
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

761

Abstract—According to the density of the chips, designers are

trying to put so any facilities of computational and storage on single
chips. Along with the complexity of computational and storage
circuits, the designing, testing and debugging become more and more
complex and expensive. So, hardware design will be built by using
very high speed hardware description language, which is more
efficient and cost effective. This paper will focus on the
implementation of 32-bit ALU design based on Verilog hardware
description language. Adder and subtracter operate correctly on both
unsigned and positive numbers. In ALU, addition takes most of the
time if it uses the ripple-carry adder. The general strategy for
designing fast adders is to reduce the time required to form carry
signals. Adders that use this principle are called carry look- ahead
adder. The carry look-ahead adder is to be designed with combination
of 4-bit adders. The syntax of Verilog HDL is similar to the C
programming language. This paper proposes a unified approach to
ALU design in which both simulation and formal verification can
co-exist.

Keywords—Addition, arithmetic logic unit, carry look-ahead
adder, Verilog HDL.

I. INTRODUCTION
HIS paper is aimed to study and implement ALU design
for 32-bit adder and subtracter based on Verilog hardware

description language. The purpose of using Verilog HDL is that
it offers many features for hardware design. When the actual
addition is performed, there is no delay from waiting by using
carry look-ahead adder. For any circuit larger than 4-bit, the
carry look-ahead adder, the circuit becomes very complicated.
So 32-bit carry look-ahead adder and subtracter will be
constructed by combing 4-bit carry look-ahead adders.

II. OVERVIEW OF ALU DESIGN
The various circuits used to execute data-processing

instructions are usually combined in a single circuit called an
arithmetic logic unit or ALU. ALU is the part of a computer
processor (CPU) that carries out arithmetic and logic operations
on the operands in computer instruction words. ALU performs
operations such as addition, subtraction and multiplication of
integers and bitwise AND, OR, NOT, XOR and other Boolean
operations. The CPU's instruction decode logic determine
which particular operation the ALU should perform, the source
of the operands and the destination of the result [1]. In some

Manuscript received March 31, 2008. This work was supported in part by

the Ministry of Science and Technology, Union of Myanmar.

processors, the ALU is divided into two units, an arithmetic
unit (AU) and a logic unit (LU). Computer arithmetic is
commonly performed on two very different types of numbers
integer and floating point. Computer programs calculate both
positive and negative numbers. So a representation that
distinguishes the positive from the negative is required. Every
computer today uses twos-complement binary representation
for complement binary numbers. In arithmetic unit, 32-bit ALU
(addition and subtraction) design will be constructed based on
Verilog HDL. The Verilog hardware description language is
used to provide a gate level model and simulation of each
design. A number of differing configurations of binary adders
exist for inclusion into ALU design [1].

One of the most popular methods to reduce delay is to use a
carry look-ahead mechanism. By using carry look-ahead
mechanism, the propagation delay is reduced to four-gate level
irrespective of the number of bits in the adder.

A. Implementation Program
Verilog HDL is a general-purpose hardware description

language that is similar syntax to the C programming language.
Verilog HDL allows different levels of abstraction to be mixed
in the same model. So a hardware model can be defined in
terms of switches, gates, RTL, or behavioral code. Today most
digital design of processors and related hardware system is
done using a hardware description language. Such a language
serves two purposes, first it provides on abstract description of
the hardware to simulate and debug the design. Second, with
use of logic synthesis and hardware compilation tools, this
description can be compiled into the hardware implementation.
Verilog provides the concept of module. A module is the basic
building block in Verilog. A module can be implemented in
terms of the desired design algorithm without concern for the
hardware implementation details [2]. These modules can be
substituted in place of the 32-bit full adder and subtracter
modules described before without changing any other
component of the simulation. The simulation results will be
unchanged.

III. HIGH SPEED ADDER
The general strategy for designing fast adders is to reduce the

time required to form carry signals. One approach is to compute
the input carry needed by stage i directly from carry like signals
obtained from all the preceding stages i-1,i-2,……0,rather than
waiting for normal carries to ripple slowly from stages to
stages. Adders that use this principle are called carry

Implementation of Adder-Subtracter Design
with VerilogHDL

May Phyo Thwal, Khin Htay Kyi, and Kyaw Swar Soe

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

762

look-ahead adders. An n-bit carry look-ahead adder is formed
from n stages , each of which is basically a full adder modified
by replacing its carry output line ci by two auxiliary signals
called gi and pi or generate and propagate, respectively ,which
are defined by the following logic equation (1);

gi = xiyi pi = xi+yi (1)

The name generate comes from the fact that stage i generates
a carry of 1(ci=1) independent of the value of ci-1 if both xi and
yi are 1; that is, if xiyi=1.Stage i propagates ci-1; that is makes
ci=1 in response to ci-1=1 if xi or yi is 1__in order words, if
xi+yi=1.Now the usual equation ci=xiyi + xici-1 + yici-1, denoting
the carry signal ci to be sent to stage i+1, can be rewritten in
terms of gi and pi.

ci =gi + pici-1 (2)

Similarly, ci-1 can be expressed in terms of gi-1, pi-1 and ci-2,

ci-1 = gi-1 + pi-1ci-2 (3)

On substituting Equation (3) into Equation (2),

ci =gi + pigi-1+pipi-1ci-2 (4)

Continuing in this way, ci can be expressed as a
sum-of-products function of the p and g outputs of all the
preceding stages. For example, the carries in a four-stage carry
look-ahead adder are defined as follows:

c0 = g0 + p0.cin
c1 = g1 + p1.g0 + p1.p0.cin
c2 = g2 + p2.g1 + p2.p1.g0 +p2.p1.p0.cin
c3 = g3 + p3.g2 + p3.p2.g1 + p3p2.p1.g0 + p3p2.p1.p0.cin (5)

Fig. 1 shows the general form of a carry look-ahead adder
circuit designed in this way [3].

Fig. 1 Overall Structure of Carry Look-ahead Adder

A. Adder Expansion
The methods of handing carry signals in the two main

combinational adder designs considered so far, namely, ripple
carry propagation and carry look-ahead Fig. 1 can be extended
to larger adders of the kind needed to execute add instructions
in a 32-bit computer. If the n 1-bit (full) adder’s stages are
replaced in the n-bit ripple-carry design with n k-bit adders, an
nk-bit adder can be obtained. Four 4-bit adders such as the

4-bit carry look-ahead circuit of Fig. 2 can be connected in this
way to form the 16-bit adder appearing in Fig. 3.

This design represents a compromise between a 16-bit stage
ripple-carry adder, which is cheap but slow, and a single-stage
16-bit carry look-ahead adder, which is fast, expensive, and
impractical because of the complexity of its carry-generation
logic. The circuit of Fig. 3 effectively combines sets of four xiyi

inputs into groups that are adder via carry look-ahead; the
results computed by the various groups are then linked via
ripple carries [3].

The components designed for 1-bit addition have been
replaced with similar but larger components intended for 4-bit
addition. The expanded design of Fig. 1 can be got. Again 1-bit
adders with 4-bit adder are being replaced, but now each adder
stage produces a propagate-generate signal pair pg instead of
cout and a carry look-ahead generator converts the four sets of
pg signals to the carry inputs required by the four stages. The
“group” g and p signals produced by each 4-bit stage are
defined by [3].

g = xiyi + xi-1 yi-1(xi+yi) + xi-2yi-2(xi + yi) (xi-1 + yi-1) + xi-3
yi-3(xi+yi) (xi-1 + yi-1) (xi-2 + yi-2) (6)
p = (xi +yi) (xi-1 + yi-1) (xi-2 +yi-2) (xi-3 + yi-3) (7)

 It is not hard to show that the logic to generate the group
carry signals cout, c11, c7 and c3 in Fig. 4 is exactly the same as
that of the carry look-ahead generator of Fig. 2.

Fig. 2 A 4-Bit Carry Look-ahead Adder

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

763

Fig. 3 16-Bit Composed of 4-Bit Adders Linked by Ripple Carry

Propagation

IV. DESIGN OF ADDER-SUBTRACTER

Fig. 4 16-Bit Adder Composed of 4-Bit Adders Linked by Carry

Look-ahead

A two-complement adder-subtracter will be designed that
computes the three quantities X+Y, X-Y, and Y-X, as well as
overflow and zero flags. The design goal is to minimize the
number of gates used; operation speed is not of concern. The
circuit is required in several versions that handle different data
word sizes, including 4, 8 and 16.

Assume that we have standard gate-level and 4-bit
register-level components available as building blocks.

The lowest cost adders employ ripple-carry propagation and
can easily provide access to the internal signals needed by the
flags. Overflow detection uses cn-2 the input the sign position.
In the first case overflow is indicated by a carry bit into the sign
position that is, by cn-2=1, since this indicates that the
magnitude of the sum exceeds the n-1 bits allocated to it. A
little thought shows that overflow from adding two negative
numbers is indicated by cn-2=0[4].The overflow condition is
specified by the logic expression

V= x n-1 y n- 1 cn-2 + xn-1 yn-1 c n-2 (8)

Now cn-1, the carry output signal from the sign position, is
defined by xn-1 yn-1 + xn-1 cn-2 + yn-1 cn-2, from which it follows
that

V=cn-1
⊕ cn-2

This equation can be used to design overflow detection logic
for two-complete addition or subtraction. Zero detection
required access to all the sum outputs and poses no special
problems. Fig. 5 (a) shows the logic diagram of an appropriate
4-bit ripple-carry adder.

(a)

(b)

Fig. 5 Low-Cost Addition and Subtraction of Twos-Complement
Numbers (a) 4-Bit Adder Module (b) 8-Bit Adder-Subtracter

V. 32-BIT ADDER-SUBTRACTER

The overflow flag is defined by Equation as V= cn-1
⊕

cn-2and is realized here by an XOR gate. The zero flag is
defined by Z= z3 +z2+z1+z0 and implemented by a NOR gate.
The k copies of this adder can be used to produce a 4k-bit
ripple- carry adder in the useful way. The overflow for the
entire circuit is taken from the v output of the left-most (most
significant) stage, while the z outputs of all the stages are
ANDed to produce the zero flag. To extend the adder to an
adder-subtracter, the design of Fig. 6 is a good starting point. It
uses an XOR word gate to complement the X input, thereby
enabling the circuit to compute X+Y and Y-X. To implement
the third operation X-Y, a two-way 4-bit multiplexer could be
inserted into each of the data -in bused so that both X and Y can
be applied to each of the adder-subtracter’s data inputs. A
cheaper solution is to insert a second XOR word gate into the Y
bus, enabling Y to be complemented independently. Then X-Y
can be computed in the form X+Y +1[4].

The complement design of an 8-bit adder-subtracter along
the foregoing lines is depicted in Fig. 5 (b). It contains two 4-bit
adders of the type in Fig. 5 (a) linked by their carry lines. Two
lines COMPX and COMPY control the XOR gates that change

X and Y to x and - y , respectively. The OR gates sets the
adder’s carry_ in line to 1 during subtraction. A two-input
AND gate combines the two z outputs to produce the zero flag,
which is 1 if and only if the entire 8-bit result Z=0.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

764

±

Fig. 6 An N-Bit Two-Complement Adder-Subtracter

Fig. 7 32-Bit Adder-Subtracter

Three of the four signal combination on COMPX and
COMPY control lines implement the desired three arithmetic
functions. The fourth combination 11 implements the sum

x + y +1, which is an arithmetic function implemented by our
design that has no obvious uses. In this paper, 32-bit
adder-subtracter will be designed in Fig. 7.

VI. IMPLEMENTATION OF OVERFLOW CONDITION
Equation for overflow condition of 32-bit adder-Subtracter,

Overflow= ((X [31].Y [31].Result[31]. compX . compY)

+(X [31].Y[31]. sultRe [31]. compX . compY)

+(X [31]. Y [31]. sultRe [31]. compx .compY) +

(X [31].Y [31].Result [31]. compX . compY) +(X

[31]. Y [31].Result [31].compX. compY)+

(X [31].Y[31]. sultRe [31].compX. compY))

Fig. 8 Overflow Design

VII. HIERARCHICAL LEVEL FOR PROGRAM

Fig. 9 Hierarchical Level for 32-Bit Carry Look-head Adder

Fig. 10 Overall Structure of 32-Bit Adder-Subtracter

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

765

VIII. THE STIMULUS OF OVERALL SYSTEM DESIGN

Fig.11 Stimulus of 32-Bit Adder-Subtracter

IX. CONCLUSION
In paper, 32-bit adder design presented can be implemented

and simulated, at the gate level; with Verilog HDL .The first
stage of the adder block is getting input data, which is 32-bit
wide. After each stages of the adder block some extra bits are
added because of the overflow. The final adder stage can give
output data of 32-bit wide.

The general strategy for designing fast adders is to reduce the
time required to form carry signals. Adders that use this
principle are called carry look-ahead adder. The carry
look-ahead is a fast adder but extremely large, especially when
the operands are big. Carry look-ahead offers a faster path
than waiting for the carries to ripple through all 32 1-bit adder.
The faster path is paved by two signals, generate and propagate.
The former creates a carry regardless of the carry input, and the
other passes a carry along.

The disadvantage of carry look- ahead is that the carry logic
is getting quite complicated for more than 4_bits.For that
reason, carry look-ahead adders are usually implemented as
4_bit modules and are used in a hierarchical structure to realize
adders that have multiples of 4-bits.

So 32-bit carry look-ahead adder and Subtracter will be
constructed by combing 4-bit carry look-ahead adders.

ACKNOWLEDGMENT
We would like to thank U Kyaw Swar Soe and Dr. Win Aye

for their comments on the early drafts of this paper. We would
also like to thank the referees for their help in improving the
clarity of the presentation.

REFERENCES
[1] Andrew S. Tanenbaum, Structure Computer Organization, Fourth

edition, Prentice_Hall, Inc., 1999.
[2] Samir Palnitkar, Verilog HDL: A Guide to Digital Design and Synpaper,

Sun Microsystems, Inc., 1996.
[3] William Stallings, Computer Organization & Architecture, Sixth edition.
[4] David A. Patterson, John L. Hennessy, Computer Organization and

Design, (The Hardware /Software Interface), Third edition, Elsevier Inc.,
2005.

