
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2449

Impact of Fair Share and its Configurations
on Parallel Job Scheduling Algorithms

Sangsuree Vasupongayya

Abstract—To provide a better understanding of fair share
policies supported by current production schedulers and their
impact on scheduling performance, A relative fair share policy
supported in four well-known production job schedulers is
evaluated in this study. The experimental results show that fair
share indeed reduces heavy-demand users from dominating the
system resources. However, the detailed per-user performance
analysis show that some types of users may suffer unfairness
under fair share, possibly due to priority mechanisms used by
the current production schedulers. These users typically are not
heavy-demands users but they have mixture of jobs that do not
spread out.

Index Terms—Fair share, Parallel job scheduler, Backfill,
Measures.

I. INTRODUCTION

FAIR share is one of the important goals of parallel job
scheduling policies and is supported on many production

job schedulers. However, the meaning of fair share and the
impact on scheduling performance have been largely ignored
in previous research. As a result, it is rather difficult for the
system administrators to know how to configure fair share
policies and for the users to know what to expect. The goal
of this study is to provide a better understanding of fair share
policies and their impact on other scheduling performances.

The Fair Share Scheduling [1] was originally proposed
to extend Unix time-sharing systems. Fair Share Scheduling
allocates resources fairly among competing users or groups, as
opposed to processes. A similar idea of fair share is adopted in
many production parallel job schedulers. The detailed imple-
mentations of fair share of different schedulers vary, but they
all rely on some priority mechanisms to implement fair share
similar to that of the original Fair Share Scheduling. However,
these production parallel job schedulers are in general non-
preemptive, it is not clear whether using a similar priority
mechanism is effective in achieving fair share. In fact, the
only study [2] on this subject concluded that fair share has
no effect on performance of jobs of each user. The conclusion
is reached by showing that there is no correlation between
the share assigned to each group and the performance of
jobs of each group. However, many factors could impact job
performance, such as the load condition when jobs arrive,
the job sizes, the particular fair share policies used, and the
resource demand of each group. Thus, more study is required

S. Vasupongayya is with the Department of Computer Engineering, Faculty
of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90112,
Thailand. e-mail: sangsuree.v@psu.ac.th.

This work is supported by the Faculty of Engineering, Prince of Songkla
University, under grant no. ENG-52-2-7-18-0031-S.

to further understand the impact of fair share policies on
scheduling performance. The goal of this study is to provide
a better understanding of fair share policies and their impact
on scheduling performances.

The remaining of this paper is organized as follow. In
Section II, fair share models supported in four well-known
production job schedulers are reviewed. In Section III, the
experimental setting is described. Sections IV-VI present the
evaluation results. A conclusion is given in Section VII.

II. FAIR SHARE IN PRODUCTION SCHEDULERS

In this section, fair share and its configurable parame-
ters supported in four well-known production job schedulers:
PBS [3], [4], LSF [5], IBM LoadLeveler [6], Maui/Moab [7],
[8] are reviewed. Since Moab is an extension of the Maui
scheduler, Moab and Maui are viewed as one scheduler. Note
that the terms used in this study may be different from those
in the production schedulers.

A. Fair Share Models
A relative fair share model is supported in all four sched-

ulers. To achieve fair share, a fair share priority is assigned
to each user or group. The fair share priority of each user or
group is a function of the entitled share and the cumulated
usage. The entitled shares define the importance of each user
or group relative to other users or groups. The entitled shares
directly or indirectly specify the amount of resources each user
or group is entitled to use. In other words, the entitled share
is defined as the amount of resources that the user entitled
to according to the current fair share policy. For example, an
equal fair share policy can assign each user an equal amount
of resources. While, the cumulated usage of each user is the
amount of resources that the user currently used so far. Both
the entitled share and the cumulated usage are dynamically
calculated within a fair share window.

There are two implementations of the relative fair share
model, which include the remaining share and the ratio of the
entitled share and the cumulated usage. The remaining share
is defined as the difference between the entitled share and the
cumulated usage at the time when the priority is computed.
These two implementations may look different however they
are equivalent. That is, a user with larger remaining share
relative to other users also has a higher ratio of the entitled
share and the cumulated usage relative to other users.

When a fair share policy is in used, each user will have
his/her fair share priority dynamically computed. All jobs
belong to a user are given the same fair share priority. A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2450

job priority will be adjusted up or down according to the fair
share priority of its owner. For example, the remaining share
is used to adjust the job priority up when the value is positive
and down when the value is negative.

In addition, LoadLeveler and Maui/Moab also allow the
entitled share to be defined as the share upper-bound or the
share lower-bound. When the entitled share is defined as the
share upper-bound, if the user or group has used more than
the entitled share, their job priorities are adjusted down. When
the entitled share is defined as the share lower-bound, on the
other hand, if the user and group has used less than the entitled
share, their job priorities are adjusted up.

B. Fair Share Window
Fair share policy has a fair share window–a configurable

parameter. To compute the fair share priority, the usage of
each user must be cumulated. Usually, the usages include the
resources that have been actually used so far in the current
fair share window. The future usages–resources expected to
be used by the currently executing jobs or the jobs hold-
ing reservations–are not included in the usage calculation.
However, LSF factors in some future usages committed so
far into its usage calculation. LSF achieves this by defining
its fair share policy as a weighted sum of the total actual
CPU time and wall time used and the number of jobs that
are currently running or having reservations. The weights are
configurable. However, finding a good set of weights can
be troublesome since each measure affects the scheduling
performance differently. Even one good set of weights is
found, it may not work during another period of time due
to the changes in workload.

Normally, the default window size is one day (e.g., the
default in the PBS and Maui/Moab schedulers) or seven days,
except it is five hours in LSF. Similar to the original fair share,
the usage from previous fair share windows can be decayed
and carried over the current window. The decay factor is also
configurable.

III. EXPERIMENTAL SETTING

In this section, the policies are defined, the measures and the
workload used in this study. The performance of all policies
is evaluated by an event-driven simulation. The ten monthly
workloads that ran on an Intel Itanium Linux cluster (IA-64)
at the National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign during June 2003
to March 2004 are used as the input to the simulator. The
performance measures of each month are computed for jobs
submitted during the month. To be realistic, however, each
simulation of a given month includes a one-week (from pre-
vious month) warm up, and a cool-down period in which jobs
(from next month) continue to arrive until all jobs submitted
during the month for which the performance measures are
computed have started. The cool-down period is typically a
few days only. To understand the full potential of fair share
policies, the simulator uses the perfect runtime information of
each job thus the impact of inaccurate runtime estimates is
eliminated.

TABLE I
INFORMATION OF NCSA IA-64 WORKLOAD

Proc. #jobs per user
Month demand #users #jobs Avg. Median Max.
6/03 82% 73 2191 30.0 8.0 659
7/03 89% 68 1400 20.6 8.0 145
8/03 79% 73 3221 44.1 8.0 1873
9/03 72% 74 3057 41.3 15.0 703

10/03 71% 75 4149 55.3 15.0 1151
11/03 73% 81 3443 42.5 17.0 665
12/03 74% 61 3521 57.7 14.0 635
1/04 73% 53 3156 59.5 17.0 679
2/04 74% 73 3969 54.4 28.0 541
3/04 75% 70 3466 49.5 15.5 1234

Job size (NT) demand (NT) per user
Month Avg. Median Max. Avg. Median Max.
6/03 34.5 0.8 960.0 1034.7 24.0 24071
7/03 60.6 1.3 1536.0 1247.4 145.7 16719
8/03 23.4 0.0 1536.0 1031.6 120.0 14346
9/03 21.7 0.1 912.0 895.5 72.5 18499

10/03 16.3 0.4 912.0 899.5 114.7 8060
11/03 19.5 0.7 1536.0 827.1 27.6 10183
12/03 20.1 1.1 1152.0 1159.3 23.2 17776
1/04 22.1 5.1 1920.0 1313.6 317.4 10340
2/04 16.6 0.3 1824.0 900.3 93.3 8931
3/04 20.6 0.0 1832.8 1018.0 46.1 12892

Job size (N) Job size (T)
Month Avg. Median Max. Avg. Median Max.
6/03 12.1 4.0 128 1.4h 0.20h 12h
7/03 23.5 8.0 128 1.9h 0.18h 12h
8/03 7.3 1.0 128 1.1h 0.00h 12h
9/03 9.1 1.0 128 1.4h 0.03h 12h

10/03 5.0 1.0 128 2.0h 0.13h 12h
11/03 6.0 1.0 128 2.5h 0.15h 12h
12/03 5.6 1.0 128 3.6h 0.33h 24h
1/04 10.7 2.0 128 4.5h 1.10h 24h
2/04 5.0 2.0 128 3.1h 0.11h 24h
3/04 5.8 1.0 128 2.4h 0.00h 24h

A. Workloads
Information of the workload is shown in Table I. The

information includes the processor demand (Proc. demand),
the number of users (#users), the number of jobs (#jobs),
the number of jobs per user (i.e., average, median, and
maximum), and the job size information (i.e., average, median,
and maximum processor (N), runtime (T), and processor-hour
(NT)) of each month. The total available nodes of the system
is 128 dual-processor nodes. The runtime limit of June 2003
to November 2003 was 12 hours and it was increased to 24
hours after that. The processor demand of all jobs is typically
in the range of 70-80%, but July 2003 has a higher load (89%).
For more details see [9].

B. Policies
Two fair share policies using the relative fair share model

described previously in Section II-A was studied. Their
scheduling performances are compared against FCFS-backfill
and LXF-backfill policies.

Under backfilling scheme, jobs are considered for schedul-
ing in the order of their priority; if a job cannot be started due
to insufficient resources; the job is given a reservation (i.e., the
earliest time sufficient resources become available for the job);
lower-priority jobs can be backfilled on idle resources as long
as they do not delay any reservation. In the simulation of back-
fill policies, only the highest-priority waiting job receives the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2451

reservation because giving reservations to more jobs does not
find to be beneficial for the workloads studied. FCFS-backfill
considers jobs for scheduling according to their arriving order
thus it usually achieves a good maximum wait performance.
While, LXF-backfill considers jobs for scheduling according
to their slowdown (largest slowdown first), thus it usually
achieves good performances on average performance measures
(both slowdown and wait).

The fair share policies, in this study, prioritize jobs accord-
ing to the fair share priority (i.e., higher the share higher the
priority). The tie is broken by the job arriving order. Similar
to the production job schedulers, the fair share policies in this
study also support backfilling. Only equal sharing among users
is considered in this study. Fair share window is a configurable
parameter for both fair share policies. In this study, the fair
share window varies from 4 hours to 7 days (i.e., the typical
value used in most production job schedulers). To eliminate
the impact of the decay factor, the cumulated usage of each
user is reset to zero at the beginning of each fair share window.
In other words, the usage in a window does not carry over to
the next window. The impact of decay factor will be left for
future work. The two fair share policies are described below.

(1) RelShare(fw): defines the fair share priority of each user
to be entitled share

cumulated usage
where fw specifies the fair share window.

For example, RelShare(1d) uses a one-day window that is
the cumulated usage of a user includes the actual usage of
the user from the beginning of the day until the current time
and the expected usage of resources allocated to the currently
running jobs and the job with reservation. However, only the
expected usage of resources within the current day (for fw=1d)
is included.

(2) RelShare(fw) w/o expected usage: is similar to
RelShare(fw). However, the cumulated usage of RelShare(fw)
w/o expected usage only contains the actual usage so far,
excluding any expected usage.

C. Measures
Measures required to define fair share policies and to

evaluate to what extent the fair share is achieved are defined in
this section. Each measure can be computed over any period
of time.

(1) entitled share: To compute a fair share priority value,
a cumulated entitled share must be defined. The cumulated
entitled share of a user during a given period of time is simply
the cumulated entitled nodes over that period of time. For
example, if a user is entitled to 10 nodes in a 20-minute period,
and 15 nodes in the next 40 minutes, then the user has an
entitled usage of 800 node-minutes or about 13.3 node-hours,
during that one-hour period of time.

At any point of time, the entitled nodes of each user is
proportion to the shares assigned to the user, i.e., 128 * share
assigned to the user / total shares assigned to active users.
Note that an active user at the current time is a user who
has any job waiting or running at the current time. In the
equal-share policy, the initial entitled nodes of each user is
simply the maximum number of nodes divided by the number
of currently active users.

If a user’s entitled node is larger than the user’s total
requested nodes, i.e., the total requested nodes of currently
waiting or running jobs that belong to the user, then the entitled
nodes of the user is reset to the user’s current total requested
nodes. The entitled nodes are recursively computed for the
remaining active users and remaining nodes.

(2) dev: To evaluate to what extent the fair share is achieved,
a per-user fair share measure namely dev (a.k.a. deviation in
node hours) is defined. Deviation in node hours is defined to be
the cumulated actual usage minus the cumulated entitled share
of each user over a given period of time. Note that a positive
value means an over-share, and a negative value means an
under-share.

IV. PERFORMANCE OF FAIR SHARE POLICIES

In this section, the impact of using RelShare(1d) and
RelShare(1d) without expected usages is studied, in com-
parison with FCFS-backfill and LXF-backfill. Both RelShare
policies use a one-day fair share window.

Figure 1(a)-(d) plot the average bounded slowdown, average
wait, maximum wait, and 99th-percentile wait, respectively,
of FCFS-backfill, LXF-backfill, RelShare(1d) w/o expected
usages and RelShare(1d). To reduce the impact of a high slow-
down of very short jobs, a bounded slowdown is used instead
of a slowdown. That is, all jobs with runtime less than 1 minute
are treated as 1-minute jobs when compute their slowdown
(i.e., (wait time + runtime)/ max(1,runtime)). Figure 1(a)-(b)
shows that all four policies have fairly comparable average
bounded slowdown and average wait each month, except 6/03
and 7/03. RelShare(1d) has worse maximum wait time than
those of both backfill policies in each month studied. Note
that only a few percentage of jobs under RelShare(1d) in each
month incurred a very poor wait time. This can be seen from
Figure 1(d), which shows that RelShare(1d) has similar 99th-
percentile wait time as that of FCFS-backfill for each month,
except 7/03 and 1/04.

As shown in Figure 1(a)-(d), both fair share policies have
fairly comparable scheduling performances each month. The
similar performance of RelShare(1d) w/o expected usages and
RelShare(1d) shows that the poor maximum wait performance
of RelShare is not the result of using expected usages in the
cumulated usage calculation.

The results in this section suggest that both fair share
policies have little impact on both average performance mea-
sures. However, it is rather unexpected to find such a large
gap in the maximum wait between RelShare(1d) and both
backfill policies. Another point of these results is that if only
the average performance measures were studied, an incorrect
conclusion would have been drawn that fair share policies have
little impact on the scheduling performance.

V. DETAILED ANALYSIS OF FAIR SHARE

In this section, a detail analysis of per-user performance
is studied to find whether the fair share policies are indeed
more fair than both backfill policies. First, the users who
suffer under RelShare policies are analyzed. Next, the analysis
moves to the users who benefit under RelShare policies. Then,
conclusions are drawn from both results.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2452

0

50

100

150

200

av
g b

ou
nd

ed
 sl

ow
do

wn

6/0
3

7/0
3

8/0
3

9/0
3

10
/03

11
/03

12
/03 1/0

4

2/0
4

3/0
4

FCFS−backfill
LXF−backfill
RelShare (1d) w/o expected usage
RelShare (1d)

(a) Avg. bounded slowdown

0

5

10

15

20

av
g w

ait
 (h

r)

6/0
3

7/0
3

8/0
3

9/0
3

10
/03

11
/03

12
/03 1/0

4

2/0
4

3/0
4

FCFS−backfill
LXF−backfill
RelShare (1d) w/o expected usage
RelShare (1d)

(b) Avg. wait

0

100

200

300

400

ma
x w

ait
 (h

r)

6/0
3

7/0
3

8/0
3

9/0
3

10
/03

11
/03

12
/03 1/0

4

2/0
4

3/0
4

FCFS−backfill
LXF−backfill
RelShare (1d) w/o expected usage
RelShare (1d)

(c) Max. wait

0

100

200

300

400

99
th−

pe
rce

nti
le

wa
it (

hr)

6/0
3

7/0
3

8/0
3

9/0
3

10
/03

11
/03

12
/03 1/0

4

2/0
4

3/0
4

FCFS−backfill
LXF−backfill
RelShare (1d) w/o expected usage
RelShare (1d)

(d) 99th-percentile wait
Fig. 1. Performance of Share policies versus backfill policies

TABLE II
USERS WITH THE WORSE DEGRADATION IN WAIT TIME UNDER RELSHARE(1D)

(a) Performance of each user
FCFS-backfill LXF-backfill RelShare(1d)

User month dev MaxW AvgW AvgX dev MaxW AvgW AvgX dev MaxW AvgW AvgX Type
8 7/03 -2907.8 82.8h 21.1h 168.1 -1606.5 26.6h 4.6h 34.7 -7245.0 280.7h 80.7h 907.2 S1

21 7/03 -1706.0 65.6h 11.4h 126.6 -1611.1 63.5h 6.3h 28.9 -667.8 109.5h 11.9h 103.8h S2
24 7/03 -1787.6 114.8h 26.1h 459.5 -894.3 30.7h 8.8h 122.4 -4592.9 283.8h 73.3h 2033.2 S1
49 7/03 1532.0 66.2h 11.5h 106.7 -1373.0 179.8h 16.0h 42.6 68.6 163.5h 23.7h 108.4 S2
71 7/03 6585.3 105.1h 29.1h 148.2 3803.6 143.5h 27.7h 45.8 4582.9 211.2h 31.8h 94.1 S2

(b) Job size of each user in July 2003
Total NT N T (hrs) N×T (node-hrs)

User #jobs (hr) Min Avg Med Max Min Avg Med Max Min Avg Med Max
8 53 1452 1 75.8 128.0 128 0.0 1.6 0.2 12.0 0.0 27.4 15.6 180.0

21 49 4030 1 45.7 32.0 128 0.0 1.1 0.4 6.0 0.0 82.3 6.4 768.0
24 44 827 1 57.4 32.0 128 0.0 0.5 0.3 3.0 0.0 18.8 8.1 95.5
71 58 11693 32 48.8 32.0 100 0.0 3.2 1.6 10.0 0.6 201.6 51.1 1000.0
49 83 6051 1 12.7 1.0 32 0.0 3.9 1.5 12.0 0.0 72.9 1.5 384.0

A. Who suffer under fair share
To study what users suffer poor performance under

RelShare(1d), Table II provides the information of the top
users who suffer the largest degradation in the wait time per-
formance under RelShare(1d) than that under FCFS-backfill
in July 2003. Note that the results of July 2003 are selected to
demonstrate the problem due to the largest performance dif-
ferences among policies studied. The results of other months
are similar, however the differences are smaller.

For each user, Table II shows dev, the maximum wait
(MaxW), average wait (AvgW), and average bounded slow-
down (AvgX) of all jobs submitted by the user during the
month under each policy. In the case of users who have a
large over-share under FCFS-backfill (e.g., #49 and #71), it
is reasonable to reduce its over-share under the fair share
policy. Similarly, users who already suffer a large under-share
under LXF-backfill (e.g., #21), it is reasonable to reduce its
under-share under the fair share policy. However, users who
already suffer a large under-share under FCFS-backfill (e.g.,
#8 and #24), now suffer an even larger under-share under
RelShare(1d). The results not only are counter-intuitive, but
also indicates that there is a problem in using the fair share
policies implemented using a priority function.

To shed some light into the causes and problems of fair
share policies, The characteristics of these users are studied in
more detail including how they are treated differently under
different policies.

Table II(b) shows the statistics of the job size (N, T, and
N×T) of each user during July 2003. All four users have a
significant number of jobs, compared with an average of 21
jobs and a median of 8 jobs per user during that month.

The users shown in Table II represent two types of
users who incur a large performance degradation under
RelShare(1d): Type-S1 users have a mixture of large-node jobs
with small-node jobs; Type-S2 users has a heavy daily demand
on most days or has a heavy daily demand on some days. The
demand of Type-S2 users will be seen more clearly in Figure 3
later.

Note that Type-S1 users may not have a high demand but
they do have some difficult jobs (i.e., large jobs or long jobs
and large-long jobs) together with other jobs. While, Type-
S2 users may not have heavy-demand on all days but simply
have a heavy-daily demand on some days. A monthly heavy-
demand users, on the other hand, may in fact have only a light
to moderate demand each day, but the cumulated demand of
the users over the month is high because the user submits the
jobs on most days of the month.

B. Why they are suffered
For a Type-S1 user, the problem happens when a large job

of the user queues behind a small job of the same user; once
small jobs of the user are started, the fair share priority of the
user is lowered, which may prevent the first large job of the
user from receiving a reservation, even if the job is the oldest
in the queue. Since it is difficult to find enough resource to
start large jobs, the delay in reserving resources for such jobs
can cause an extended delay of starting these jobs.

Further analysis finds that users who submit short jobs
together with long jobs even with small number of nodes, may
also suffer degrade in performance under RelShare(1d) due to
the delay in receiving a reservation for the first long job of
the user because the short jobs of the user gets the resources

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2453

and lowers the fair share priority of the user. However, the
degree of suffering is not as serious as Type-S1 users because
,in general, large node jobs are more difficult to schedule than
long jobs. For a Type-S2 user, the problem is simply that the
user has too much load.

To further illustrate the problem incurred by Type-S1 users
under RelShare(1d), Figure 2(a)-(c) shows how user #8 (in
July 2003) is treated under RelShare(1d), FCFS-backfill and
LXF-backfill, respectively. In each graph, the number of
waiting jobs of the user at the beginning of each day (“previous
wait”), the number of new jobs submitted by the user during
each day (“new submitted”), and the number of started jobs
of the user during each day (“started today”) under the given
policy are plotted. Figure 2(a) shows that under RelShare(1d),
user #8 typically starts 1-2 jobs and no more than four jobs
per day, except for one day (July 2, 2003). As a result, the
user has a large backlog each day. In contrast, under FCFS-
backfill (Figure 2(b)) and LXF-backfill (Figure 2(c)), the user
can start 4-7 jobs per day in many days, and when the user
has a backlog, it is cleared in a few days and no more than a
week.

Figure 3(a)-(c) plot the demand, usage, and entitled share
of user #8 for each day under the three policies. Similarly,
Figure 3(d)-(i) plot the results for Type-S2 users (i.e., #71 and
#49). The average demand of all users of each day is also
shown for a contrast. The demand of the user in each day is
the total remaining node hours that can be used today by jobs
that were already running at the beginning of the day, plus the
total node hours that can be possibly used during that day by
all “previous wait” jobs and “new submitted” jobs of the user.
The usage of the user in each day is simply the total node
hours actually used by any job of the user in that day. The
entitled share was defined in Section III-C.

Please note two important details here. First, the demand in
these graphs include the demand of backlog each day as well
resulting in the higher value than the total node-hours of the
user for some users. Second, only the node hours that can be
possibly served on a given day (assuming that the jobs can
start right the way) are included in the demand. For example,
if a job, requiring 1 node and 10 hours, was submitted 1
hour before the end of the day, the job could receive at most
one node-hour today; thus, only one node-hour of the job is
included in the demand of the user who submitted the job.
The rest will be included in the next day demand.

As shown in Figure 3(a)-(c), user #8 has much lower
demand per day, yet uses much less than its entitled share
under both FCFS-backfill and RelShare(1d). While, there is
only slight difference in the entitled share and the usage under
LXF-backfill.

In contrast, user #71 has a much higher per-day demand
(up to 20-30 times) than the average demand of all users for
many days (Figure 3(d)-(f)). The user is able to use his/her
entitled share or more in most days under RelShare(1d), but
it can use a lot more than the entitled share under FCFS-
backfill and LXF-backfill in most days. Figure 3(g)-(i) show
an example of users who have small-long jobs (i.e., user #49)
which can have much higher per-day demand than the average
demand of all users for many days. Similar to user #71, user

TABLE III
INFORMATION OF BENEFIT AND SUFFER USERS EACH MONTH

Fraction of all users
> 10 hours > 0 hour

Month Benefit Suffer Benefit Suffer
6/03 21.9% 8.2% 61.6% 20.5%
7/03 32.4% 23.5% 48.5% 41.2%
8/03 19.2% 23.3% 42.5% 47.9%
9/03 14.9% 10.8% 55.4% 32.4%

10/03 9.3% 8.0% 56.0% 34.7%
11/03 16.0% 6.2% 56.8% 28.4%
12/03 3.3% 14.8% 44.3% 37.7%
1/04 7.5% 11.3% 39.6% 41.5%
2/04 20.5% 17.8% 46.6% 46.6%
3/04 22.9% 14.3% 50.0% 34.3%

#49 use his/her entitled share or more in most days under
FCFS-backfill while the user is not allowed to use as much
under RelShare(1d).

Key conclusions from the above results are (1) RelShare(1d)
may reduce the chance of heavy-load users from dominating
the system resources. (2) Some users may suffer a very poor
performance and larger under-share under RelShare(1d). These
users include users who submit large jobs with small jobs in
between large jobs and users who submit long jobs with short
jobs in between long jobs.

C. Who benefit under fair share
With some users suffering worse performance under

RelShare(1d), some users are benefited.
Table III provides the fraction of users who considerably

benefit and suffer under RelShare(1d). i.e., if the maximum
wait time of a user under RelShare(1d) is lower than that
under FCFS-backfill policy, the user is considered benefit,
otherwise, the user is consider suffer. In fact, the number
of users who considerably benefit under RelShare (1d) (by
a reduction of > 10 hours in maximum wait) is typically
similar or larger than the number of users who considerably
suffer under RelShare(1d) (by an increase of > 10 hours in the
maximum wait time), except 12/03 and 1/04. The users who
benefit under RelShare(1d) are usually those who (1) have
a few very short jobs (even if they have a large number of
nodes), (2) have only fairly small-node jobs (≤ 32), or (3) have
difficult jobs but spread their jobs out such as those shown in
Table IV.

Table IV shows the users who have a mixture of large jobs
together with small jobs (i.e., #70 in 7/03, #113 in 8/03 and
#103 in 11/03) or have a mixture of long jobs together with
short jobs (i.e., #116 in 11/03) but these users spread their jobs
out. As expected, these users are benefited from RelShare(1d).
By spreading their difficult jobs out, the problem of delaying
reservation of difficult jobs (as that in the type-S1 users) is
eliminated. For example, user #70 and #103 are under-share
under FCFS-backfill, but they are slightly over-share under
RelShare(1d). One could argue that these users do not have a
job as large as the entire system, however their jobs are still
difficult compared with an average of jobs submitted during
the month. For example, user #70 has a average job size of
163.5 node-hours while the average job size of July 2003 is
60.6 node-hours. LXF-backfill policy has problem with long

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2454

5 10 15 20 25 30
0

5

10

15

o
f jo

bs

Day of the month

previous wait
new submitted
started today

(a) Type-S1 user #8
under RelShare(1d)

5 10 15 20 25 30
0

5

10

15

o
f jo

bs

Day of the month

previous wait
new submitted
started today

(b) Type-S1 user #8
under FCFS-backfill

5 10 15 20 25 30
0

5

10

15

o
f jo

bs

Day of the month

previous wait
new submitted
started today

(c) Type-S1 user #8
under LXF-backfill

Fig. 2. Per-day number of jobs of an example users who suffer under RelShare(1d) (July 2003)

5 10 15 20 25 30
0

200

400

600

800

1000

no
de

 ho
urs

Day of the month

demand
usages
entitled share
avg. demand of all users

(a) Type-S1 user #8
under RelShare(1d)

5 10 15 20 25 30
0

200

400

600

800

1000

no
de

 ho
urs

Day of the month

demand
usages
entitled share
avg. demand of all users

(b) Type-S1 user #8
under FCFS-backfill

5 10 15 20 25 30
0

200

400

600

800

1000

no
de

 ho
urs

Day of the month

demand
usages
entitled share
avg. demand of all users

(c) Type-S1 user #8
under LXF-backfill

5 10 15 20 25 30
0

500

1000

1500

2000

2500

no
de

 ho
urs

Day of the month

demand
usages
entitled share
avg. demand of all users

(d) Type-S1 user #49
under RelShare(1d)

5 10 15 20 25 30
0

500

1000

1500

2000

2500

no
de

 ho
urs

Day of the month

demand
usages
entitled share
avg. demand of all users

(e) Type-S1 user #49
under FCFS-backfill

5 10 15 20 25 30
0

500

1000

1500

2000

2500
no

de
 ho

urs

Day of the month

demand
usages
entitled share
avg. demand of all users

(f) Type-S1 user #49
under LXF-backfill

5 10 15 20 25 30
0

2000

4000

6000

no
de

 ho
urs

Day of the month

demand
usages
entitled share
avg. demand of all users

(g) Type-S2 user #71
under RelShare(1d)

5 10 15 20 25 30
0

2000

4000

6000

no
de

 ho
urs

Day of the month

demand
usages
entitled share
avg. demand of all users

(h) Type-S2 user #71
under FCFS-backfill

5 10 15 20 25 30
0

2000

4000

6000

no
de

 ho
urs

Day of the month

demand
usages
entitled share
avg. demand of all users

(i) Type-S2 user #71
under LXF-backfill

Fig. 3. Per-day node-hours of example users who suffer under RelShare(1d) (July 2003)

jobs as shown in the increasing under-share of user #166
whose jobs are mostly long. Please note that user #166 is an
example of users with long jobs and submit short jobs together
with long jobs but the jobs are spreading out.

The results in this section suggest that users with mixture
of jobs should spread their jobs out to reduce the effect of
delaying reservation of difficult jobs. Users who have a few
very short jobs and users who have fairly small jobs are treated
more fair under RelShare(1d) because the heavy-demand users
cannot overtake the system resources as they do under both

traditional backfill policies.

D. Are fair share more or less fair?
In this section, the overall fair share of all users under

RelShare(1d), FCFS-backfill, and LXF-backfill are evaluated.
First, Table V shows for each policy in each month, the

number of users who are active in that month and the fraction
of users with more than 50 node-hours of under-share (i.e.,
cumulated entitled share - cumulated usage > 50), and those
with more than 50 node-hours of over-share (i.e., cumulated

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2455

TABLE IV
USERS WITH MIXTURE OF LARGE AND SMALL JOBS BUT SPREAD THEIR JOBS

(a) Performance of each user
FCFS-backfill LXF-backfill RelShare(1d)

User month dev MaxW AvgW AvgX dev MaxW AvgW AvgX dev MaxW AvgW AvgX
70 7/03 -1040.8 49.0h 25.7h 54.1 -581.3 60.0h 17.4h 25.8 423.5 20.1h 8.9h 28.8

113 8/03 -1178.6 35.6h 19.2h 59.9 -351.6 28.7h 11.4h 15.9 -411.5 30.6h 12.4h 61.4
103 11/03 -355.1 33.9h 8.9h 141.7 -483.0 32.4h 2.9h 27.8 424.8 20.5h 1.1h 2.8
166 11/03 -393.0 32.1h 4.6h 6.2 -273.6 37.8h 3.2h 3.1 -103.4 13.9h 1.2h 2.3

(b) Job size of each user
Total NT N T (hrs) N×T (node-hrs)

User #jobs (hr) Min Avg Med Max Min Avg Med Max Min Avg Med Max
70 7 1144.4 7 53.0 52.0 104 0.1 3.1 0.2 12.0 0.8 163.5 22.8 624.0

113 13 1258.0 16 30.8 32.0 32 0.0 3.1 2.5 5.7 0.2 96.8 80.0 183.9
103 49 6233.6 1 21.0 16.0 48 0.0 2.8 0.2 12.0 0.0 127.2 0.9 576.0

*166 85 774.7 1 1.0 1.0 1 0.0 9.1 11.8 12.0 0.0 9.1 11.8 12.0

TABLE V
INFORMATION OF UNDER-SHARED AND OVER-SHARED USERS EACH MONTH

Month # Under-shared Over-share
Users > 50 node hours > 50 node hours

(% of all users) (% of all users)
FCFS RelShare LXF FCFS RelShare LXF

backfill backfill backfill backfill
6/03 73 46.6% 34.2% 36.9% 6.8% 6.8% 6.8%
7/03 68 54.4% 41.2% 52.9% 10.3% 13.2% 5.8%
8/03 74 56.8% 56.8% 45.9% 9.5% 9.5% 10.8%
9/03 74 56.8% 48.6% 56.8% 6.8% 5.4% 1.3%

10/03 77 53.2% 45.5% 46.7% 9.1% 5.2% 7.7%
11/03 81 44.4% 33.3% 32.0% 6.2% 7.4% 4.9%
12/03 61 37.7% 37.7% 42.6% 8.2% 6.6% 4.9%
1/04 53 50.9% 45.3% 50.9% 11.3% 9.4% 7.5%
2/04 73 58.9% 42.5% 49.3% 6.8% 9.6% 4.1%
3/04 70 48.6% 40.0% 42.8% 7.1% 10.0% 4.2%

usage - cumulated entitled share > 50). Typically, there are
70-80 active users each month. RelShare(1d) consistently has
a similar or lower fraction of users incurring an under-share
or an under-share of over 50 node hours each month. Only
under 10% of users each month have an over-share. Note
that the entitled share used to compute over-share or under-
share is an idealized share, which can only be achieved under
time-sharing systems. Thus, most users will be under-shared
according to the idealized share measure. All policies have
fairly comparable number of over-shared users in that one has
more over-shared users in some months, but fewer in other
months, than that of other policies. The results in Table V
shows that RelShare(1d) does reduce the number of under-
shared users.

Based on the results of the previous section and this section,
The conclusion is that RelShare(1d) is more fair except for
users who have large jobs and submit small jobs in between
large jobs or users who have long jobs and submit short jobs
in between long jobs. This is due to the delay in reserving
resource for large jobs or long jobs under RelShare(1d).

VI. PERFORMANCE IMPACT OF FAIR SHARE WINDOWS

Next, the question: ”how does the fair share window size
affect the performance of RelShare?” is examined For this
study, fw is varied in the range of 4 hours and 7 days,
corresponding to the range of fw typically used.

Intuitively, a larger fair share window (fw) could degrade
the performance of heavy-demand users, since a longer history

of their resource usage will be used to adjust down the current
priority of their jobs. As a result, a larger fw may benefit users
with a lighter demand, including Type-S1 users #8 and #24,
shown in Table II.

Table VI shows how the performance of individual users
are affected by RelShare using different fw values: 4 hours,
12 hours, 1 day, 2 days, and 7 days. Table VII shows how dev
of individual users are affected by RelShare using different
fw values. The results for users who suffer or benefit under
RelShare(1d) are shown in Tables II-IV. For convenience,
FCFS-backfill and LXF-backfill are repeated here. These re-
sults represent the trend observed for other users.

As expected, the heavy-demand user (i.e., #71), who in-
curs poorer performance under RelShare(1d) than under both
backfill policies, suffers even more performance degradation
if a larger fw (2 or 7 days) is used. On the other hand,
for user #24, who also incurs poorer performance under
RelShare(1d) than under both backfill policies but does not
have a particularly high demand during that month, using a
fw of 2 or 7 days improves the maximum and average wait
of the user by over 80%. For user #70, who have difficult
jobs and spread their jobs out but does not have a particularly
high demand during that month, has similar performance when
using a fw of 2 or 7 days. For users with a light demand or
a few jobs, a larger fw also tend to improve their wait time
performance. This can be seen from the results for user #107
in the table. Conversely, using a smaller fw (4 or 12 hours)
tends to improve the performance of heavy-demand users but

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2456

TABLE VI
IMPACT OF FAIR SHARE WINDOW ON RELSHARE (JULY 2003)

User #71 User #24 User #70 User #107
Avg. Avg. Avg. Avg.

Max. Avg. Bounded Max. Avg. Bounded Max. Avg. Bounded Max. Avg. Bounded
Policy Wait Wait Slowdown Wait Wait Slowdown Wait Wait Slowdown Wait Wait Slowdown
FCFS-backfill 105.1h 28.7h 145.6 114.8h 26.1h 459.5 49.0h 25.7h 54.1 78.1h 16.1h 82.9
LXF-backfill 143.5h 27.7h 45.8 30.7h 8.8h 122.4 60.0h 17.4h 25.8 76.7h 15.2h 23.3
RelShare(4h) 127.2h 22.3h 128.2 151.1h 45.5h 1079.0 44.6h 18.9h 28.7 #92.2h 15.4h 137.2
RelShare(12h) 159.1h 29.2h 25.7 159.4h 39.5h 1137.3 59.6h 20.8h 18.5 42.6h 13.5h 148.9
RelShare(1d) 211.2h 30.2h 87.9 #283.8h 73.3h 2033.2 *20.1h 8.9h 28.8 *23.5h 8.0h 133.2
RelShare(2d) #310.2h 35.2h 184.6 *53.8h 14.6h 288.5 *22.0h 11.7h 20.3 37.4h 6.4h 50.7
RelShare(7d) #451.1h 49.2h 89.6 *30.8h 5.6h 106.9 *15.3h 6.6h 25.8 *20.2h 3.4h 39.2

(# marks fw values that have particularly poor max wait, compared with other fw values.)
(* marks fw values that have particularly good max wait, compared with other fw values.)

TABLE VII
IMPACT OF fw ON DEV OF EACH USER (JULY 2003)

FCFS LXF RelShare
User backfill backfill fw=4h fw=12h fw=1d fw=2d fw=7d
71 6585.3 3803.6 5700.6 5884.6 4582.9 3016.5 -1095.3
24 -1787.6 -894.3 -2748.2 -2686.7 -4592.9 -1570.5 - 385.6
70 -1040.8 -581.3 -435.0 -669.4 423.5 -5.7 369.5

107 -1224.5 -1803.6 -1505.5 -783.1 -262.9 -183.3 340.4

degrade the performance of light-demand users, compared
with fw = 1 day. However, note that a user with a light
monthly demand may become a heavy demand in a shorter
period of time (say a day or a few hours). Thus, the effect of
fw on this user changes as the fw changes.

To continue the discussions of the impact of fw, Figure 4
summarizes the overall performance of each month under
RelShare policies with different fw values. Figure 4(a) plots
the average bounded slowdown of fw = 4h, 12h, and 1 day.
Figure 4(b) plots the average bounded slowdown of fw = 1,
2, and 7 days. Figure 4(c) plots the maximum wait in each
month under RelShare with fw = 4 hours, 12 hours and 1
day. Figure 4(d) plots the maximum wait in each month under
RelShare with fw = 1, 2, and 7 days.

As shown in Figure 4(a), for the range of fw studied, the
value of fw does not impact the average bounded slowdown
by much, except July 2003. They also have minimal impact on
the average wait each month (not shown). However, different
fw values have a significant impact on the maximum wait
each month. Specifically, using a smaller fw of 4 hours or
12 hours improves the maximum wait time of using fw = 1
day for most months, since heavy-load users are improved. On
the other hand, using a fw of 7 days significantly degrades
the maximum wait time for most months, because heavy-load
users are significantly degraded. A fw of 2 days seems to be a
good compromise in that it can significantly improve type-S1
users who have a large under-share under RelShare(1d), and
has a much smaller impact on the maximum wait each month
than that of fw = 7 days. However, this requires further study
which will be include in the future work.

In this section, the average wait and bounded slowdown
is rather insensitive to the value of fw, but the maximum
wait is very sensitive to fw for the range of fw studied.
To configure the fair share policies, the system administrators
need to understand that fair share policies do have a significant

impact on individual users. Too small a fw could penalize
light-demand users; too large a fw could starve heavy-demand
users. The choice of fw would depend on the goals of the
computer systems and the workloads.

VII. SUMMARY

To better understand the impact and how to configure
fair share used on production parallel job schedulers, the
performance impact of fair share policies and its configurations
are studied. Our main goal is to provide some insight into the
performance implications of fair share policies, which may
help system administrators configure their fair share policies.

First, similar to results in [2], our results show that fair
share policies, studied in this research have little impact on the
average performance measures. However, fair share policies
have a significant impact on the maximum wait time and
individual users, which were overlooked in the previous paper.

Second, the fair share window size, fw, has a significant
impact on the performance, in that a large fw has the potential
to starve heavy-demand users, but a small fw could penalize
light-demand users.

Third, the analysis of fair share showed that fair share
policies studied are more fair. That is, the heavy-demand users
are not allowed to dominate the system resources, resulting in
available resources for other users in the system. However,
users who have large jobs but also submit small jobs in
between large jobs or users who have long jobs but also submit
short jobs in between long jobs may suffer poor performance.
This is the main problem of fair share policies implemented
by using the priority mechanism. That is, when a difficult job
(i.e., a large or a long job) of the user queues behind an easy
job (i.e., a small or a short job) of the same user; once the
easy job of the user started, the fair share priority of the user is
lowered, which may prevent the difficult job of the user from
receiving a reservation, even if the job is the oldest one in the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2457

0

50

100

150

200

av
g b

ou
nd

ed
 sl

ow
do

wn

6/0
3

7/0
3

8/0
3

9/0
3

10
/03

11
/03

12
/03 1/0

4

2/0
4

3/0
4

RelShare(4h)
RelShare(12h)
RelShare(1d)

(a) Avg. bounded X
fw = 4h, 12h, 1d

0

50

100

150

200

av
g b

ou
nd

ed
 sl

ow
do

wn

6/0
3

7/0
3

8/0
3

9/0
3

10
/03

11
/03

12
/03 1/0

4

2/0
4

3/0
4

RelShare(7d)
RelShare(2d)
RelShare(1d)

(c) Avg. bounded X
fw = 1d, 2d, 7d

0

100

200

300

400

ma
x w

ait
 (h

r)

6/0
3

7/0
3

8/0
3

9/0
3

10
/03

11
/03

12
/03 1/0

4

2/0
4

3/0
4

Relshare(4h)
RelShare(12h)
RelShare(1d)

(c) Max. wait
fw = 4h, 12h, 1d

0

500

1000

ma
x w

ait
 (h

r)

6/0
3

7/0
3

8/0
3

9/0
3

10
/03

11
/03

12
/03 1/0

4

2/0
4

3/0
4

RelShare(7d)
RelShare(2d)
RelShare(1d)

(d) Max. wait
fw = 1d, 2d, 7d

Fig. 4. Impact of using different fair share window sizes (fw) for RelShare

queue. However, the users with mixture of jobs can reduce the
impact of delaying a reservation by spreading their jobs.

REFERENCES

[1] J. KAY and P. LAUDER, “A fair share scheduler,” Communications of
the ACM, vol. 31, no. 3, pp. 44–55, 1988.

[2] S. Kleban and S. Clearwater, “Fair share on high performance computing
system: What does fair really mean?” in Int’l Symp. on Cluter Computing
and the Grid (CCGRID), 2003.

[3] OpenPBS. [Online]. Available: http://www.nas.nasa.gov/Software/PBS/
[4] PBS pro. [Online]. Available: http://www.pbspro.com
[5] LSF fairshare documentation. [Online]. Available: http://accl.grc.

nasa.gov/job schedulers/lsf/Docs/lsf6.1/lsf6.1 admin/E fairshare.html
[6] S. Kannan, M. Roberts, P. Mayes, D. Brelsford, and J. Skovira, “Workload

management with loadleveler,” IBM Redbook, Tech. Rep., 2001.
[7] Maui scheduler. [Online]. Available: http://www.supercluster.org/maui/
[8] MOAB scheduler. [Online]. Available: http://www.clusterresources.com/

products/mwm/docs/MoabAdminGuide450.pdf
[9] S.-H. Chiang and S. Vasupongayya, “Design and potential performance

of goal-oriented job scheduling policies for parallel computer workloads,”
IEEE Trans. Parallel and Distributed Systems, 2008.

Sangsuree Vasupongayya received a B.Eng degree from the Prince of
Songkla University, Thailand, a M.S. degree from California State University,
Chico, and a Ph.D. degree from Portland State University. Interested research
areas include high-performance computer resource scheduling, cryptography
and engineering education.

