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Abstract—The existing image coding standards generally 

degrades at low bit-rates because of the underlying block based 
Discrete Cosine Transform scheme. Over the past decade, the success 
of wavelets in solving many different problems has contributed to its 
unprecedented popularity. Due to implementation constraints scalar 
wavelets do not posses all the properties such as orthogonality, short 
support, linear phase symmetry, and a high order of approximation 
through vanishing moments simultaneously, which are very much 
essential for signal processing. New class of wavelets called 
‘Multiwavelets’ which posses more than one scaling function 
overcomes this problem. This paper presents a new image coding 
scheme based on non linear approximation of multiwavelet 
coefficients along with multistage vector quantization. The 
performance of the proposed scheme is compared with the results 
obtained from scalar wavelets. 
 

Keywords—Image compression, Multiwavelets, Multi-stage 
vector quantization.   

I. INTRODUCTION 
IGITAL representation of image has created the need for 
efficient compression algorithms that will reduce the 

storage space and the associated channel bandwidth for the 
transmission of images. Wavelet transforms have become 
more and more popular in the last decade in the field of image 
compression. They have an advantage over the block-based 
transforms such as Discrete Cosine Transform (DCT) [1] 
which exhibits blocking artifact. Wavelets with compact 
support provide a versatile alternative to DCT. The 
groundbreaking single-wavelet examples [2] provided 
multiresolution function-approximation bases formed by 
translations and dilations of a single approximation functions 
and detail functions. In the last years multiwavelets, which 
consist of more than one wavelet have attracted many 
researchers [3], [4]. Certain properties of wavelets such as 
orthogonality, compact support, linear phase, and high 
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approximation/vanishing moments of the basis function, are 
found to be useful in image compression applications. 
Unfortunately, the wavelets can never possess all the above 
mentioned properties simultaneously [2]. To overcome these 
drawbacks, more than one scaling function and mother 
wavelet function need to be used.  Multiwavelets   posses 
more than one scaling function offer the possibility of superior 
performance and high degree of freedom for image processing 
applications, compared with scalar wavelets.  Multiwavelets 
can achieve better level of performance than scalar wavelets 
with similar computational complexity.  In the case of 
nonlinear approximation with multiwavelet basis, the 
multiwavelet coefficients are effectively “reordered” 
according to how significant they are in reducing the 
approximation error.  

Vector quantization has proven to be a very powerful 
technique in low bit-rate image coding due to its inherent 
theoretical superiority over scalar quantization [5]. The 
applicability of Vector Quantization (VQ) is limited by an 
exponential growth of the computational complexity with the 
vector dimension. For this reason, low-dimensionality vector 
quantizers are typically used in image compression, but such 
vector quantizers limit the coding efficiency and tend to yield 
highly visible block boundaries in low bit rate applications. 
Multistage codebook makes it possible to implement high-
dimensional vector quantizers with relatively low complexity.  
Multistage Vector Quantization (MSVQ) is a structured VQ 
scheme in which substantial complexity (search time and 
codebook storage) reduction with respect to optimal VQ is 
obtainable [6]. In this paper, we propose a new image 
compression scheme for gray scale image compression using 
successive approximation quantization of vectors of the 
multiwavelet transformed image. 

This paper is organized as follows:  Section II deals with 
the concept of multiwavelet and multiwavelet filter banks. 
Section III deals with the concept of non-linear approximation 
where the multiwavelet coefficients are reordered, the 
significant transform coefficients of the image are retained 
and set the rest to zero. Section IV gives brief introduction to 
MSVQ. The proposed algorithm is discussed in section V. 
Results and discussion are presented in section VI and finally 
conclusions are drawn in the section VII.  

II. MULTIWAVELETS 

Image Compression Using Multiwavelet and 
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Fig.  1 (a) First Level (b) Second Level multiwavelet 
decomposition of Barbara image  

The wavelet transform is a type of signal transform that is 
commonly used in image compression. Because of their 
energy compaction properties and correspondence with the 
human visual system, wavelet representations have produced 
superior objective and subjective results in image 
compression. Since a wavelet basis consists of functions with 
short support for high frequencies and long support for low 
frequencies, large smooth areas of an image may be 
represented with few bits, which is vital for image 
compression. Multiwavelet offers all of these traditional 
advantages of wavelets, as well as the combination of 
orthogonality, symmetry and linear phase properties 
simultaneously. The short support of multiwavelets filters 
limits ringing artifacts due to subsequent quantization. 
Symmetry of the filter bank not only leads to efficient 
boundary handling, it also preserves centers of mass, lessening 
the blurring of fine-scale features. Orthogonality is useful 
because it means that rate-distortion optimal quantization 
strategies may be employed in the transform domain and still 
lead to optimal time-domain quantization, at least when error 
is measured in a mean-square sense. Thus it is natural to 
consider the use of multiwavelets in a transform based image 
coder.  

Multiwavelets are very similar to wavelets but have some 
important differences. Wavelets are associated with one 
scaling function )t(Φ  and a wavelet function )(tΨ , whereas 
multiwavelets have two or more scaling and wavelet 
functions. The multiscaling function is given by equation (1) 

T
r )]t(......).........t(),t([)t( φφφ=Φ 21                        (1) 

Similarly the multiwavelet function is given by equation (2)   
T

r )]t(),...,t(),t([)t( ψψψ=Ψ 21                        (2) 
When r = 1,   is called a scalar wavelet or simply wavelet. 

While in principle ‘r’ can be arbitrarily large, the 
multiwavelets are analyzed primarily for r = 2. 

 The multiwavelet two-scale relationship are given by 
equation (3) and equation (4) 

∑
∞

−∞=
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k
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Where  }{ kH  and }{ kG  are matrix filters defined as  
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The matrix elements provide more degrees of freedom than 
a traditional scalar wavelet. These extra degrees of freedom 

can be used to incorporate useful properties into the 
multiwavelet filters, such as orthogonality, symmetry, and 
high order of approximation. The multiwavelet transform is 
implemented through a filter bank structure [7].   

The multiwavelet decomposition of ‘Barbara’ image is 
shown in Fig. 1. Unlike scalar wavelets, in which Mallat’s 
pyramid algorithms [8] can be employed directly, the 
application of multiwavelets requires that the input signal first 
be vectorised namely preprocessing, this is popularly known 
as multiwavelet initialization or prefiltering [9]. In this paper, 
the preprocessing is based on Strela’s algorithms [4], [10]. 

 A preprocessing scheme is described based on the 
approximation properties of the multiwavelets which yield a 
critically sampled image each of size (MXN)/4. Another 
advantage of this preprocessing is that it fits naturally with 
symmetric extension to multiwavelets. 

III. NON-LINEAR APPROXIMATION 
Recent activity in image processing has resulted in an 

important shift in the way linear image representations are 
designed and exploited.  Given a basis and image 
representation in terms of this basis, linear approximation 
based techniques insist on viewing this representation in terms 
of a specific order, namely the order determined by  the 
apriori ordering of the basis functions. Nonlinear 
approximation [11] based techniques on the other hand have 
no apriori order of preferences, and they have the capability to 
utilize different orderings depending on the signal application  
Let )N(X 1−    be an ‘N’ dimensional signal and assume that 
we are given a linear, invertible transform. Let )N(hi 1−  ,  
i=1,……..,N denote the reconstruction basis, and let ic  , 
i=1,2……N, denote the corresponding transform coefficients 
of  X. We have    

i

N

i
ihcX ∑

=
=

1
                                                                        (7) 

The distinction between the two approaches manifests itself 
when we consider approximations linearX̂  and of X   with a 
limited number, say NK < ,  of transform coefficients. The 
two types of approximations can be written as 
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where the cardinality of the index set )x(ξ   in (9) is 
card( K))x(( =ξ , and the notation indicates the dependence 
of the index  set on the signal. It is evident that linear 
approximation becomes one particular form of nonlinear 
approximation if set }K,.........{)x( 1=ξ , however, nonlinear 
approximation becomes much more advantageous when we 
follow for the optimal choice of )x(ξ  that minimizes the 
mean squared approximation error for each ‘x’. For 
orthonormal transforms, the optimal can be constructed as the 
indices of the ‘K’ largest magnitude transform coefficients of 
‘X’.  

 We have performed non-linear approximation of 
multiwavelet coefficients and compared our results with non-
linear approximation of wavelet based ones. In the case of 
nonlinear approximation with a multiwavelet basis, the 
multiwavelet coefficients are effectively “reordered” 
according to how significant they are in reducing the 
approximation error. Hence, for a given number of retained 
multiwavelet coefficients in nonlinear approximation, there is 
a need to evaluate the number of bits necessary to encode the 
“addressing” of these coefficients, i.e., the number of bits 
necessary to convey which coefficients have been retained. 
Our PSNR results indicate that nonlinear approximation of 
multiwavelet coefficients performs better than the wavelet 
based ones. 

IV. MULTI-STAGE VECTOR QUANTIZATION 
Vector quantization is a powerful tool for data compression. 

Vector quantization extends scalar quantization to higher 
dimensional space. By grouping input samples into vectors 
and using a vector quantizer, a lower bit rate and higher 
performance can be achieved. However, the codebook size 
and the computational complexity increase exponentially as 
the rate increases for a given vector size.   Full-search VQ 
such as entropy-constrained VQ (ECVQ) enjoys small 
quantization distortion. However, it has long compression 
time, and may not be well suited for real time signal 
compression systems. Tree-structured VQ (TSVQ) although 
can significantly reduce the compression time, has the 
disadvantage that the storage size  required for the VQ is 
usually very large and cannot be controlled during the design 
process. Therefore, it may not be convenient to use TSVQ for 
the applications where the storage size is a major concern. 

 A structured VQ scheme which can achieve very low 
encoding and storage complexity is MSVQ [12]. This 
appealing property of MSVQ motivated us to use MSVQ in 
the quantization stage. The basic idea of multistage vector 
quantization is to divide the encoding task into successive 
stages, where the first stage performs a relatively crude 
quantization of the input vector. Then a second-stage 

quantizer operates on the error vector between the original and 
the quantized first-stage output. The quantized error vector 
then provides a second approximation to the original input 
vector thereby leading to a refined or more accurate 
representation of the input. A third stage quantizer may then 
be used to quantize the second-stage error to provide a further 
refinement and so on.  

 In this paper, we have implemented two-stage vector 
quantizer. The input vector   is quantized by the initial or first-
stage vector quantizer denoted by VQ1 whose code book is    

{ })N(c..,.........c,cC 1111101 1−=  with size 1N . The quantized 

approximation 1x̂  is then subtracted from  x  producing the 
error vector. This error vector is then applied to a second 
vector quantizer VQ2 whose code book is 

{ })N(c.,,.........c,cC 1221202 2 −= with size 2N  yielding the 

quantized output.  

 
   The encoder transmits a pair of indices specifying the 

selected codeword for each stage and the task of the decoder 
is to perform two table lookups to generate and then sum the 
two code words. In fact, the overall codeword or index is the 
concatenation of code words or indices chosen from each of 
two codebooks. Thus, the equivalent product codebook   can 
be generated from the Cartesian product 21xCC . Compared to 
the full-search VQ with the product codebook C, the two stage 
VQ can reduce the complexity from 21 NNN ×=  to 

21 NN + . The multistage vector quantization system for ‘N’ 
stages is shown in   Fig.  2. In the figure, ‘X’ represents the 
input vector, LUT stands for lookup table and 1i , 2i , etc 
represent indices from different stages. The overall index is 
the concatenation of indices chosen from each of the two 
codebooks.  From the  Fig. 2, it is evident that the input vector 
is given only to the first stage, whereas the input to the 
successive stages is the error vectors from the previous stage 
which are denoted by N......... ee,e 21  . X̂  is the reconstructed 
signal at the decoder end.    

V. PROPOSED ALGORITHM 
The proposed image coder scheme is explained below.  

Stage 1 Stage 2 Stage N

LUT 1 LUT 2 LUT N

+ +

+ +

i1 i2 iN 

e1 e2 eN X 

X ^ 

Fig. 2 Multistage Vector Quantization System 
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1. The correlation present in the input image is 
removed by taking multiwavelet transform of the 
input image. 

2. The non-linear approximation of the multiwavelet 
coefficients is performed. 

3. The transform coefficients obtained in step 2 are 
vector quantized in a multistage manner where the 
residual error coefficients due to quantization are 
iteratively feedback and vector quantized.  If the 
number of stages in MSVQ is more, the refinement 
of the quantized vectors will be better. But it 
suffers from the need for a high bit- rate for each 
additional stage is added. Hence we have restricted 
our attention to two stages in Multistage Vector 
Quantization. 

4. The outputs from step 3 are lossless coded using 
static Huffman code. This completes the encoder 
stage of the proposed algorithm which is illustrated 
in Fig. 3. In decoding, the decoder basically 
performs the reverse process of the above steps. 

 

VI. RESULTS AND DISCUSSIONS 
We present the encoding results for 256 X 256, 8 bit 

resolution ‘Lena’, ‘Barbara’ and ‘Boat’ images [13]. ‘Lena’ is 
class of natural image that do not contain large amounts of 
high-frequency or oscillating patterns. ‘Barbara’ image 
exhibits large amounts of high-frequency and oscillating 
patterns. ‘Boat’ image contains significant amounts of both 
low and high-frequency region. The images are decomposed 
using multiwavelet transform. The multifilters used in this 
experiment are CL, SA4, GHM, and CARDBAL2. The pre-
filter and post filter chosen are CLAP, SA4AP, GHMAP, ID 
respectively. The encoded multiwavelet coefficients are 
subjected to non-linear approximation and the resultant 

coefficients are coded by multistage vector quantization. The 
results are compared with that of scalar wavelets in the same 
way.  Table I, II and III shows the comparative results of   
‘Lena’, ‘Barbara’ and ‘Boat’ images using ‘CL’ as multifilter 
and ‘HAAR’ as scalar filter. From these tables the following 
conclusions can be drawn 

(1)  When the percentage of the significant coefficient 
retained is less, multiwavelet is giving better PSNR when 
compared to scalar wavelets. 

(2) As the level of decomposition increases, the 
performance of scalar wavelet matches with that of 
multiwavelet.  

(3) As the bit rate increases, the PSNR value increases 
which is in accordance with Rate-Distortion theory.  

 Figure 4 shows the plot of PSNR against the percentage 
of coefficients retained for multiwavelets and wavelets with 
rate as two, under second level of decomposition. When the 
NLA coefficients retained is less the gap between the 
performance of multiwavelet and scalar wavelet is more and it 
merges with the increase in NLA coefficients. This is 
completely evident from the Fig. 4.  

 
 Figure 5 shows the original and the reconstructed ‘Lena’ 

image using multiwavelet transform and wavelet transform 
with 10% of the coefficients retained with first level of 
decomposition and rate as four. From the Fig. 5b and 5c, it is 
obvious the visual quality of the reconstructed image using 
multiwavelet transform is better than that of wavelet 
transform. 

Figure 6 shows the original and reconstructed ‘Barbara’ 
image using wavelet and multiwavelet transform with 25% of 
the significant coefficient retained for the first level of 
decomposition and the selected rate is four. The original and 
the reconstructed ‘Boat’ image using multiwavelet transform 
and wavelet transform are shown in Fig. 7. 

  We have used our algorithm to compare the performance 
of different multifilters against different wavelets like 
‘HAAR’, ‘LA8’, BI9/7’ for ‘Lena’  image with 25% NLA 
coefficients retained, and the results are tabulated in table IV.  
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% of NLA coefficients retained
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N

R
 in

 d
B

Multiwavelet Vs Wavelet with L=2, Rate=4

Multiwavelet = CL
Wavelet = HAAR

 
Fig. 4 Comparison of PSNR values for multiwavelets        

and wavelets for ‘Lena’ image   

Test Image 

Multiwavelet 
Transform of 
Test image

Determine Significant Coefficient by        
Non-Linear Approximation 

Multistage Vector Quantization 
 

Stage1 Stage 2   Stage N 

Huffman coding of indices from each stage 

Fig. 3 Encoder of the proposed algorithm 
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Figure 8, shows the plot of PSNR against the significant 

coefficients retained for multiwavelets and wavelets with the 

rate as eight under second level of decomposition. From the 

figure it is evident that, when the percentage of significant 

 
TABLE I 

PSNR RESULTS   FOR ‘LENA’  IMAGE 
Level of decomposition Multiwavelet (PSNR in dB) Wavelet  (PSNR in dB) 

 Bit  
rate 
 

NLA 
% 

1 2 4 8 1 2 4 8 

10 23.27 29.27 30.14 30.21 11.81 10.76 10.51 10.45 
20 24.71 33.81 36.57 36.83 20.56 19.94 19.29 19.44 
25 25.00 34.93 38.63 39.02 23.05 27.56 28.05 28.02 
50 25.67 37.40 45.42 47.21 25.32 36.51 43.26 44.47 

1 

75 25.92 38.46 49.63 56.25 25.77 38.23 48.79 54.23 
10 23.43 31.02 32.59 32.71 22.19 28.44 29.48 29.57 
20 24.22 34.14 37.60 37.95 23.23 32.48 35.42 35.72 
25 24.43 34.98 39.68 39.89 23.53 33.55 37.44 37.89 
50 24.96 37.00 45.51 47.64 24.29 36.11 44.29 46.26 

2 

75 25.17 37.90 49.20 56.37 24.59 37.37 48.41 55.08 
10 23.24 31.20 32.84 32.98 22.11 29.67 31.24 31.38 
20 23.92 34.13 37.68 38.08 22.91 32.65 36.08 36.44 
25 24.11 34.94 39.43 39.99 23.16 33.53 37.86 38.39 
50 24.58 36.86 45.38 47.66 23.84 35.88 44.28 46.44 

3 

75 24.77 37.71 48.83 56.25 24.10 37.04 48.11 55.00 

 
Original Image

      

Reconstructed image

      

Reconstructed image

 
                                                 (a)                (b)            (c) 

 Fig. 5 (a) Original image (b) Reconstructed image using multiwavelet transform (c) Reconstructed image using scalar wavelet  

TABLE II 
PSNR RESULTS   FOR ‘BARBARA’  IMAGE 

Level of decomposition Multiwavelet (PSNR in dB) Wavelet  (PSNR in dB) 
 Bit  
rate 
 

NLA 
% 

1 2 4 8 1 2 4 8 

10 21.60 25.06 25.39 25.41 12.53 11.46 11.20 11.14 
20 23.28 29.79 30.80 30.87 18.41 20.11 19.84 19.76 
25 23.71 31.46 33.01 33.12 22.20 24.12 24.16 24.13 
50 24.97 35.98 42.09 43.03 25.89 35.72 38.93 39.23 

1 

75 25.48 37.88 48.33 53.23 26.65 38.72 48.27 51.48 
10 21.73 26.71 27.32 27.36 21.22 24.41 24.70 24.72 
20 22.84 30.41 31.92 32.04 23.09 29.02 29.83 29.87 
25 23.23 31.81 33.95 34.13 23.61 30.77 32.01 32.09 
50 24.37 35.61 42.34 43.49 24.92 35.86 41.30 42.04 

2 

75 24.82 37.29 47.94 53.35 25.42 37.77 47.97 52.26 
10 21.65 26.84 27.51 27.56 21.66 25.73 26.15 26.17 
20 22.71 30.42 32.01 32.15 23.02 29.56 30.58 30.64 
25 23.10 32.79 34.02 34.22 23.47 31.18 32.62 32.72 
50 24.17 35.47 42.26 43.50 24.66 35.66 41.40 42.22 

3 

75 24.60 37.09 47.64 53.33 25.13 37.45 47.84 52.62 
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coefficient retained is less than twenty percent, the 
performance of multiwavelet is better than scalar wavelet, at 
around thirty percent of retained coefficients, both 
multiwavelets and wavelets are performing equally well  
beyond that wavelets dominates multiwavelets.   

 Figure 9 shows the performance of multiwavelets tested 
for different images under third level of decomposition with 
twenty percentages of NLA coefficients retained, from the 
figure, it is evident that PSNR obtained in the case of ‘Lena’, 
‘Boat’ is better than that of ‘Barbara’ image.  

 
Original Image

        

Reconstructed image

        

Reconstructed image

 
                                                          (a)                   (b)              (c) 

  Fig.  6 (a) Original image (b) Reconstructed image using multiwavelet transform (c) Reconstructed image using scalar wavelet  
 

TABLE  III 
PSNR RESULTS  FOR ‘BOAT’  IMAGE 

Level of decomposition Multiwavelet (PSNR in dB) Wavelet  (PSNR in dB) 
 Bit  
rate 
 

NLA 
% 

1 2 4 8 1 2 4 8 

10 23.91 29.24 30.14 30.19 10.31 9.43 9.22 9.17 
20 25.11 33.86 36.29 36.49 20.44 19.40 19.08 18.99 
25 25.41 35.05 38.48 38.82 24.68 29.09 29.44 29.42 
50 26.12 37.85 46.49 48.78 26.66 38.19 4.21 49.89 

1 

75 26.32 38.74 50.32 58.51 26.86 38.96 50.60 59.98 
10 23.84 30.95 32.32 32.41 23.38 29.13 29.95 30.00 
20 24.65 34.11 37.22 37.51 24.50 33.71 36.58 36.83 
25 24.90 35.10 39.19 39.64 24.79 34.96 39.12 39.58 
50 25.49 37.85 46.49 48.78 25.43 37.47 47.80 52.27 

2 

75 25.67 38.13 49.80 58.42 25.55 38.01 50.03 61.05 
10 23.74 31.00 32.44 32.55 23.30 30.37 31.68 31.78 
20 24.49 34.00 37.24 37.54 24.19 33.80 37.21 37.55 
25 24.71 34.93 39.19 39.66 24.45 34.87 39.59 40.16 
50 25.24 37.01 46.37 49.12 25.04 37.18 47.73 52.80 

3 

75 25.40 37.67 49.52 48.78 25.16 37.66 49.67 60.83 
 

 
Original Image

 

Reconstructed image

 

Reconstructed image

 
                                                                    (a)           (b)            (c) 

Fig. 7 (a) Original image (b) Reconstructed image using multiwavelet transform (c) Reconstructed image using scalar wavelet 

TABLE  IV 
RESULTS OF THE MSVQ SCHEME FOR LENA  IMAGE 

Multiwavelet (PSNR in dB) Wavelet  (PSNR in dB) 

Rate CL SA4 GHM CARDB
AL2 HAAR LA8 BI9/7 

1 25.00 24.80 23.12 24.19 23.05 23.02 23.03 
2 34.93 34.95 28.23 29.28 27.56 29.24 29.35 
4 38.63 38.90 28.41 29.63 28.05 29.79 29.66 
8 39.02 39.30 28.70 29.65 28.02 29.81 29.91 
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coefficient retained is less than twenty percent, the 
performance of multiwavelet is better than scalar wavelet, at 
around thirty percent of retained coefficients, both 
multiwavelets and wavelets are performing equally well  
beyond that wavelets dominates multiwavelets.   

 Figure 9 shows the performance of multiwavelets tested 
for different images under third level of decomposition with 
twenty percentages of NLA coefficients retained, from the 
figure, it is evident that PSNR obtained in the case of ‘Lena’, 
‘Boat’ is better than that of ‘Barbara’ image.  

 From this we can conclude that the proposed scheme works 
well for low frequency images than high frequency image, 
under the same amount of NLA coefficients retained.  

VII. CONCLUSION 
In this work we have proposed a new image coding 

algorithm based on non-linear approximation of multiwavelet 
transform along with multistage VQ. Our aim is to compare 
the performance of multiwavelets against scalar wavelets on 
different images along with the application of multistage 

vector quantization on both the schemes.  When the number of 
significant coefficients is less than fifty percent, the 
performance of multiwavelet dominates wavelets irrespective 
of images chosen. This implies that, few significant 
multiwavelet coefficients are sufficient to reconstruct the 
image in a better manner than with the same significant 
wavelet coefficients. If we allow more significant coefficients, 
the performance of scalar wavelets dominates the performance 
of multiwavelets. This proves that multiwavelet cannot always 
substitute scalar wavelets with respect to image compression 
even though multiwavelets offer the advantages of combining 
symmetry, orthogonality, and short support, properties not 
mutually achievable with scalar two-band wavelet systems.   
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