · b

2
· V
(7)

since the relation between Mp and V is known now, the

actuator moment can be taken instead as input to the controller

designed and implemented in the last section of this work.

B. FE Modeling of the Smart Beam

Many applications in structural dynamics can be successful

only if they are represented by an accurate mathematical

model. One of the methods used to derive such a model is the

finite element modeling. The resultant FE model, which is in

the form of mass and stiffness matrices, must be faithfully

representative so that it can be used for further applications

like control analysis or prediction due to proposed structural

changes [17]. In order to find the best FE model representing

the smart beam, the optimal element type and element size of

the FE must be selected. Consequently, a modal analysis of

the real beam will be experimentally performed and then the

results will be compared to those from the FE with different

element types. A detailed geometry of the smart beam is

shown (Fig. 4) and the material properties and thickness of

each part are represented in (Table I). As already mentioned

before, the commercial software package SAMCEF is used

for the creation of the FE model [18].

1) FE- Type and Size: Although the smart beam is created

as a single part, but it is modeled as a composite shell with

three layers. This means, all the three components of the

model, i.e. the beam, the bonding layer and the actuator, are all

bonded together without any relative slip among the contact

surfaces. Consequently, each layer has its own mechanical

properties. To validate the choice of the element type, a

modal analysis is done and the first two natural frequencies

are extracted and compared to those from the experiment as

seen in (TABLE II). As a boundary condition, the left edge

TABLE II
VALIDATION OF ELEMENT-TYPE BASED ON THE MODAL ANALYSIS

FE model Experiment

1steigenfrequency [Hz] 13.81 13.26

2ndeigenfrequency [Hz] 42.67 41.14

of the smart beam is clamped. A 8-node thick shell based on

the first order shell deformation theory (FOSD) is used in the

descritization for the FE model. More information about the

FOSD is found in [19], [21]. Concerning the optimal element

size to be used, its well known that reducing the element size

will improve the solution accuracy. However, especially in

the case of large complex structures, the use of excessively

fine elements in the FE models may result in unmanageable

computations that exceed the memory capabilities of existing

computers [22]. From (Table III), it is seen that using an

element size less than 1 mm does not make any significant

change on the values of the 1st and 2nd natural frequencies

of the smart beam. This means, an element size of 1 mm
will be the best choice in the FE modeling.

2) Damping Characteristics: While the dynamic behavior

of many engineering structures can be predicted by using

the FE technique for example, nevertheless, there remains

the need to find out their damping behavior. Unfortunately,

damping parameters, which are of significant importance in

determining the dynamic response of structures, can’t be

deduced deterministically from other structural properties. For

this reason, recurs must be made to data from experiments

conducted on completed structures of similar characteristics.

Although such data is scarce in general, but its very valuable

for studying the phenomenon and modeling of damping [23].

In fact, there are many non-linear damping models available

[24]. In this work, the damping is assumed to be viscous

and frequency dependent for the sake of convenience and

simplicity [25]. A special case of viscous damping is known as

the proportional or Rayleigh damping. This model expresses

the damping matrix as a linear combination of the mass and

stiffness matrices of the undamped model [26]:

C = αM + βK (8)

where α and β are real scalars that need to be determined.

In fact, there are more than one method to determine them

[27], [28]. Yet, a modified form of the method developed by

Chowdhury and Shambhu [29] and validated by Giosan [30]

will be used in this work.

Writing (8) in the modal form will give:

φTCφ = αφTMφ + βφTKφ (9)

hence, φ represents the mode shapes and φT shows their

transpose.

Since the mode shapes corresponding to distinct natural

frequencies are orthogonal w.r.t. the mass and stiffness

matrices, it follows that [14]:

φT
i Mφj = μiδij (10)

φT
i Kφj = μiω

2
i δij (11)
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Fig. 4 A detailed geometry of the smart beam [dimensions in mm]

TABLE III
EFFECT OF ELEMENT SIZE ON THE NATURAL FREQUENCY

Element size [mm] 1stnatural frequency [Hz] 2ndnatural frequency [Hz]
0.25 13.80 42.66
0.5 13.81 42.66
1.0 13.81 42.67
2.5 13.83 42.71
5 13.89 42.81
10 14.09 43.21

with μi = modal mass of mode i
ωi = natural frequency of mode i
δij = Kronecker-Delta,

δij =

{
1, if i = j

0, otherwise.

i = no. of modes which is equal to the no. of DOF n.

Since modal shapes are scaled arbitrarily, it is used to

normalize them in a way that:

μi = 1 , with φ = (φ1, φ2, ...φn) is the matrix of mode

shapes.

The new form of (10) and (11) will be:

φTMφ = diag(μi) = I (12)

φTKφ = diag(μiω
2
i ) = ω2

i (13)

Substituting (12) and (13) in (9):

⇒ φTCφ = C̄ = αI + βΛ (14)

where, I =

⎧⎪⎨
⎪⎩

1 . . . 0
...

. . .
...

0 . . . 1

⎫⎪⎬
⎪⎭ and Λ =

⎧⎪⎨
⎪⎩

ω2
1

. . .

ω2
n

⎫⎪⎬
⎪⎭

Thus, C̄ = φTCφ will become a diagonal matrix, and this

is mainly the advantage of this representation.

From (14):

C̄ = α + βω2
i (15)

critical damping Cc = 2
√
KM = 2ωiM

modal critical damping C̄c = φTCφ = 2ωiφ
TMφ = 2ωi

the modal damping ratio is defined as ξi =
C̄

C̄c
this results in:

ξi =
1

2
(
α

ωi
+ βωi) (16)

the objective now is to compute the Rayleigh damping

coefficients α and β , and then to substitute them in (8) in

order to calculate C.

To solve (16) for α and β , atleast two values for ξi
with the corresponding values for ωi are needed. Here, the

first mode will be considered, i.e. ξ1 and ω1, as well as the

mode by which almost 95% of the mass has participated. The

damping ratio and the frequency at this mode are called ξm
and ωm. The data file of any FE software shows the mass

participation of each mode. Thus, ω1 and ωm can be read, as

well as the mode number m.

A typical plot of (16) is shown in Fig. 5 [20].

The first portion of the curve in this figure shows

non-linearity (frequency range: 0.1 − 5 Hz), and in this case

the damping is called ”mass proportional damping” where

α is much greater than β. Beyond this portion, the curve

is linear (frequency range: > 5 Hz). The damping is then

called ”stiffness proportional damping” and β has a big value.

The methodology to calculate α and β can be summarized as

follows:

1) After m is found, a modal frequency analysis of the FE

model is performed and results are tabulated up to the

2.5×mth mode.

2) Using results of the experimental modal analysis, ξ1 can

be calculated from the step response FFT of the real

model. To do this, it can be referred to [31] for example.

3) At the mth mode, the value of ξm can be assumed to

be between 2% and 10%, depending on the structure’s

type and application (mechanical, civil, etc.) [29].

4) With values of (ξ1, ω1) and (ξm, ωm), all values of

ξi can be calculated and then plot based on linear

interpolation of the expression:

ξi =
ξm − ξ1
ωm − ω1

(ωi − ω1) + ξ1 (17)

5) Using the data of (ξ1, ω1) and (ξm, ωm), and based on

the equation:

β =
2ξ1ω1 − 2ξmωm

ω2
1 − ω2

m

(18)

back-substituting β in (16) gives α.

6) Next, a second set of data is selected. Its based on:

(ξ1, ω1) and (ξ2.5m, ω2.5m) .

7) β and then α are recalculated as done in steps 5 & 6
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Fig. 5 Variation of the damping ratio with natural frequency of a system

8) A fourth set of data based on the average values of α
and β from steps 5 & 7 is obtained.

9) The last three sets of data based on (16) are plotted.

10) Data which fits best with the linear interpolation curve

for the first m significant modes is checked.

11) Based on the previous step, the desired values of α and

β which give the incremental damping ratio based on

Rayleigh damping are selected.

Concerning the smart beam considered in this work, it was

found that the first set of data i.e. (ξ1, ω1) and (ξm, ωm)

complies with the linear interpolation curve better than the

other data. Thus:

α = 0.02577, and β = 9.918e−6

III. THE SUPER ELEMENT TECHNIQUE

The main objective of the SE technique (also called

substructure technique) is the ability to perform the analysis

of a complete structure by using results of prior analysis

of different regions comprising the whole structure. When a

preliminary analysis of the different parts is performed, the

computation time and the size of the whole system will be

drastically reduced. Moreover, all DOF considered useless

for the final solution will be condensed and the rest will

be retained. This means, the DOF of the whole system will

correspond to the retained nodes plus a number of internal

deformation modes (dynamic analysis problems).

The SE techniques has also its drawbacks. The stiffness

matrix of the substructures will be saved externally and it

can’t be changed during the analysis of the whole structure.

The stiffness and mass matrices will be saved in a database

file, which will need much space of the hard disk once the

number of substructures will increase. In addition, no much

information is available about the connection between SEs

created to form the main structure. More about this topic is

available in the SAMCEF tutorials [21]. To construct a SE

or, in other words, to remove the unwanted nodes and DOF

from the substructure, more than one method can be used. An

example of these methods are the ”Guyan reduction technique”

[32], and the ”Component-mode method” which is used in this

work.

A. The Component-Mode Method

This method, also called Craig-Bampton method, was

initially developed by R. Craig and M. Bampton [33]. The

basic idea of it is to split the basic substructure into a certain

number of substructures. The DOF of each substructure are

then classified into boundary DOF and internal DOF. The

boundary DOF are shared by several substructures, while the

internal DOF belong only to the considered substructure.

The behavior of each substructure is described by

the combination of two types of component modes, the

constrained modes and the normal vibration modes. The

former are determined by assigning a unit displacement to

each boundary DOF while all other boundaries DOF are being

fixed. The latter correspond to the vibration modes obtained

by clamping the structure at its boundary.

It is thus assumed that the behavior of the substructure

in the global system can be represented by superimposing

the constrained modes and a small number of normal modes.

Hence, by retaining only the low-frequency vibration modes,

the substructure’s dynamic deformed shape is represented with

sufficient accuracy. This method is discussed in details in [34].

B. SE Modeling

Before the SE is created, the retained nodes and the

condensed nodes must be designated, and the number of

internal modes to be used must be specified. Once again,

the number of modes must correspond to at least 95%

participation of the mass. The retained nodes are usually

those where boundary conditions are added, or where stresses,

displacements,...etc. are imposed or measured. In the current

work, ten internal modes are used and the retained nodes are

those where the clamp is added and the actuators and sensors

are placed. All other nodes will be condensed. Concerning
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TABLE IV
COMPARISON BETWEEN FE AND SE MODEL

FE model SE model
Number of nodes 8206 5
Number of elements 2575 1
DOF 49236 34

the smart beam used in this work, there are five retained

nodes in the SE model (Fig. 6), and they comprise:

• a clamp constraint on node 1

• the actuator moments, i.e. the control forces, on nodes 2

and 3

• an additional sensor to measure the vibrations on node 4

(it will be used in future works)

• a sensor to measure the vibrations on node 5

Fig. 6 The retained nodes of the super element

C. Comparison between FE and SE Model

The number of nodes, elements and DOF of SE and FE

models are listed in (Table IV). It is clear that the number of

elements, nodes, and DOF was reduced. This lead also to a

smaller structure and less computation time.

D. Validation of the SE Model

In order to validate the SE model, modal analysis is

performed and results are compared to those from the FE

model (Table V). It is clear that the results of modal analysis

on both models did not show a big difference on the first four

natural frequencies. Since the controller will be designed to

control the vibrations after exciting the model with its first

natural frequency only, further readings are not necessary.

IV. THE STATE SPACE MODEL

The fundamental equation describing the dynamic behavior

of a damped structure discretized by the FE method is written

in the form:

Mq̈(t) + Cq̇(t) + Kq(t) = f(t) (19)

where q(t) is the state vector which collects the displacements

of the structure by DOF, and f(t) is a vector expressing the

applied loads. If the total number of DOF of the FE model is

n, then the dimension of the state vector q(t) will be also equal

to n, and that of the mass, stiffness and damping matrices will

be n ∗n. In this work, n will be 49236 if the full FE model

will be used. However, since a SE was constructed, and the

desired results concern specific locations of the structures only,

n was reduced to s, where s = r + m − 6.

r is the number of retained nodes, m is the number of

internal modes chosen, and the number 6 corresponds to the

rigid body modes that will be automatically eliminated. The

new form of the mass, stiffness and damping matrices will

have the size s× s, which is 34 in case of the smart beam.

The state-space model is written according to (19) with

dimensions of the SE model. The general form is:

ẋ = Ax + Bu, and y = Cx + Du

the state vector x, the input vector u and the output vector y
are defined as:

x =

{
q
q̇

}
u = {F}, y =

⎧⎪⎪⎨
⎪⎪⎩
qout
q̇out
q̈out
Fout

⎫⎪⎪⎬
⎪⎪⎭

and A, B, C and D are called the system state-space

representation and F is the external load applied. So that:

A =

[
0 I

−M−1K −M−1B

]
, B =

[
0

−M−1

]

C =

⎡
⎢⎢⎣

I 0
0 I

−M−1K −M−1B
0 0

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

0
0

M−1

I

⎤
⎥⎥⎦

size (A) = 2s× 2s, size (B) = 2s× in
size (C) = out× 2s, size (D) = out× in

where out is the no. of outputs from the system, and in is

the no. of inputs to the system.

By using a FORTRAN code, and upon specifying the types

and positions of inputs and outputs, the state-space model

was extracted.

V. CONTROLLER DESIGN

The performance of smart structures for active vibration

control depends strongly on the control algorithm

accompanied by it. As outlined previously, one of the

objectives of this work is to design a controller which is

able to damp the first vibrational mode of the smart beam.

The beam is excited with its first natural frequency and

then it is left to vibrate freely. At the moment when free

vibration begins, the controller is activated. Concerning the

control algorithm, the Lyapunov stability theorem is used. It

is assumed here that damping the first natural frequency will

not affect other natural frequencies which are not investigated

in this work.

A. Lyapunov Stability Theorem

Although there is no general procedure for constructing a

Lyapunov function, yet any function can be considered as a

candidate function if it meets some requirements, i.e. if its

positive definite, equal to zero at the equilibrium state and if

its derivative is less or equal to zero [35].

In this work, the energy equation of a thin Bernoulli-Euler

beam (20), which is modeled as one FE in a one-dimensional

system with length h and left point coordinate xi, will be

considered as the Lyapunov function candidate.

U =
1

2

∫ xi+h

xi

[
ρ
(∂y
∂t

)2

+ EI
(∂2y

∂x2

)2
]
dx (20)
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TABLE V
COMPARISON BETWEEN THE FIRST FOUR NATURAL FREQUENCIES

No. of natural frequency FE model (Hz) SE model (Hz) % Error
1 13.811 14.249 3.07
2 42.673 43.414 1.71
3 145.49 152.54 4.62
4 150.16 154.38 2.73

This function is locally positive definite, it is continuously

differentiable and equal to zero at the equilibrium state. Yet,

according to the last requirement for Lyapunov functions, the

derivative of this function (21) must be smaller or less than

zero too.

U̇ =

∫ xi+h

xi

[
ρẏÿ + EI

∂2y

∂x2

∂

∂t

(∂2y

∂x2

)]
dx (21)

Substituting the derived equations for the bending moment

M , shear force V , and after assuming no shear [32], the first

derivative will become:

U̇ = M
(
ẏ′xi+h − ẏ′xi

)
(22)

to ensure that (22) is always smaller or equal to zero, the

actuator moment M can have the value:

M = − k
(
ẏ′xi+h − ẏ′xi

)
(23)

where k is a positive constant. Subst. (23) in (22) yields:

U̇ = − k
(
ẏ′xi+h − ẏ′xi

)2

≤ 0 (24)

in this case, (23) can be used as the controller for the

smart beam. The intention of the current work is to design

a functional controller and not an optimal one, thus k = 30
is used and the controller is implemented in the SE and the

state-space models.

1) SE Model with Controller: There are many ways to add

a controller to a SE model in SAMCEF. In this work, the

nonlinear forces element (FNLI) is used [21]. This element

enables the insertion of a list of n general linear or nonlinear

internal forces as a function of a list of n DOF and their

derivatives. Concerning the smart beam used in this work, two

equal moments at nodes 2 and 3 (but with opposite directions)

were added, where each one of them is a function of the

velocities at both nodes according to (23).

The beam was excited with its 1st natural frequency, and

then it was left to vibrate freely (Fig. 7). At the moment

when free vibrations started (t = 20 s), the controller was

activated. Three different values for the constant k were used

for the controller design, and results are shown in (Fig. 8). The

implementation of the controller changed the natural frequency

of the system as well. In the FFT spectrum diagram (Fig. 9),

the effect on the natural frequency of the smart beam and its

magnitude is illustrated.

2) State-Space Model with Controller: In the state-space

representation of the smart beam, MATLAB/SIMULINK is

used to design and implement the controller. However, two

steps must be done. In step one, the only input is the forced

excitation with the first natural frequency, and the output

contains the state vectors which will be fed as initial conditions

in the second step. In the second step, the input consists of

the two actuator moments, and the output comprises the tip

displacement at the fifth node and the velocities at the second

and third nodes (Fig. 10). Based on the Lyapunov stability

theorem, the last two outputs, multiplied by a constant k
are fed back as actuator moments in different directions. The

results are depicted in (Fig. 11).

3) Comparison of Results from SE Model and State-Space
Model: The controller has been implemented on both models

and the results were almost the same. This can be seen in the

case when the constant k = 5 for example. Yet, if the curves

are slightly zoomed, a very small difference appears (Fig. 12).

This is because the time steps used in both models were

different. It was not possible to use a fixed time step in the

state-space model. Using a SE model decreased the simulation

time, although more results (like stresses, energy curves, etc)

could be gleaned out from it. However, the controller could

be easier designed and implemented in the state-space model.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, the basic procedures for modeling and

simulation of a smart beam were presented. At the beginning,

the relation between actuator velocity and actuator moments

was derived. A FE model was created and the damping

coefficients were calculated using data from experimental

results. A SE model was then deduced from the FE model and

then the state-space model was derived. A controller based on

the Lyapunov stability theory was designed and implemented

to control the free body vibrations of the smart beam once

excited by its first natural frequencies. Results from both

models were shown and compared.

In the future, other types of controllers will be used.

Nevertheless, more natural frequencies will be controlled and

the possibility to implement the controllers experimentally will

be investigated.
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Fig. 7 Forced excitation (till t=20s) and free body vibration of the smart beam

Fig. 8 Tip displacement vs. time with and without controller during the free vibration (SE model is used)

Fig. 9 The FFT spectrum of the smart beam
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Fig. 10 The state-space model of the smart beam with controller

Fig. 11 Tip displacement vs. time with and without controller during the free vibration (state-space model is used)

Fig. 12 Tip displacement vs. time using the SE and the state-space models
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