
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3801

iDENTM Phones Automated Stress Testing

Wei Hoo Chong

Abstract—System testing is actually done to the entire system

against the Functional Requirement Specification and/or the System
Requirement Specification. Moreover, it is an investigatory testing
phase, where the focus is to have almost a destructive attitude and
test not only the design, but also the behavior and even the believed
expectations of the customer. It is also intended to test up to and
beyond the bounds defined in the software/hardware requirements
specifications. In Motorola®, Automated Testing is one of the testing

methodologies uses by GSG-iSGT (Global Software Group - iDEN
TM

Subcriber Group-Test) to increase the testing volume, productivity

and reduce test cycle-time in iDEN
TM

 phones testing. Testing is able
to produce more robust products before release to the market. In this

paper, iHopper is proposed as a tool to perform stress test on iDEN
TM

phonse. We will discuss the value that automation has brought to

iDEN
TM

 Phone testing such as improving software quality in the

iDEN
 TM

 phone together with some metrics. We will also look into
the advantages of the proposed system and some discussion of the
future work as well.

Keywords—Testing, automated testing, stress testing, software
quality.

I. INTRODUCTION

ESTING is an important phase in the software
development cycle. It can be done by either manual testing

or automation testing. The testing scope and activity is
designed in feature test suite basis [1]. Software testing is the
activity of running a series of dynamic executions of software
programs that occurs after the software source code has been
developed. It is performed to uncover and correct as many of
the potential errors as possible before the software is delivered
to the customer [2].

In GSG-iSGT, we are practicing manual and automated
testing with the purpose to produce good quality product,
which in turn will increase the customer satisfaction. For
instance, there is no customer would want a phone that resets
or hangs just because he made a few continuous calls, and etc.
The improvement in customer satisfaction equals to the
increase in the trust of the organization’s products. In the long
term, this would bring an increase in the market share and
with that profitability. In order to achieve this goal, one of the
methods is stress the phone to its limit and the phones still
maintain its stability.

This paper is thus presented as following order. The next
section browses through some related works, and then an idea
of iHopper is explained as well including its modules and also
how it operates in a test environment. Next, we will see how
iHopper can produce more robust product, reduce the cycle
time compare to conventional manual testing, and increase the

productivity by supported with some metrics. This will then
followed by the advantages and disadvantage of iHopper as an
automated testing tool. Finally, there is some discussion on the
future work and this paper is ended with conclusion.

II. RELATED WORKS

Recently, there are a lot of automated testing tools that
Motorola® GSG-iSGT team using in System Testing process,
for instance, iPTF (iDEN Phone Test Framework) [3] [4],
iRobot [5], and etc.

A. iPTF (iDENTM Phone Test Framework)
iPTF [3] [4] is a standalone application, which is currently

the standard test tool used by the Motorola® test team to
execute test scripts locally and on remote site where all the
iDENTM phones or device-under-test located. Please refer to
Fig. 1 for the existing framework of iPTF. If more than one
iPTF sessions are needed, the Motorola® test team will
configure every session with the appropriate settings at
different machine. We can run more than one iPTF session in
the same machine, however, this will cause the machine been
overloaded and decreasing the overall test productivity.

Fig. 1 iPTF Architecture [3]

For the remote execution case, all the test scripts, developed
in a local site is then compiled using a JAVATM compiler, and
configuration items such as test environment, needed to be
done locally prior to the test execution. Then the iPTF is
sending every command from the test scripts from the local
site to the remote site to be executed. After execution is
completed, the results are sent back to the local iPTF for
evaluation via network. This method consumes a lot of
bandwidth as each command is sent via the network and
results returned via the network in real time.

B. iRobot
iRobot [5] serves as a tool to perform stress test on iDENTM

Gemini Smartphone. The basic concept is that users can

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3802

manipulate the Smartphone to replay recorded scripts for
multiple numbers of times at some future date to stress the
phone to its limits. They will also be able to playback more
than one script in a specific pattern and at a specific number of
times, again, to stress the phone. Both the iRobot scripts and
the pattern files can be transferred and replayed on another
Smartphone. Besides recorded scripts, iRobot also has built-in
stress tests such as data call, phone call, and random test.
These embedded tests serve to allow more thorough stress
testing on the different areas of the Smartphone.

Fig. 2 iDENTM Gemini Smartphone

iRobot was used by a team in India and Malaysia to stress
test Gemini phones. Fig. 2 is iDENTM Gemini Smartphone.

Record and Playback feature allows user executing testing
many times by only creating test cases once. Besides, user is
able to reproduce the same steps of testing that was executed
previously. Moreover, random keys pressing are able to stress
the phone to its limit. With this information, we are able to
design and produce more robust and reliable phones in order
to meet customer satisfaction. However, there is one main
issue with iRobot, which is iRobot only support mobile
windows platform. So, in this paper, we would like to
introduce another automated system testing tool called
iHopper to support other than mobile windows platform,
which is iDENTM UIS platform.

III. iHOPPER

iHopper [6] is a stress testing tool for iDENTM phones,
which is having similar features as iRobot and RPB. It is
based on the same concept as the Microsoft provided Hopper
tool for Gemini. It provides random keystrokes to the phone
under test. The concept is that the phone is driven randomly
through the UI, and therefore stresses the phone software.

iHopper differs from Hopper in the following ways:

• Only runs on iDENTM UIS phones (not on WinCE
phones).

• It is an application that runs on a host PC (Personal

Computer), rather than on the SU (Subscriber Unit) itself.

• Logs are stored on the host PC.

• The tool uses the iPTF test agent, so this will work on

both Lab builds and MS builds with no further installation
or configuration.

• Key inputs are random, but the probability of a given key
being pressed varies. An algorithm makes the probability
of a given key vary as a function of the previous keys.
The goal is to reduce the probability of events that would
terminate the sequence of entering menus (such a flip
events or pressing the home key), and to enhance the
probability of entering applications (by making the OK
key, and up/down keys more likely under certain
circumstances.) Thus, randomness is preserved, yet the
likelihood of the phone navigating deeper into menus is
enhanced.

Fig. 3 iHopper Tool View

Fig. 3 is shown the iHopper user interface. Once a device-
under-test (iDENTM Phones) is connected to the iHopper, the
interface lists the software ID/version of this device, the port
that the device is connected to, the status of the test, and the
elapsed time that the test has been running. The elapsed time
updates about every 10 seconds. Multiple devices can be
connected. Each device will have a corresponding status line
on the main interface.

Once a system has been configured, phones are connected,
and iHopper is running, no further user interaction is required.
If desired, the user can terminate all iHopper sessions by
exiting this main interface.

IV. iHOPPER MODULES
There are 4 main modules in iHopper.

A. Playback
Playback module allows user to reproduce/ playback the

same random sequence of key presses that was executed
previously. There are two methods to do this.

1. Random Seek
User can specify a random seed of a given log file to

reproduce the same sequence of key presses. Fig. 4 is an
interface for user to enter the random seed. Every new random
seed is generated for every session of execution iHopper and
is logged in the log file as shown in the sample iHopper logs
in Fig. 5 below.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3803

Fig. 4 Random Seed Playback Method

Fig. 5 Sample Log with Random Seed number

If a user wishes to reproduce the same random sequence of
a specified random execution, they can do so by providing a
random seed number of that execution in this field. Once
specified, a new session will use this random seed when a new
connection is made.

2. Log File
Optionally the user can also playback a specific log file by

specifying the log file name as shown in the Fig. 6 below. This
will reproduce the same key presses as in the log file.

Fig. 6 Log File Playback method

When the log file is loaded, the configuration values logged
in the log file will be loaded by iHopper so as to reproduce the
same setting when the log file was originally created.

B. Configuration
iHopper is designed in the way that required minimal user

interaction. Thus, appropriate information is needed to provide
to iHopper so that it can execute correctly. This information
includes,

• Option to prevent certain key sequences. By default the

following keys are prevented:
- Pressing Menu * (keypad lock)
- Pressing keys not available when flip is closed
- 911, 112, 119 key sequences (emergency calls)

• Option to explicitly prevent keys from occurring more

frequently than every specified number of key presses. By

default the END key is prevented from occurring more
frequently then every 30 key presses.

• Option for user to define key codes to include additional

keys or exclude redundant keys.

• Option to turn on/off Flip and specify valid keys when

flip is closed.

In addition, there are few configuration items such as Ports

(which port is been used), Baud Rates (used to communicate
with the phone), Key Interval (delays between key presses),
Timeout (the timeout time for iHopper to retry before
determining the phone is unresponsive), and Plus options (Plus
mode enables deeper navigation into menus) are been
configured and stored in the computer after iHopper runs.
Thus, these settings need only be adjusted once, or as the
configuration is changed, which is aiming to minimize the
user interactions as much as possible.

C. Output Log
Output Log is the most important module in iHopper. All

the phone activities, test results and system messages during
each iHopper session are logged into log file. This log file is
then used by test engineer or developer to analyze the root
cause if failure happened. Fig. 7, 8 illustrated the example of
the log file obtained from iHopper with explanations
highlighted in yellow. These logs contain the time that each
session started, the specific keys that were input to the phone,
as well as keystroke and duration statistics for each session.

Fig. 7 Key Presses Log

Fig. 8 Key Presses Log in PLUS mode

D. Automatic Ram Dumps
Ram dump is a log file which can be obtained from the

phone when the phone is reset / hanged. It contains the phone
failure information which may helpful to developer when
debugging. Thus, automatic taking ram dumps is necessary in
iHopper once a reset is detected on the phone since there is no
interaction from a user after the iHopper is begin executed.
Once the ram dump file is obtained, iHopper will restart the
phone and a new session will start automatically.

Ram dump files will be located at the same location as
iHopper logs and will be named the same as the iHopper log
that was taken when the reset occurred.

14:19:45:351 - #0000001, KEYPRESS=SEND
14:19:45:862 - #0000002, KEYPRESS=OK
14:19:46:383 - #0000003, KEYPRESS=LEFT
14:19:46:893 - #0000004, KEYPRESS=PTT
14:19:47:404 - #0000005, KEYPRESS=EIGHT

Dialog Type

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3804

Ram dumps are not possible on USB connected phones.
Phones that reset on USB connections will not automatically
restart by iHopper. Besides, the phone has to be loaded with
Lab loads in order to have automatic ram dumps capability.
Otherwise, if MS loads are used, the tool can still be used, but
no ram dumps will be taken.

V. SUCCESS STORY WITH RESULTS
Fig. 9 illustrates the number of software defects that

discovered by using iHopper automated stress testing tool
within 9 months on Marlin before the product is release to the
market. This data consists of various features tested, several of
software release version and it was based on only ten
engineers in whole world Motorola® test team with more than
5 iDENTM phones per engineer. The automated test was
executed 24 hours per day without any human intervention.
Test engineers only need to configure all the necessary
settings in the iDENTM phones and iHopper before the
execution begin. The iHopper is acted like a virtual tester and
logs the results to a log file by itself.

Marlin Software Defects

0

2

4

6

8

10

Nov,
2005

Dec,
2005

Jan,
2006

Feb,
2006

Mar,
2006

Apr,
2006

May,
2006

Jun,
2006

Jul,
2006

Time (month)

of

 D
ef

ec
ts

 F
ou

nd

Fig. 9 Number of software defects found by iHopper

From the graph, we noticed that the software defects

decreased to zero on May 2006 from 8 defects on Nov 2005.
This is a good sign as the defects can be identified before the
product is released to the market.

Marlin Hardware Defects

0

1

2

3

4

5

P5 P6 P7 P9 Pilot Pilot2

Hardware Version

of

 D
ef

ec
ts

 F
ou

nd

Fig. 10 Number of hardware defects found by iHopper

In other hand, iHopper also able to discover some hardware

defects as shown in graph Fig. 10. As we can see from the
graph, the early hardware, P5, is not as stable as P7 and later.
The quality of the hardware is improved significantly.

In short, iHopper not only will discover software defects but
also hardware defects. Utilizing these kinds of automated
testing tools in test execution, we are able to design and
produce more robust and quality products to customers.

A. Cycle Times Reduction
With the automation helps, the manual testing cycle time is

reduced at least 3X to deliver the same quantity of job. How to
prove that? We assume that each engineer only works 8 hours
per day consider as one Staff day and EACH iHopper will
execute for 24 hours per day. As a result, we are able to reduce
the cycle times up to 3X. Please refer to the equation (1)
below to see how it can be done.

 (1)

Where
R – Number of hours iHopper executes
IN – Number of iDENTM phones used
SD – One staff day in hours

In this case, within 9 months, the manual testing cycle time

is reduced around 150X with 5 iDENTM phones per engineer.

B. Productivity
In another word means, with the less cycle time will

increase the productivity. This is shown by the equation (2)
below.

(2)

The productivity is inversely proportional to cycle time
spent on testing and proportional to number of test cases
assigned, TC.

As iHopper can be executed by itself without any test case
and only need some configuration on the phone and iHopper
once there is a new phone setting. Besides that, users do not
have to keep an eye over each test run. They can check the
results in the log file after each execution. Thus they will have
the time to focus on other tasks while the stress test is running
on the phone.

VI. ADVANTAGES OF iHOPPER
The advantages of using iHopper are

• Total cycle time can be reduced. With iHopper, the cycle
time can be reduced at least 3X if compared to manual
testing and increased the productivity.

• Reusable: The key-presses logs can be used again in the
future to reproduce the same sequence of key presses.
Eliminating in writing scripts, thus saving the time.

• Reliable: Eliminating human error because tests perform
precisely the ‘same’ operations each time they are run.

• Flexible: No special attention is needed too, and users can
leave the scripts running without having to keep an eye
over it as the result of each test will be logged in a log
file. Users need only to refer back to the log file which
contains easy-to-read yet detailed information of every
test run.

Cycle Time = (R * IN)

SD

Productivity α TC

Cycle Time

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:11, 2008

3805

• Saving Cost: as less resource is needed to operate the test.

• No programming knowledge is required from the users as
the tool can be operated easily through a few key-presses.

In short, this tool serves a lot in time yet it allows means to
stress the phone to its maximum.

VII. FUTURE WORKS
iHopper still can be enhanced to have more features, such as

having same capability as iPTF which is able to verify the
functionality in the released phone software. This feature is
able to make entire testing more thoroughly.

VIII. CONCLUSION
This paper studies automated testing tool, named iHopper,

in stressing all the iDENTM phones except iDENTM
Smartphone. Hence, we are able to determine the limit of our
products. Thus we are able to further improve it if the limit is
unsatisfactory before the actual release of the product to the
customer. Besides, automated testing also able increase the
productivity of testing and reduced the manual testing cycle
time significantly. In short, the tool enables us to improve on
the quality of the phone software and hardware at the same
time.

REFERENCES
[1] Muhammad Aiman Mazlan, Ong Kein Wei, Cindy Phang Sim Sim,

iDEN Phone Testing: Automation vs Manual Testing, 3rd Motorola
China Technology symposium, 2006.

[2] W H C Bassetti, W. E Lewis, “Software Testing and Continuous Quality
Improvement”, 2004. pp. 289-290

[3] Wei Hoo Chong, Market-Based Resource Sharing Job Scheduler,
Proceedings of the International Conference on Information Technology
and Multimedia, ICIMU’05, Malaysia, 2005.

[4] Wei Hoo Chong, iDENTM Phoens Automated Testing in P2P, icns’06,
ISBN 0-7695-2622-5, 2006.

[5] iDEN Subcriber Test Group, Design Document for iRobot, version 0.0.1,
Motorola Malaysia Software Center, 2004

[6] iDEN Subcriber Test Group, iHopper User Guide, version 00.01.00,
Motorola Malaysia Software Center, 2005

Wei Hoo Chong presently working as a iDENTM VRIS engineer in Global
Software Group (GSG), Motorola Multimedia Sdn. Bhd., Penang, Malaysia.
Previously he was a test engineer for about 2 years and has been awarded as
Top Defects Founder of the year 2005. He was a research officer in University
Sciences Malaysia before joining Motorola. He completed his MSc.
Computer Sciences major in distributed computing and networking within a
year from University Sciences Malaysia, Penang, Malaysia in year 2003. His
master thesis is on searching in P2P environment by using JXTA. He becomes
a Member of IEE in year 2005. He can be reached by
hoochong@motorola.com.

