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Abstract—The implementation of single-electron tunneling 

(SET) simulators based on the master-equation (ME) formalism 

requires the efficient and accurate identification of an exhaustive list 

of active states and related tunnel events. Dynamic simulations also 

require the control of the emerging states and guarantee the safe 

elimination of decaying states. This paper describes algorithms for 

use in the stationary and dynamic control of the lists of active states 

and events. The paper presents results obtained using these 

algorithms with different SET structures. 
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I. INTRODUCTION 

HE phenomenon of Coulomb blockade and single electron 

tunneling (SET) [1], together with many advances in 

fabrication technologies have resulted in the realization of 

nano-scale devices where it became possible to control and 

monitor the flow of single electrons through these devices. 

Correlated transfer of electrons in such devices has been 

studied, both theoretically and experimentally [2]. The 

operation of SET devices depends fundamentally on the 

behavior of discrete single electrons and the possibility to 

control the flow of single electrons via various junctions. This 

is affected by co-tunneling, thermal charge fluctuations and 

background charge effects. 

 From among the various SET circuit simulation methods 

that have been devised, Monte-Carlo (MC) methods are 

widely used in situations where individual tunnel events are 

traced for a long time in order to collect statistics on the 

behavior of the circuit[4]-[8]. The ME formalism has also 

been used to compute state occupancies [3]. A hybrid MC/ME 

technique is also described in [4]. The use of the ME approach 

has the advantage of being able to accurately describe the rare 

events, e.g. co-tunneling events.  
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II. PROBLEM DEFINITION AND RELATED TECHNIQUES 

Let the electronic circuit under investigation consist of a set 

of tunnel junctions, normal capacitors and a set of voltage 

sources as shown in the inset of Fig. 1. At any time t during 

circuit operation the potential at any node in the circuit is 

calculated as the superposition of the potentials due to the 

applied voltage sources and the potentials induced by the 

excess charges located at various nodes of the circuit. Let 

ψ(t)={m1, m2,..,mn} define the state of the circuit, where mi is 

the number of excess electrons at node i. The nodal voltages 

corresponding to the given state ψi determine the electron 

tunneling rates between the different nodes. The transition rate 

from a state ψi to a state ψj, resulting from a tunnel event from 

node m to node k is denoted by 
km

ji

,

,Γ . The tunneling rate 

across a given junction, or equivalently the rate from one state 

to another, is computed using the orthodox theory of tunneling 

[1] as: 
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where Rt is the tunnel resistance of the junction and ∆E is the 
change in free energy due to the tunnel event. The change in 

the free energy, ∆E, is determined by the charging energy of 

the electron tunneling from one node to another together with 

the potential profile induced by the applied sources. Circuit 

nodal voltage analysis is used to compute the potential profile 

resulting from the applied voltage sources and due to the 

presence of excess charges. Effects of background charges are 

also catered for using the same techniques [9]. 

The probability of finding the system in a given state is a 

function of the circuit topology and parameters. When the 

steady-state condition is established, the system could be 

found in a finite set of states. The probability of finding the 

system in any of these states is denoted by the occupancy 

vector P. Define the matrix G, with elements satisfying the 

following relations: 
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This stationary Markov process satisfies the following 

Master Equation:  

0=GP  (3) 
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The matrix G has a zero eigenvalue and equation (3) could 

be solved together with ∑= ip1  to find the state occupancy 

factors, P. With the set of  (3) solved, various parameters of 

the circuit could be computed. As an example, the current 

across the tunnel junction between nodes m & k is calculated 

as: 

( )∑∑
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Γ−Γ=
ij

km

ji

mk

ji

i

ikm peI ,

,

,

,,
 (4) 

where ji

km

,

,Γ  is the tunnel rate from node m to k corresponding 

to the state transition ψi to ψj. Other parameters that could be 

computed include: the differential conductance, average 

excess charge or voltage at a given node in the SET structure, 

charge fluctuations etc. 

The solution of  (3) and subsequent calculation of ensemble 

variables would be possible only if the exact set of stationary 

states is known. In some studies, a superset of the states is 

chosen such that this set is ensured to contain all possible 

active states [2]. It is then left to the solution of (3) to establish 

the list of active states and subsequently eliminate the 

redundant states. It is noted that the solution of (3) constitutes 

an O(n
3
) algorithm, where n is the number of states chosen for 

the solution; hence, the use of a superset of states could be 

inefficient for larger systems. In the following sections an 

algorithm that allows the identification of the exhaustive list of 

active states is presented. 

Monte-Carlo simulations are extensively used in the study of 

SET systems to determine the stationary characteristics of 

such circuits  [5]- [8]. When used in a typical dynamic mode, 

the MC technique will provide sample trace of events under 

the given dynamic condition. To assess the typical behavior, 

such simulations could be repeated a large number of times 

and an ensemble average behavior could then be extracted. A 

simulator that is commonly used, described in [6], uses the 

standard Monte-Carlo techniques for the static and transient 

simulations. However, this simulator also resorts to the direct 

solution of the ME in modes where the Monte-Carlo 

simulations would prove too expensive or inaccurate, e.g. in 

the simulation of the rare co-tunneling events. 

III. STATES AND EVENTS IN STATIC SIMULATIONS 

As mentioned earlier, building the exhaustive list of active 

states is an important requirement for the efficient use of the 

ME formalism. To identify the set of stationary active states, 

our simulator starts at an arbitrary initial state ψ0. This initial 

state is added to the set of candidate active states, S. The 

algorithm then searches for all end states that may be reached 

starting with this state. A possible tunnel event from node m to 

node k would result in a change in the state of the system from 

state ψi to state ψj, denoting a corresponding event by 
km

jiT
,

,
. 

The newly identified state is added to the list S while the event 

is added to the list of possible events, E. This process is 

repeated for all states that accumulate in the set S. By the end 

of this stage the set S would contain all candidate states, see 

Fig. 1 The algorithm IdentifyCandidateActiveStates() shown 

below provides a description of the major steps needed to find 

the set of all candidate states:  

 

 
Fig.1 Illustration of a list of candidate states in static simulations 

 

Algorithm IdentifyCandidateActiveStates 

Initialize list of active states S={0}. 

Initialize list of events E = {0} 

Choose initial State ψ0 

Add ψ0 to S 

For each ψi in S 

For each node m in the SET circuit 

 For each node k in the SET circuit and k <> m 

  if m & k are connected by a tunnel junction 

   Construct new state ψj using ψi and m�k event 

    Calculate tunnel rate 
km

ji

,

,Γ  

    Construct 
km

jiT
,

,  

    If (
km

ji

,

,Γ  > 0.0) then 

     Add ψj to S 

     Add
km

jiT
,

, to E 

    Endif 

   Endif 

  EndFor 

 EndFor 

EndFor 

 

Fig. 1 is an illustration of the working of this algorithm. The 

process starts with the state ψ0, from which only one state, ψ1, 

is identified and added to the list S. The second iteration also 

identifies another state ψ2. Using ψ2, two further candidate 

states are found linked to this state, namely ψ3 and ψ4. The 

process is repeated until no further new states are identified. 

The superset of states thus identified could be safely used to 

solve (3) and to calculate the stationary state occupancy 

factors. The set of redundant states will have no contribution 

on the final solution and (3) will result in zero occupancy 

factors for these states. However, the proportion of redundant 

states may be high depending on the applied voltages and the 

initial starting state. These redundant states could be 

eliminated from the solution as described below. 

The algorithm that decides on the active status of candidate 

states processes the states in the same order the states were 

added to the list S. In our example of Fig. 1, ψ0 will be 

processed first, followed by ψ1 etc. Each state is compared 

against the initial and final states of the events in E. A state ψi 
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in S is passive if this state does not match any of the final 

states ψf of the events in E. In other words, once the system 

departs from this state it will not be possible for the system to 

return back to this state. This condition is expressed as: 

ψi is inactive if: 0, >Γ∑
j

ji and 0, =Γ∑
j

ij   (5) 

Once a state is deemed to be inactive, it will be removed 

from S and will have no further bearing on the status of the 

remaining candidate states. Also all elements of E where ψi is 

an initial or final state shall be removed. Eventually, S will 

contain only the set of active states and the set E will contain 

all possible tunnel events. This reduction algorithm makes it 

possible to restrict the solution of  (3) exclusively to the active 

states. 

Algorithm RemovePassiveStates 

For each ψi in S 

If ( 0:T ,ij, >Γ∈∃ ijE  

�State is active 

Else 

 �State is not active 

 Remove all events Tj,i in E  

 Remove ψi from S 

Endif 

EndFor  

 

As an illustration, and referring to Fig. 1, the state ψ0 will 

be removed first, together with the event T0,1, then ψ1 will be 

removed together with the event T1,2. 

IV. EVOLUTION OF STATES IN DYNAMIC SIMULATIONS 

One of the fundamental issues facing single-electronics is 

brought about by the stochastic nature of tunneling events. 

Simulations based on the ME would provide a tool suitable for 

assessing the transient behavior of circuits resulting from a 

perturbation in a given input. The operation of digital and 

analogue SET circuits requires the application of time-varying 

voltage sources at one or more nodes. Controlling the state of 

the single electron transistor would require applying a step 

voltage at the gate of the transistor. The stochastic nature of 

the tunnel events mean that the state of the middle node of the 

transistor is a function of time that could be estimated only in 

probabilistic terms. Ensemble Monte-Carol simulations could 

be used to run the simulation a large number of times then 

compute the ensemble averages to gain an insight of the most 

likely behavior. Such ensemble Monte-Carlo simulations were 

used e.g. in [10] to study the SET oscillations in long arrays of 

tunnel junctions and noise in these structures. 

Time dependent solution of the dynamic ME is the 

alternative to using the ensemble Monte-Carlo technique. Let 

the SET system be described by the set of states vector S(t) 

and the probability P(t). The time evolution of the state of the 

system and the corresponding probabilities is dependent on the 

current state of the system together with the corresponding 

tunneling rates. The tunneling rates in return are also a 

function of the state and the applied voltages. The time-

dependent ME is expressed as: 

)()( tPtG
dt

dP
=  (6) 

Above equation could be solved analytically for simple 

situations, e.g. when a step voltage is applied to the terminals 

of a single-electron transistor when transport is achieved via 

only two states. The simulator SENECA presented in [4] 

chooses a time step such that the external parameters of the 

circuit do not change during this interval, ∆t. This simulator 

then guesses a set of states whose probabilities are expected to 

be greater than some threshold probability thpp ≥ ; then 

solves the master equation for this set. Finally, the states with 

probabilities thpp <  are filtered out. This algorithm could 

potentially get into a state where emerging states are added to 

the list of candidate states and immediately be removed as a 

result of the probability being
thpp < ; thus not allowing such 

valid states to contribute to the transport process soon enough. 

In this study, a generic numerical solution is implemented. 

The algorithm does not make any assumptions about the 

applied voltages i.e. this technique will accommodate varying 

tunneling rates. Using first degree Taylor expansion of (5), the 

evolution of the state occupancies are expressed as follows: 

ttPtGtPttP ∆+≈∆+ )()()()(   (7) 

With time varying voltages, the set of active states will 

potentially vary with time where new states will become 

available while other states are annihilated. The stochastic 

nature of the tunnel events, responsible for the creation and the 

annihilation, implies that there will be an equivalent relaxation 

or characteristic time associated with the evolution of states. 

This characteristic time may also vary with the varying 

applied voltages.It might be tempting to apply the algorithms 

IdentifyCandidateActiveStates() and RemovePassiveStates() at 

every step in order to track the evolution of states. This is not 

correct because some states may have high occupancy factors 

initially and will stay active contributing to the transport 

process until finally been eliminated from the lists. The 

application of the algorithm RemovePassiveStates() will 

remove such states immediately. Also, a possible technique is 

to employ a simple one-way algorithm that allows states join 

the active list and keep these states in the list for the entire 

duration of the simulation. However, this is not efficient as the 

probability of the exiting states decays exponentially and may 

therefore stay in the list far too long than numerically needed. 

The algorithms used in the dynamic case is designed to cater 

for the arriving states in one hand while continually assessing 

the condition for the safe removal of that states that have no or 

little contribution to the dynamics of the system. The 

algorithm presented in this paper removes a state permanently 

from the list S(t) if (a) the occupancy of this state becomes 

small enough and (b) the occupancy of this state is decaying, 

i.e. thpttp <∆+ )( and 0<∂
∂

t
p

. The second condition 

(b) is imposed in order to avoid the possible removal of a 

growing state. 
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V. DYNAMIC SELECTION OF ∆T 

The time increment, ∆t, should be chosen so that the 
simulator is able to accurately resolve the fasted process in the 

system on one hand while ensuring that the chosen step is not 

too unnecessarily too small. Referring to (2), it is noted that 

the largest rate would be located at the diagonal of the matrix 

G(t). The reader is reminded that the diagonal entries of G(t) 

correspond to the sum of all rates leaving a given state. The 

simulation time increment is therefore chosen as: 









=∆ min,

|))((|
τ

α
tGMAX

MINt  (8) 

where α<1 and τmin is a minimum time increment used in the 

simulator. In our simulations, a value of α=0.01 is used. The 
dynamic algorithm starts at some known state or starts from a 

stationary state where the state S(0) and the probabilities P(t) 

are known.  

 

Algorithm DynamicSimulation 

Pre-requisite: Initial states S(0) and occupancy vector P(0) 

While simulation not ended 

 Update external inputs 

Compute tunneling rates 

Compute ∆t using (8) and advance time  

Update states & events lists S & E  

Compute G(t) 

Update occupancies using (7) 

For each state ψi 

 If ))()(())()(( tpttpandtpttp iithi <∆+<∆+  

   Remove state ψi from S 

   Remove events involving ψi from E. 

 Endif 

EndFor 

Renormalise P 

Compute required time dependent statistics 

EndWhile 

VI. PERFORMANCE CONSIDERATIONS 

The overall performance of the static simulator is greatly 

affected by the efficiency of the algorithms described in this 

paper. The algorithm IdentifyCandidateActiveStates() has an 

order of growth of ( )2

jcs NNO ×  where Ncs is the number of 

candidate states & Nj is the number of tunnel nodes in the SET 

circuit. Also note that adding a new state or event to the list 

requires a search within the entire list to ensure the uniqueness 

of the state. In relatively large circuits, the choice of the initial 

state ψ0 may have a big effect on the overall efficiency as this 

will determine Ncs. The algorithm RemovePassiveStates() is an 

( )cecs NNO × algorithm, where Nce is the total number of 

candidate events in E. The dynamic simulations require 

checking and updating the lists at each step. This algorithm 

traverses the active list and checks whether a new state could 

be added. This means the algorithm inherits the order as per 

the IdentifyCandidateActiveStates(). 

 The number of events and states, candidate or active, 

strongly depends on the topology of the SET circuit and the 

total number of tunnel junctions and nodes in the circuit. 

These numbers grow very fast with the applied voltages 

resulting in considerable changes in the time and memory 

space efficiency of these algorithms. 

 

 
Fig. 2 An array of N tunnel junctions 

VII. RESULTS AND DISCUSSIONS 

Validation of the simulator used in this study is provided in 

[11]. The effectiveness of the algorithms described above is 

discussed in the context of standard SET structures. First the 

single electron transistor, the turnstile, is considered. This 

structure is realized with N=2 in Fig. 2. The stationary 

conductance is computed as 
V

I
∂

∂ . Fig. 3 reveals that the 

number of active states, together with the total number of 

events, increases with the applied voltage. The intuitive model 

for this Markovian process is a linear birth-death model. It can 

be shown that the number of events, Ne is related to the 

number of states Ns by the relation: )1(2 −= se NN , in 

agreement with the results shown in Fig. 3. It is also noted that 

the jumps in the conductance corresponds to the introduction 

of two additional states which is also confirmed by the 

corresponding steps in the I-V curves. 

 
Fig. 3 Variation of active states and the corresponding events with the 

applied voltage VL in an inhomogeneous single-electron transistor 

(N=2, T=0K, VR=0, VG=0, C=10-17F, C0=10-18F, R1=100kΩ, 

R2=1MΩ and 
1

210 )( −+= RRG  

  

Fig. 4 shows the variation of Ns & Ne against the gate 

voltage in a three junction system, i.e. N=3 in Fig. 2, at fixed 

source-drain voltage. It is interesting to observe the periodic 

oscillations of the active states, events and the resulting 

current with the applied gate voltage, with the period of 

oscillation validated as ∆VG=e/C0=0.16V. The investigation of 

the average excess charge measured at the nodes of this circuit 
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reveals that exactly two additional electrons would be trapped 

in the circuit when the gate voltage is incremented by e/C0, 

one electron at each node. 

 
Fig. 4 Variations of the number of active states Ns, number of events 

Ne and average current against the gate voltage VG in a three junction 

system (N=2, VL=-VR=10mV, C =10-17F, C0=10-18F, T=0K, 

R=100kΩ) 

 

 
Fig. 5 Dynamic simulation of three junction system, parameters as 

per Fig. 3. Sinusoidal gate voltage of amplitude = 5mV, 

frequency=1GHz applied at t=0. VL=-VR=7mV 

 

Dynamic simulations are an important technique in studying 

the expected behavior of SET circuits resulting from a time 

varying input or a perturbation in the input signal. Fig. 5 

depicts the temporal behavior of the average current resulting 

from a sinusoidal voltage applied at the gate of a three 

junction system. Note that the current shown in the figure is 

the ensemble average current; the actual current detected 

across any junction will be a series of δ tunnel events. Fig. 6 
shows the currents through arrays of N=40, 60 & 80 junctions 

following a step voltage applied at the left hand side of the 

array. The frequency of oscillation, f0, in each array if related 

to the steady state current Io via the fundamental relation: 

0efI = . Such simulations could be used to study the 

fluctuations across tunnel junctions. 

 
Fig. 6 Evolution of ensemble average current through arrays of 40, 60 

& 80 tunnel junctions following a step change in VL 0 � 20.6mV 

(T=100mK, C=10-17F, C0=10-18F, R=100kΩ) 

VIII. CONCLUSION 

In this paper, techniques used to control and trace the states 

and related events in static and transient simulations of SET 

circuits have been presented. These algorithms were used in 

the simulations of various SET topologies. Simulations of 

circuits containing N= 2, 3, 40, 60 & 80 tunnel junctions were 

presented, each circuit contain 2N-1 total tunnel and normal 

capacitors. The efficient use of the ME formalism in the 

simulations of SET circuits is a viable technique for the design 

and optimization of SET circuits, thus the importance of the 

development of algorithms that would improve the efficiency 

and accuracy of the simulating tools. 
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