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Image Segmentation by Mathematical Morphology: An

Approach through Linear, Bilinear and Conformal
Transformation
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Abstract—Image segmentation process based on mathematical
morphology has been studied in the paper. It has been established
from the first principles of the morphological process, the entire
segmentation is although a nonlinear signal processing task, the
constituent wise, the intermediate steps are linear, bilinear and
conformal transformation and they give rise to a non linear affect in a
cumulative manner.
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1. INTRODUCTION

MAGE segmentation [1]-[3] has been found to be an

essential process for most subsequent processing like image
analysis and understanding tasks such as image representation,
description and object recognition, image visualization by the
machines and object based image compression [4]-[8]. In
general, segmentation related problems arise during
partitioning of an image into a number of homogeneous
segments (i.e. spatially connected groups of pixels) such that
the union of any two neighboring segments can give a
homogeneous segments. A large number of techniques and
algorithms has been proposed and applied for image
segmentation and out of them; a major portion belongs to
hybrid algorithm [1]-[8]. Apart from this, noise reduction is an
inherent problem for all types of image processing.

Mathematical morphology is a non linear area of the signal
processing and related to the application of set theory concept
to image analysis. Morphology deals with the study of shapes
and structures from a general techno-scientific point of view
[16]-[27]. Various image processing operation can be
implemented in spatial domain, few of them can be
implemented in frequency domain. (mainly various filters) and
most of them can be realize through morphological operation.
Morphological filters or operators are non linear
transformations [9]-[13] which either modify or tend to
modify geometric features of images. All these operators
transform the original image into another image through
various iterations with other image of a certain shape and size
which is called structuring elements [14], [15]. In present
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study, attempt has been made to establish that all
mathematical morphological operation may be thought of as a
linear, bilinear transform or conformal transform.

II1. BASIC BINARY MORPHOLOGICAL OPERATIONS

The basic operations involved in the morphological process
are erosion and dilation. All other operation may be derived
from these two basic operations which are associated with
translation, reflection etc.

A. Erosion

When 4 is the image under test and B is the structuring
element and both are sets in Z°, the erosion of 4 by B denoted
by A©B is defined as

AO© B = {z|(B), € A} (M
Equation says that the erosion of 4 by B translated is

contained in A4.

B. Dilation

For binary images with 4 and B as sets in Z°, the dilation of
A and B denoted A@B is defined as

A® B ={z|(B),NA = O} (2)

The equation is based on reflecting B about in origin and
shifting this reflection by Z. The dilation of image A by
structuring element B is the set of all displacements. Based on
the interpretation, equation can also be written by

A® B = {z|[(B),NA] € A} A3)

C. Opening and Closing

The opening of set A by structuring element B, denoted
AoB is defined as

AB=(AOB @B @)

The closing of set A by structuring elements B denoted by
AeB is defined as

AeB = ((A® B) © B) ®)

III. MORPHOLOGY

The binary morphology can be easily extended to grayscale
morphology. The main differences come from the definition of
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erosion and dilation as other operations basically depend on
them.

A. Grayscale Erosion and Dilation

A gray scale image can be considered as 3-D set when the
first two elements are the x and y co-ordinates of a pixel and
the third element is gray scale value. The same concept can be
applied to the grayscale structuring elements.

Thus gray scale erosion, denoted by f © b ,is denoted as

(F ©b)(s,t) = max {f (s — x,t +y) = 22 (¢ + y)edy (s, )€y} (6)

When D, and D, are the domains of each image or function

e.g, f and b respectively. Grayscale dilation of f by fdb
denoted by is defined as

(f @ b)(s,6) = max {f(s = x,t = y) =22, (t = y)edy(s, y)eDp} (7)

Like binary dilation and erosion, gray scale dilation and
erosion are dulas w.r.t. function completion and reflection.
The relation is given by

FOb)(st)=( @Db)(st) ®)
B. Gray Scale Opening and Closing

The opening of a gray image f by a structuring element b,
denoted by fob is defined as

fb=(Ob)®b ©
and closing is denoted by feb as

feb=(@®b)ODb (10)
C. Morphological Gradient

Morphological gradient can be generated using dilation and
erosion. Dilation gives the original set plus an extra boundary,
the size and shape of the boundary depends on the shape and
size of the structuring element. Erosion gives the points for
which the structuring element is contained in the original set.
The outer boundary of the original shape is removed by
erosion. The morphological gradient is generated by
subtracting an eroded image from its dilated version. The
morphological gradient highlights sharp gray-level transitions
in the input image.

Where we have denoted erosion as f © b and dilation as
f @ b. With erosion and dilation morphological gradient can
be denoted as

MG=(f @ b)—(f © b) an
D.Morphological Smoothing

One way to achieve smoothing is to perform a
morphological opening followed by a closing. Opening
smoothes the contour by removing thin bridges and
eliminating thin protrusions. Closing also smoothes the
contour, but by enforcing bridges and closing small holes. The
boundary of opening with a circular structuring element

corresponds to rolling a ball on the inside of the set. The
boundary of closing corresponds to rolling a ball on the
outside of the set.

E. Multiscale Edge Detector

To achieve more robustness to noise, a multiscale gradient
algorithm can be applied. Multiscale means image analysis
with structuring elements of different or multiple sizes. The
combination of morphological gradients in different scales is
insensitive to noise as well as to extraction of various
finenesses of the edges. The acceptable multiscale edge
detector was proposed to obtain the gradient of the image

MG(f) =30 [(f @ bi— (f © b)) @ biy]  (12)

where, n is scale and b; denotes the assembly of square
structural elements where sizes are (2i+1)*(2i-1) pixels.

IV. LINEAR, BILINEAR AND CONFORMAL
TRANSFORMATIONS

A. Linear Transformation

In mathematics, a linear map (also called a linear mapping,
linear transformation or, in some contexts, linear function) is a
mapping V — W between two modules (including vector
spaces) that preserves (in the sense defined below) the
operations of addition and scalar multiplication. An important
special case is when V = W, in which case the map is called a
linear operator, or an endomorphism of V. Sometimes the
definition of a linear function coincides with that of a linear
map, while in analytic geometry it does not.

A linear map always maps linear subspaces to linear
subspaces (possibly of a lower dimension); for instance it
maps a plane through the origin to a plane, straight line or
point.

In the language of abstract algebra, a linear map is a
homomorphism of modules. In the language of category
theory it is morphism in the category of modules over a given
ring.

Let V and W be vector spaces over the same field K. A
function f; V' — W is said to be a linear map if for any two
vectors X and y in 7 and any scalar o in K, the following two
conditions are satisfied:

fx+y)=f)+f) (13)
flox) = of(x) (14)

This is equivalent to requiring the same for any linear
combination of vectors, i.e. that for any vectors x, ..., x,, € V'
and scalars ay, ..., a,, € K, the following equality holds:

flagx, + -+ apxp) = a1 f(x) + -+ ap f () (15)

Denoting the zero elements of the vector spaces V" and ¥ by
0y and Oy respectively, it follows that f{0;) = 0y because
letting o = 0 in the equation for homogeneity of degree 1,
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f(0,) = £(0.0,) = 0.£(0,) = 0, (16)

Occasionally, V' and W can be considered to be vector
spaces over different fields. It is then necessary to specify
which of these ground fields is being used in the definition of
"linear". If V and W are considered as spaces over the field K
as above, we talk about K-linear maps. For example, the
conjugation of complex numbers is an R-linear map C — C,
but it is not C-linear.

B. Bi-linear Transformation

The bilinear transformation is used in digital signal
processing and discrete-time control theory to transform
continuous-time system representations to discrete-time and
vice versa.

In mathematics, the transformation

w =222 ad — bc # 0 (17)
where a, b, ¢, d are real or complex constants, is called a
bilinear transformation

The bilinear transform is a special case of a conformal
mapping, often used to convert a transfer function H,S of a
linear, time-invariant (LTI) filter in the continuous-time
domain (often called an analog filter) to a transfer function
Hyz) of a linear, shift-invariant filter in the discrete-time
domain (often called a digital filter although there are analog
filters constructed with switched capacitors that are discrete-
time filters). It maps positions on the jw axis, Re(s)=0, in the
s-plane to the unit circle, |z|=1, in the z-plane. Other bilinear
transforms can be used to warp the frequency response of any
discrete-time linear system (for example to approximate the
non-linear frequency resolution of the human auditory system)
and are implementable in the discrete domain by replacing a
system's unit delays z”/ with first order all-pass filters.

The transform preserves stability and maps every point of
the frequency response of the continuous-time filter, H,(jw,)
to a corresponding point in the frequency response of the
discrete-time filter, Hy(¢"") although to a somewhat different
frequency, as shown in the Frequency warping section below.
This means that for every feature that one sees in the
frequency response of the analog filter, there is a
corresponding feature, with identical gain and phase shift, in
the frequency response of the digital filter but, perhaps, at a
somewhat different frequency. This is barely noticeable at low
frequencies but is quite evident at frequencies close to the
Nyquist frequency.

C. Conformal Transformation

In mathematics, a conformal map is a function which
preserves angles locally. In the most common cause the
function has a domain and range in the complex plane.

More formally, a map,

f:U > VwithU,V c C" (18)

is called conformal (or angle-preserving) at a point {if it
preserves oriented angles between curves through owith
respect to their orientation (i.e., not just the magnitude of the
angle). Conformal maps preserve both angles and the shapes
of infinitesimally small figures, but not necessarily their size
or curvature.

The conformal property may be described in terms of the
Jacobian derivative matrix of a coordinate transformation. If
the Jacobian matrix of the transformation is everywhere a
scalar times a rotation matrix, then the transformation is
conformal.

Conformal maps can be defined between domains in higher-
dimensional Euclidean spaces, and more generally on a
Riemannian or semi-Riemannian manifold.

An important family of examples of conformal maps comes
from complex analysis. If U is an open subset of the complex
plane, C, then a function f:U- C is conformal if and only if it
is holomorphic and its derivative is everywhere non-zero on
U. If f is anti-holomorphic it still preserves angles, but it
reverses their orientation.

The Riemann mapping theorem, one of the profound results
of complex analysis, states that any non-empty open simply
connected proper subset of C admits a bijective conformal
map to the open unit disk in C.

A map of the extended complex plane (which is
conformally equivalent to a sphere) onto itself is conformal if
and only if it is a Mobius transformation. Again, for the
conjugate, angles are preserved, but orientation is reversed.

V.DISCUSSIONS

Mathematical morphology mainly deals with set theory to
analyze the images and subsequent understanding and
visualization by the machines. Various image processing
techniques like filtering, enhancement, smoothing, sharpening
etc. which are normally accomplished either in spatial or
frequency domain may also carried out by morphological
operations. Erosion and dilation are the two basic operations
that are associated with translation, reflection and rotation
process of the test image and structuring element and these are
linear or bilinear in nature. Although the overall effect of
morphological operations are non linear signal processing.
Phenomena, the constituent sub-processes associated with or
related to the linear, bilinear or conformal transformation. As
it is evident from conformal transformation, the one to one
mapping is maintained. It may be considered that after the
mathematical morphological processes are carried out, the
ultimate changes that occur between input test image and
output image (i.e. after morphological operation) are simple
one to one mapping prevalent in conformal transformation. In
the latter, the image may require to be transformed between
real plane to complex plane but the main image components
will remain the same. The angles between two curve lines are
also preserved during conformal transformation. The
topographic space may be altered from Euclidean to other
spaces by conformal transformation.
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VI. CONCLUSION

Mathematical morphological processes are dealt as a part of
nonlinear signal processing area and this concept is widely in
vogue. The present study has meticulously analyzed the every
sub processes that are involved to materialize the image
segmentation and established that the constituent steps are
mainly linear, bilinear and conformal transformation. The
inverse transformations may be applied for implementing the
segmentation of various images. The given explanation also
holds good for all types of images.
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