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Abstract—This paper demonstrates the application of craziness

based particle swarm optimization (CRPSO) technique for designing

the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO,

the much improved version of PSO, is a population based global

heuristic search algorithm which finds near optimal solution in terms

of a set of filter coefficients. Effectiveness of this algorithm is

justified with a comparative study of some well established

algorithms, namely, real coded genetic algorithm (RGA) and particle

swarm optimization (PSO). Simulation results affirm that the

proposed algorithm CRPSO, outperforms over its counterparts not

only in terms of quality output i.e. sharpness at cut-off, pass band

ripple, stop band ripple, and stop band attenuation but also in

convergence speed with assured stability.

Keywords—IIR Filter; RGA; PSO; CRPSO; Evolutionary

Optimization Techniques; Low Pass (LP) Filter, Magnitude

Response; Pole-Zero Plot; Stability.

I. INTRODUCTION

IGNAL is the carrier of information which is germinated

in almost every field of science and engineering, opens a

fairly large scope of research. On the time dependence, it can

be classified as, continuous time and discrete time signals.

Mathematical manipulation of signal and data for digital

signal processing (DSP) is built upon the platform of discrete

time instants. Owing to the tremendous growth of

microelectronics and enhancement of computational power,

filter design in DSP has become an apex interest for many

scholars for last few years. In signal processing, a filter is

mainly used to extract the useful portion of interest and

remove the unwanted portion such as noise, which could be

generated due to unavoidable circumstances of the

environment, from the input signal. Filters are broadly

categorized as analog and digital ones, on the basis of filtering

process and physical design approach. Analog filter uses

electronic components such as, resistors, capacitors and op-

amps to realize its effectiveness in the field of noise reduction,

video signal enhancement, and graphic equalizer in hi-fi

system and so on. Discrete component dependent design,

prone to high component tolerance sensitivity, large physical

size, poor accuracy and highly susceptible to thermal drift are

the major retractions of analog filter implementation. Physical

size, poor accuracy and highly susceptible to thermal drift are

the major retractions of analog filter implementation. On the
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contrary, digital filter performs mathematical operation on a

sampled, discrete timed signal to achieve the desired features

with the help of a specially designed digital signal processor

(DSP) chip or a processor used in a general purpose computer.

Digital filters are broadly classified into two main

categories namely; finite impulse response (FIR) filter and

infinite impulse response (IIR) filter [1-2]. The output of FIR

filter depends on present and past values of input, that is why,

it is also called non-recursive filter. On the other hand the

output of IIR filter not only depends on previous inputs, but

also on the previous outputs with impulse responses

continuing for infinite time, at least theoretically. Recursive

means, feeding the output of some mathematical operation to

the input of the same system for the calculation of the current

output. For this purpose a large memory is required to store

the previous outputs.

Hence, FIR filter realization is easier with the requirement

of less memory space and design complexity. Ensured stability

and linear phase response over wide frequency range are the

additional advantages. On the hand, IIR filter distinctly meets

the design specification of sharp transition band width, pass

band ripple and stop band attenuation with ensured lower

order as compared to FIR filter [3-4]. As a consequence, the

lower order IIR filter with similar performance of FIR filter

can be implemented with minimum number of digital

multipliers and delay elements for hardware realization and

minimum computational time for software implementation [2],

[4]. Due to this challenging feature with wide field of

applications, performances of IIR filters designed using

various evolutionary algorithms are compared to find out the

effectiveness of an algorithm.

In the conventional method, IIR filters of various types

(Butterworth, Chebyshev and Elliptic) can be implemented by

two methods. In the first case frequency sampling technique is

adopted for Least Square Error [5] and Remez Exchange [6]

process. In the second method, filter coefficients and

minimum order are calculated for a prototype LP filter in

analog domain, which are transformed to digital domain with

bilinear transformation. This frequency mapping works well at

low frequency, but in high frequency domain this method is

liable to frequency warping [4].

IIR filter design is a highly challenging optimization

problem. So far, gradient based classical algorithms such as

steepest descent and quasi Newton algorithms have been used

aptly for the design of IIR filters [7-8]. In general, these

algorithms are very fast and efficient to obtain the optimum

solution of the objective function for a unimodal problem. But

the error surface (typically the mean square error between the

desired response and estimated filter output) of IIR filter is

multimodal, so global optimization techniques are required.
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The shortfalls of classical optimization techniques for which

they are inefficient for handling the global optimization

problem are as follows: i) requirement of continuous and

differentiable cost or objective function; ii) usually converges

to the local optimum solution or revisits the same suboptimal

solution; iii) incapable to search the large problem space; iv)

requirement of the piecewise linear cost approximation (linear

programming); v) highly sensitive to starting points when the

number of solution variables are increased and as a result, the

solution space also gets increased. So, it can be concluded that

classical optimization techniques are only suitable for

handling differentiable unimodal objective function with

constricted search space. But the error surface of IIR filter is

usually multimodal and non-differentiable. Different heuristic

search algorithms are proposed for this purpose like Genetic

Algorithm (GA), inspired by the Darwin’s “Survival of the

Fittest” strategy [9-11]; Simulated Annealing (SA) designed

by the thermodynamic effects [12]; Artificial Immune Systems

(AIS) mimics the biological immune systems [13]; Ant

Colony Optimization (ACO) simulates the ants’ food

searching behavior [14]; Bacterial Foraging Algorithm (BFA)

is based on food searching nature of bacteria [15-16]; and

Particle Swarm Optimization (PSO) simulates the behavior of

bird flocking or fish schooling [17-20] etc.

In this paper the capability of global searching and near

optimum result finding features of GA, PSO and CRPSO are

investigated thoroughly for solving IIR filter design problem.

GA is a probabilistic heuristic search optimization technique

developed by Holland [9]. The features such as multi-

objective, coded variable and natural selection make this

technique distinct and suitable for finding the near global

solution of filter coefficients. On the other hand Particle

Swarm Optimization (PSO) is an evolutionary algorithm

developed by Eberhart et al. [21-22]. Several attempts have

been taken to design digital filter with conventional PSO and

its modified version [3], [23]. The key attraction of PSO is its

simplicity in calculation and very less number of steps in

algorithm. The limitations of the classical PSO are premature

convergence and stagnation problem [24-25]. To overcome

these problems, an improved version of PSO, called craziness

based particle swarm optimization (CRPSO) technique is

suggested by the authors for low pass IIR filter design.

CRPSO is a global search algorithm originated from PSO,

mimics the particle behaviors of a swarm in a very closely

manner. CRPSO has adopted the special features such as

abrupt change of velocity; a craziness factor; and change of

direction of flying towards an apparently non-promising area

of food depending upon particle’s mood enhances the

usefulness of this algorithm towards the design of low pass

IIR filter. The paper is organized as follows: Section II

describes the filter design problem in hand; different

evolutionary algorithms namely, RGA, PSO and CRPSO are

discussed in section III; section IV consists of comprehensive

and demonstrative sets of data and illustrations that articulate

the usefulness of the present work in terms of results and

discussion.

II.LOW PASS IIR FILTER FORMULATION

This section discusses the design strategy of IIR filter based

on CRPSO. The input-output relation is governed by the

following difference equation:
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where )( px and )( py are the filter’s input and output,

respectively, and mn is the order of the filter. The

transfer function of the IIR filter is expressed as follows:
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where

sf

f
2 in [0, π] is the digital frequency; f is

the analog frequency; and sf is the sampling frequency. The

commonly used approach for IIR filter design is to represent

the problem as an optimization problem with the mean square

error (MSE) as the cost function [23] shown in (4).
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where )( pd and )( py are the filter’s desired and actual

responses, respectively.

The difference ))()(( pypdpe is the filter’s error

signal. The design goal is to minimize the cost function )(J

with proper adjustment of coefficient vector represented

as:
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The cost function is usually expressed as the time averaged

cost function defined by (5).
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where Ns is the number of samples used for the computation

of the cost function.

In this paper, a novel error fitness function has been

adopted in order to achieve higher stop band attenuation and

to have a good control on the transition width. The fitness

function used in this paper is given in (6). Using (6), it is
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found that the proposed filter deign approach results in

considerable improvement over other optimization techniques.

sp HabsHabsabsJ
2

1 (6)

For the first term of (6), pass band including a portion of

the transition band and for the second term of (6), stop

band including the rest portion of the transition band. The

portions of the transition band chosen depend on pass band

edge and stop band edge frequencies.

The error function given in (6) represents the generalized

fitness function to be minimized using the evolutionary

algorithms. The algorithms try to minimize this error and thus

improve the filter performance. Unlike other error fitness

functions as given in (4) and (5) which consider only the

maximum errors,
2

J involves summation of all absolute

errors for the whole frequency band, and hence, minimization

of
2

J yields much higher stop band attenuation and lesser

pass band ripples.

III. EVOLUTIONARY TECHNIQUES EMPLOYED

A. Real Coded Genetic Algorithm (RGA)

Standard Genetic Algorithm (also known as real coded GA)

is mainly a probabilistic search technique, based on the

principles of natural selection and evolution built upon the

Darwin’s “Survival of the Fittest” strategy. Each encoded

chromosome that constitutes the population is a solution to the

filter designing optimization problem. Chromosomes are

constructed over some particular alphabet {0, 1}, so that

chromosomes’ values are uniquely mapped onto the real

decision variable domain. Each chromosome is evaluated by a

function known as fitness function, which is usually the fitness

function or objective function of the corresponding

optimization problem [9-11], [26].

Steps of RGA as implemented for the optimization of

coefficient vector ω are as follows [19-20]:

Step 1: Initialize the real coded chromosome strings of np

population, each consists of a set of numerator and

denominator filter coefficients kb and ka , respectively. Size

of the set depends on the number of filter coefficients for a

particular order of the filter to be designed.

Step 2: Decoding the strings and evaluation of absolute error

with cost function,
2

J .

Step 3: Selection of elite strings in order of increasing cost

values from the minimum value.

Step 4: Copying the elite strings over the non-selected strings.

Step 5: Crossover and mutation generate offspring.

Step 6: Genetic cycle updating.

Step 7: The iteration stops when maximum number of cycles

is reached. The grand minimum cost and its corresponding

chromosome string having the desired optimal IIR LP filter

coefficients are finally obtained.

B. Particle Swarm Optimization (PSO)

PSO is flexible, robust, population based stochastic search

algorithm with attractive features of simplicity in

implementation and ability to quickly converge to a

reasonably good solution. Additionally, it has the capability to

handle larger search space and non-differential objective

function, unlike traditional optimization methods. Eberhart et

al. [21-22] developed PSO algorithm to simulate random

movements of bird flocking or fish schooling.

The algorithm starts with the random initialization of a

swarm of individuals, which are known as particles within the

multidimensional problem search space. In which each

particle tries to move toward the optimum solution, where

next movement is influenced by the previously acquired

knowledge of particle’s best and global best positions once

achieved by the individual and the entire swarm. The features

incorporated within this simulation are velocity matching of

individuals with the nearest neighbor, elimination of ancillary

variables and inclusion of multidimensional search and

acceleration by distance. Instead of the presence of direct

recombination operators, acceleration and position

modification supplement the recombination process in PSO.

Due to the aforementioned advantages and simplicity, PSO

has been applied to different fields of practical optimization

problem [17-18], [21], [27-30].

To some extent, IIR filter design with PSO is already

reported in [3] and [30]. A brief idea about the algorithm for a

D-dimensional search space with N particles that constitutes

the flock is presented here. The i
th

particle is described by a

position vector as: Si= (si1, si2,…, siD)
T

and velocity is

expressed by: Vi=  (vi1, vi2,…, viD)
T
, the best position that the

i
th

particle has reached previously: pbesti= (pi1 ,pi2,…, piD)
T
,

and the group best is expressed as: gbest= (pg1 ,pg2,…, pgD)
T
.

The maximum and minimum velocities are: Vmax= (vmax1,

vmax2,…, vmaxD)
T

and Vmin= (vmin1, vmin2,…, vminD)
T
,

respectively.

The basic steps of this algorithm are as follows:

Step 1: Initialize the swarm of N particles with random

positions and velocities in D-dimensional search space with

the ability of random movement for each particle in the entire

search space.

Step 2: Compute the value with predefined cost function for

the current position Si of each particle.

Step 3:  Each particle can remember its best position (pbest)

which is known as cognitive information and that could be

updated with each iteration.

Step 4: Each particle can also remember the best position the

swarm has ever attained (gbest) which is called social

information and could be updated in each iteration cycle.

Step 5: Velocity and position of the particle are modified

according to equations (7), (8) and (9) [31].
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Step 6: The iteration stops when maximum number of cycles

or any predefined stopping criteria is reached.

The positive constants C1, C2 are related with accelerations

and
1

rand ,
2

rand lies in the range [0, 1]. The inertia weight

w is a constant and chosen carefully to obtain fast convergence

to optimum result. K denotes the iteration number.

This algorithm is applied to design the IIR filter, in which real

coded np (population size) vectors, each consists of filter

coefficients, are considered and filter order determines the

number of components in each vector.

C.Craziness based Particle Swarm Optimization (CRPSO)

The global search ability of above discussed conventional

PSO is improved with the help of the following modifications.

This modified PSO is termed as craziness based particle

swarm optimization (CRPSO).

The velocity in this case can be expressed as follows [32]:
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where
1
r ,

2
r and

3
r are the random parameters uniformly

taken from the interval [0, 1]; and
3

rsign is a function

defined as:

0.05rre       whe1

05.0r     where1

3

33
rsign

(11)

The two random parameters
1

rand and
2

rand of (7) are

independent. If both are large, both the personal and social

experiences are over used and the particle is driven too far

away from the local optimum. If both are small, both the

personal and social experiences are not used fully and the

convergence speed of the technique is reduced. So, instead of

taking independent
1

rand and
2

rand , one single random

number
1
r is chosen so that when

1
r is large,

1
1 r is small

and vice versa. Moreover, to control the balance between

global and local searches, another random parameter
2

r is

introduced. For birds’ flocking for food, there could be some

rare cases that after the position of the particle is changed

according to (9), a bird may not, due to inertia, fly towards a

region at which it thinks is most promising for food. Instead, it

may be leading toward a region which is in opposite direction

of what it should fly in order to reach the expected promising

regions. So, in the step that follows, the direction of the bird’s

velocity should be reversed in order for it to fly back to the

promising region.
3

rsign is introduced for this purpose. In

birds’ flocking or fish schooling, a bird or a fish often changes

directions suddenly. This is described by using a ‘‘craziness’’

factor and is modelled in the technique by using a craziness

variable. A craziness operator is introduced in the proposed

technique to ensure that the particle would have a predefined

craziness probability to maintain the diversity of the particles.

Consequently, before updating its position the velocity of the

particle is crazed by,

crazinessk

i

k

i vrsignrPVV **
44

11
(12)

where
4

r is a random parameter which is chosen uniformly

within the interval [0, 1];

craziness
v is a random parameter which is uniformly chosen

from the interval
max_min_

,
cr

i
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i
vv ; and

4
rP ,

4
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are defined, respectively, as:
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where crP is a predefined probability of craziness. The steps

of CRPSO algorithm are as follows:

Step 1: Population is initialized for a swarm of np vectors, in

which each vector represents a solution of filter coefficient

values.

Step 2: Computation of initial cost values of the total

population, nP.

Step 3: Computation of population based minimum cost value

i.e. the group best solution vector (gbest) and computation of

the personal best solution vectors (pbest).

Step 4: Updating the velocities as per (10) and (12); updating

the particle vectors as per (9) and checking against the limits

of the filter coefficients; finally, computation of the updated

cost values of the particle vectors and population based

minimum cost value.

Step 5: Updating the pbest vectors, gbest vector; replace the

updated particle vectors as initial particle vectors for step 4.

Step 6: Iteration continues from step 4 till the maximum

iteration cycles or the convergence of minimum cost values

are reached; finally, gbest is the vector of optimal IIR LP filter

coefficients. The justifications of choosing the value of

different CRPSO parameters are as follows:

Reversal of the direction of bird’s velocity should rarely

occur; to achieve this, 05.0r
3

(a very low value) is chosen

when
3

rsign will be -1 to reverse the direction. If crP is

chosen less or, equal to 0.3, the random number
4

r will have

more probability to become more than crP , in that case,

craziness factor
4

rP will be zero in most cases, which is

actually desirable, otherwise heavy unnecessary oscillations

will occur in the convergence curve near the end of the

maximum iteration cycles as referred to (9).
craziness

v is

chosen very small (=0.0001) as shown in Table II. 0.5r
4

or, <0.5 is chosen to introduce equal probability of direction

reversal of
craziness

v as referred to (12).

The design objective in this paper is to obtain the optimal

combination of the IIR LP filter coefficients, so as to acquire

the maximum stop band attenuation with the least transition

width. Here lies the author’s contribution that this design

objective has been attained by the proposed CRPSO

technique.  The values of the parameters used for RGA, PSO
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and CRPSO techniques are given in Table II. The values of

the parameters used for CLPSO technique are adopted from

[36].

IV. RESULTS AND DISCUSSIONS

A. Analysis of Magnitude Response of IIR LP Filters

Extensive simulation study has been performed for

performance comparison of three algorithms namely, RGA,

PSO and CRPSO for the 8th order IIR filter optimization

problem. The design specification followed for all algorithms

are given in Table I.

TABLE I

DESIGN SPECIFICATION OF IIR LP FILTER

Pass band

ripple

(δp)

Stop band

ripple

(δs)

Pass band

normalized

edge frequency (ωp)

Stop band

normalized

edge frequency (ωs)

0.001 0.0001 0.35 0.40

The values of the control parameters of RGA, PSO and

CRPSO are given in Table II. Each algorithm is run for 30

times to get the best solution and the best results are reported

in this paper. All optimization programs are run in MATLAB

7.5 version on core (TM) 2 duo processor, 3.00 GHz with 2

GB RAM.

Three aspects of the algorithms are investigated in this work

namely, their accuracy, speed of convergence and stability.

Fig. 1 shows the comparative gain plots in dB for the designed

8th order IIR LP filter obtained for different algorithms. Fig. 2

represents the comparative normalized gain plots for 8th order

IIR LP filter. The best optimized numerator coefficients (bk)

and denominator coefficients (ak) obtained after extensive

simulation study are reported in Table III. It has been observed

that maximum stop band attenuations 20.0 dB, 21.75 dB and

33.117 dB are obtained for RGA, PSO and CRPSO

algorithms, respectively. Figs. 3-5 show the pole-zero plots for

low pass 8th order IIR LP filter designed using RGA, PSO and

CRPSO, respectively. A system is called stable and minimum

phase only when its all poles and zeros, respectively are within

the unit circle of z-plane. For designing the FIR filter,

achieving these criterions is not a problem, but for IIR filters

fulfilling these features, simultaneously is really a challenging

job.  Fig. 3 shows the pole-zero plot of 8th order IIR LP filter

designed with RGA. In Fig. 4, pole-zero plot of 8th order IIR

LP filter designed with PSO has been demonstrated. Fig. 5

shows the pole-zero plot of 8th order IIR LP filter designed

with CRPSO. In this design approach, primarily, stability is

assured with the location of poles within the unit circle shown

in Figs. 3-5. So, stability condition assures that all 8th order

IIR LP filters produce bounded output for bounded input

(BIBO) without the fear of oscillation.

TABLE II

CONTROL PARAMETERS OF RGA, PSO AND CRPSO

Parameters RGA PSO CRPSO

Population size 120 25 25

Iteration Cycle 100 600 500

Crossover rate 1 - -

Crossover Two Point Crossover - -

Mutation rate 0.01 - -

Mutation Gaussian Mutation - -

Selection Roulette - -

Selection Probability 1/3 - -

C1 - 2.05 2.05

C2 - 2.05 2.05

min

iv - 0.01 0.01

max

iv - 1.0 1.0

pcr - - 0.3

craziness
v

0.00001

Fig. 1 Gain plots in dB for 8th order IIR LP filter using RGA,

PSO and CRPSO.
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Fig. 2 Normalized gain plots for 8th order IIR LP filter using RGA, PSO and CRPSO

For IIR filter design, group delay is the function of

normalized frequency due to which different frequency

components undergo different amounts of phase shift. And the

degree of severity increases as the distances of zeros are

increased away from the unit circle. With this view point, it is

observed from Fig. 3 that two zeros with same radii of 1.0932

are out side the unit circle along with two zeros of radii 1.0002

are almost on the unit circle and rest of the four zeros are

within the unit circle. From Fig. 4 it is noticed that four zeros

constitute two groups with radii 1.0829 and 1.0180,

respectively and stay outside the unit circle apart from the rest

of the four zeros which are within the unit circle. Fig. 5

explores that four zeros are within the unit circle like others

with the uniqueness of rest of the zeros which are almost on

the unit circle with radii 1.0081 and 1.0069.

Fig. 3 Pole-Zero plot of 8th order IIR LP filter using RGA

It can be concluded that positions of four zeros out of eight

are almost on the unit circle of z-plane for CRPSO design

approach which gives the best group delay response among

the algorithms. But it fails to acquire the designation of

minimum phase system due to violating the condition of

existence of all zeros within the unit circle.

TABLE III

OPTIMIZED COEFFICIENTS AND PERFORMANCE COMPARISON OF CONCERNED

ALGORITHMS

Algorithms Num_Coeff

(bk)

Den_Coeff

(ak)

Max. stop Band

Attenuation (dB)

RGA

0.0167  0.0059

0.0434  0.0234

0.0451  0.0302

0.0277  0.0120

0.0092

0.9996

-3.5213

7.1631

-9.4231

8.7904

-5.7905

2.6429

-0.7583

0.1066

20.0

PSO

0.0165  0.0060

0.0423  0.0237

0.0454  0.0286

0.0275  0.0122

0.0073

0.9996

-3.5201

7.1638

-9.4233

8.7894

-5.7906

2.6430

-0.7593

0.1072

21.5683

CRPSO

0.0169  0.0054

0.0424  0.0228

0.0456  0.0285

0.0275  0.0115

0.0092

0.9990

-3.5209

7.1621

-9.4221

8.7896

-5.7908

2.6431

0.7587

0.1072

33.1170

Gain plots and Tables IV and V also explore that the

proposed IIR filter design approach using CRPSO attains the

highest stop band attenuation and smallest stop band and pass

band ripples with a little increase in the transition width as

compared to those produced by RGA and PSO algorithms.

Gain plots also show better response at stop band region for

CRPSO as compared to RGA and PSO. Table IV also shows

that CRPSO yields lesser mean stop band attenuation, lesser

variance and lesser standard deviation. Luitel et al. reported

the design of 9th order IIR filter using PSO and PSO-QI in

[33] and approximate attenuations of 22dB and 27dB,

respectively, have been achieved in [33]. In this paper,

maximum attenuation obtained for PSO is almost the same

achieved with lower order filter.
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TABLE IV

STATISTICAL DATA FOR STOP BAND ATTENUATION (dB) FOR 8TH ORDER IIR LP FILTER

Algorithm Maximum Mean Variance Standard

Deviation

RGA -20.0000 -42.9281 263.0129 16.2177

PSO -21.5683 -44.5499 264.6049 16.2667

CRPSO -33.1170 -48.3590 80.5940 8.9774

TABLE V

QUALITATIVELY ANALYZED DATA FOR 8TH ORDER IIR LP FILTER

Algorithm Pass band ripple (normalized) Stop band ripple (normalized) Transition Width

(normalized)Maximum Minimum Average Maximum Minimum Average

RGA 1.0214 0.9198 0.9706 0.1000 7.3286 ×10
-4

5.0366×10
-2

0.0341

PSO 1.0500 0.9280 0.9890 0.0835 1.0000×10
-3

4.2250×10
-2

0.0216

CRPSO 1.0086 0.9029 0.9558 0.0221 1.0000×10
-4

1.1100×10
-2

0.037

B. Comparative effectiveness and convergence profiles of

RGA, PSO and CRPSO

The effectiveness of an algorithm is measured in terms of

the requirement of iteration cycles for achieving the

optimum result with minimum error fitness value or the

minimum value of cost function. In order to compare the

algorithms’ convergence speeds, Fig. 6 shows the variation

of the cost (error) values with iteration cycles for the

CRPSO, PSO and RGA based IIR filter designs. From Fig.

6 it can be concluded that the proposed algorithm CRPSO

obtains the minimum cost (error value) with lesser number

of iteration cycles as compared to PSO and RGA. It is also

noticed that the proposed algorithm, CRPSO, has the faster

rate of convergence in terms of sharp reduction in error

function value shown in the abovementioned figure,

compared to the rest of the error function curves obtained

by RGA and PSO algorithms for obtaining the optimum

results.

Fig. 4 Pole-Zero plot of 8th order IIR LP filter using PSO

Fig. 5 Pole-Zero plot of 8th order IIR LP filter using CRPSO

Fig. 6 Convergence profiles for CRPSO, PSO and RGA in case of

8th order low pass IIR filter

Table VI is gives the convergence profile data for the

algorithms RGA, PSO and CRPSO applied for the design of

8th order IIR LP filter. From these data a platform is

obtained on which it can be argued that the proposed

algorithm CRPSO outperforms the rest algorithms in terms

of minimum error, fastest convergence speed with least

number of iteration cycles.

TABLE VI

CONVERGENCE PROFILE DATA FOR RGA, PSO AND CRPSO FOR 8TH

ORDER LOW PASS IIR FILTER

Algorithms Minimum Error

Value

Iteration

Cycles

Convergence

Speed (per

cycle)

RGA 4.5150 600 7.4400×10
-3

PSO 2.0300 600 8.5633×10
-3

CRPSO 1.7290 600 10.3183×10
-3

Iteration Cycles
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2
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V.CONCLUSION

In this paper, a recently developed algorithm CRPSO, as

a much improved version of PSO has been considered for

realization of 8th order low pass IIR filter. Simulation

studies show better performance of the proposed algorithm

CRPSO over RGA and PSO in terms of magnitude

response, convergence speed and stability which ensure the

potential of proposed algorithm to handle similar filter

design problem.
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