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Identification of Roadway Wavelengths Affecting
the Dynamic Responses of Bridges due to Vehicular

Loading
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Abstract—The bridge vibration due to traffic loading has been a
subject of extensive research during the last decades. A number of
these studies are concerned with the effects of the unevenness of
roadways on the dynamic responses of highway bridges. The road
unevenness is often described as a random process that constitutes
of different wavelengths. Thus, the study focuses on examining
the effects of the random description of roadways on the dynamic
response and its variance. A new setting of variance based sensi-
tivity analysis is proposed and used to identify and quantify the
contributions of the roadway’s wavelengths to the variance of the
dynamic response. Furthermore, the effect of the vehicle’s speed on
the dynamic response is studied.

Keywords—vehicle bridge interaction, sensitivity analysis, road
unevenness, random processes, critical speeds

I. INTRODUCTION

THERE has been an increasing attention to solve the
bridge-vehicle interaction, which is encouraged by the

advent computational power of digital computers and the in-
creasing number and weights of vehicles traveling on bridges.
Therefore, researchers and modelers had been concerned with
deriving solutions of the dynamic problem of bridge-vehicle
interaction. F. Yang et al. [1] and Yang et al. [2] reviewed
the different methods with their corresponding mathematical
and computational descriptions. The solution of the dynamic
response of the bridge and/or the vehicle starts by writing the
equations of motion for both subsystems. These equations are
either written in an integrated (coupled) form or left separate
prior to the solution. The integrated (coupled) equations for
the bridge-vehicle interaction are built by substituting for
the dynamic interaction forces, e.g. Cheung et al. [3]. The
coupled set of equations are often solved using direct time
integration methods. For the latter, the two sets of differential
equations of the vehicle and the bridge are left uncoupled
contingent on satisfying the compatibility constraints at the
contact points. The solution of the differential equations can
be also determined by using direct integration methods in an
iterative or non-iterative procedure, e.g. F. Yang et al. [1] and
Liu et al. [5], respectively.

In examining some of the studies concerned with bridge-
vehicle interaction, one can detect attempts to assess the effects
of road unevenness on the dynamic response through proba-
bilistic studies. Hwang and Nowak [6] presented a procedure
to calculate statistical parameters for the dynamic loading of
bridges. These parameters were based on surveys and tests
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and included vehicle mass, suspension system, tires and road
roughness, which were simulated by stochastic processes.
Kirkegaard and Nielsen [7] studied the effects of random
road profiles on the dynamic response of highway bridges by
examining the variance of the output. A recent study by [4]
attempted to identify the wavelengths of unevenness that affect
the dynamic response at different speeds. The study considered
the irregularity as a sinusoidal wave corresponding to one
wavelength and ran the dynamic analysis for variant speeds.
Then the authors repeated the procedure for the different
wavelengths. Such a procedure overlooked the realistic and
random nature of unevenness. Moreover, solutions for the
statistical characteristics of a bridge’s response to the passage
of a vehicle over a random rough surface have been of interest
in a number of research works, such as Lin et al. [8], Lombaert
and Conte [9], and Wu and Law [10].

This study attempts to go further and quantify in mathe-
matical expressions the effect of random road unevenness in
terms of its wavelengths using a proposed setting of a variance
based sensitivity analysis. The effect of the vehicle’s speed is
also considered and examined. The outcome of such a study
would help the state authorities and regulators in assessing the
level of maintenance of roadways and deciding on the speed
limits for heavy vehicles crossing short to medium highway
bridges.

The first section of the paper deals with the general descrip-
tion and implementation of the sensitivity analysis followed by
presenting the main solution algorithm of the bridge-vehicle
interaction. A numerical example is used first to examine the
dynamic responses and later to illustrate the application of the
sensitivity analysis to identify the contribution of the roadway
wavelengths to the response’s variance.

II. SENSITIVITY ANALYSIS

Sensitivity analysis is the study of how uncertainties or vari-
ances in the output of a model is apportioned to uncertainties
or variances of the inputs. Variance based methods have been
chosen due to their independence from the investigated model,
and the influence of groups or sets of input parameters may be
examined. Moreover, such an analysis provides the importance
ranking of the input parameters as well as quantifying their
contribution to the output variance [12].

The main idea of variance-based methods is to estimate the
amount of variance that would disappear if the true value
of the input parameter Xi is known. This can be described
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by the conditional variance of Y fixing Xi at its true value
V (Y |Xi), and is obtained by varying over all parameters,
except Xi. Since the true value of Xi in complex engineering
problems is unknown, the average of the conditional variance
for all possible values of Xi is used, i.e. E(V (Y |Xi)).
Having the unconditional variance of the output V (Y ) and
the expectation of the conditional variance E(V (Y |Xi)), the
following relation holds, which is known as the law of total
variance:

V (Y ) = V (E(Y |Xi)) + E(V (Y |Xi)), (1)

From equation (1) the variance of the conditional expectation
V (E(Y |Xi)) is determined. This term is often referred to as
the main effect, as it estimates the main effect contribution of
the Xi to the variance of the output. Normalizing the main
effect by the unconditional variance V (Y ) results in:

Si =
V (E(Y |Xi))

V (Y )
(2)

The ratio Si is known as a first order sensitivity index [13],
which is also known as the importance measure [14]. The
value of Si is less than 1, further the sum of all first order
indices corresponding to multiple input parameters is an indi-
cator of the additivity of the model. The model is considered
additive when the sum equals to one (no interactions between
the input parameters), and non-additive when the sum is less
than one. Hence, the difference 1−∑

Si is an indicator for the
presence of interactions between the input parameters. Total
effect index STi is used to present the total contribution of
the input parameter Xi to the output, i.e. first order effects
in addition to all higher order effects. A total effect index is
defined as

STi = 1− V (E(Y |X
˜

i))

V (Y )
, (3)

where V (E(Y |X
˜

i)) is the variance of the expected value of
Y when conditioning over all except for Xi. The difference
STi − Si is a measure of how much Xi interact with other
input parameters.

For the engineering problem at hand, the sensitivity analysis
is used to give a better understanding of the contribution of
roadway wavelengths to the variance of the model response.
The power of such an analysis can be attributed to the fact that
the model itself is exercised, therefore, measurements or refer-
ence models are not needed. Furthermore, its implementation
and simulation can be done regardless of the model type. As
long as the input-output mapping is available, the analysis can
be performed.

A sampling based numerical procedure is employed to
compute first order and total effect indices for a model of
k input parameters [15]. This procedure is thought to be
benignant and best suited to estimate sensitivity indices that
are based only on model evaluations.

III. MODELING & ANALYSIS
The engineering problem of interest is the vibration of

bridges caused by a moving heavy vehicle. A general descrip-
tion of the vehicle and the bridge models as well as the used
solution algorithm are explained.

A. Vehicle model

The equations of motion for the vehicle can be written in
the following general form:

MvÜv +CvU̇v +KvUv = Pv, (4)

where Mv is the mass matrix of the vehicle, Cv is the damping
matrix of the vehicle, Kv is the stiffness matrix of the vehicle,
Pv is the dynamic force vector of the vehicle, and Uv is the
generalized coordinate vector describing the dynamics of the
vehicle model (degrees of freedom).

Researchers have used different suspended mass models
to represent heavy vehicle systems varying from single to
multiple degrees of freedom depending on the level of mod-
eling [6], [16], [17]. The chosen vehicle model is an eight-
degree-of-freedom model representing a typical configuration
of a common heavy truck traveling on road networks [17].
The vehicle consists of a two-axle tractor and a three-axle
semi-trailer linked by a hinge. The tractor and the semi-trailer
are assumed to be rigid components and are characterized by
their masses and moments of inertia. The vehicle model is
excited at five points, which are the contact points between
the tires and the roadway. It is also assumed that the three
axles of the semi-trailer share the rear static load equally since
load-sharing mechanisms are common in multi-axle heavy
vehicle suspensions [18]. The generalized coordinates used to
describe the vehicle dynamics are tractor vertical displacement
yT , tractor pitch angle θT , semi-trailer vertical displacement
yS , semi-trailer pitch angle θS , tractor front unsprung mass
vertical displacement y1, tractor rear unsprung mass vertical
displacement y2, and semi-trailer unsprung masses vertical
displacements y3, y4, and y5, as shown below:

Uv =
{

yT θS θS y1 y2 y3 y4 y5
}T

(5)

Fig. 1. Schematic for the five-axle vehicle model

Due to the articulation of the truck and the semi-trailer, a
kinematic constraint can be written for the semi-trailer vertical
displacement yS , [16];

yS = yT + b5θT + b4θS . (6)

After fulfilling this constraint equation, the vehicle model
has eight independent degrees of freedom. The equations of
motion are based of the derivation provided by [16] for the
ride behavior of a three-axle tractor and semi-trailer truck.
Such a formulation has been also used in other studies [17].
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The mass, damping and stiffness matrices can be found in the
aforementioned studies.

The interaction force F int
i can be expressed as:

F int
i = kti [yi(t)− yb(xi, t)− ri(t)] , i = 1, 2, 3, 4, 5 (7)

where yb(xi, t) and ri(t) are the displacements of the bridge
and road unevenness respectively, at the contact point corre-
sponding to the ith axle at instant t.

The vibration of such a heavy vehicle has two distinctive
frequency ranges; the first range is 1.5 Hz to 4 Hz, representing
the sprung mass bounce involving some pitching, and the
second range is 8 Hz to 15 Hz, representing the unsprung
mass bounce involving suspension pitch modes [18].

B. Bridge model

The equations of motion of the bridge considering time
varying forces can be expressed in the following matrix
notation:

MbÜb +CbU̇b +KbUb = Pb , (8)

with Mb, Cb, Kb are the mass, damping and stiffness matrices
of the bridge, Üb, U̇b, Ub are the accelerations, velocities
and displacements of the bridge, and Pb is the vector of
forces acting on each bridge node at time t, which has two
components, as shown below:

Pb = Fg + Fint , (9)

where Fg is the force acting on the bridge due to the weight of
the vehicle, which is independent of the interaction, and Fint

is the time-variant force acting on the bridge, which depends
on the interaction between the bridge and the vehicle. The
damping of the bridge is assumed to be viscous, which means
that it is proportional to the nodal velocities.

C. Bridge-vehicle interaction

During the passage of a vehicle across a bridge, the dynamic
tire forces of a vehicle can lead to additional dynamic effects
on the bridge. These effects are mainly due to the excitation
of the vehicle by the dynamic deflection of the bridge and
by the initial road unevenness. Models that consider bridge-
vehicle interaction are often derived to consider there sources
of excitation. The equations of motion for the vehicle and
the bridge are written as (4) and (8), respectively. Assuming
perfect contact, the solution of these equations is governed by
satisfying the compatibility equation and imposing the equality
of displacement at the contact point, as expressed below:

yw(xi, t) = yb(xi, t) + ri(t) , (10)

where yw(xi, t) is the displacement of the tire of the vehicle at
ith contact point at instant t. In addition, the force equilibrium
conditions at the contact point i must be satisfied, which can
be shown as:

P i
b = F g

i + F int
i , (11)

where F g
i is the static weight of the ith axle and F int

i is
the interaction force at the ith axle. The ith contact point

usually does not coincide with the a DOF of the bridge model.
Therefore, the forces F g

i and F int
i are converted to equivalent

nodal forces associated with the bridge’s DOF.
The analysis starts by assuming the initial displacements

of the bridge for the time step t. The displacement of the
vehicle’s tire at the contact point is computed following the
compatibility condition in (10). The vehicle equations (4) are
solved using a numerical integration method for its displace-
ments (Uv). The determined displacements of the vehicle are
replaced into (7) to calculate the interaction forces (F int

i ).
Satisfying the equilibrium conditions at the contact point as
in (11) and converting the forces to the associated DOFs of
the bridge results in the equivalent bridge forces (Pb). These
forces (Pb) are then used to solve the bridge equations (8)
using a numerical integration method to compute the improved
displacements of the bridge (Ub). This procedure is repeated
till a tolerance assigned to the difference between the outputs
is met for the analyzed time step. Then the same iterative
analysis is repeated to t + Δt till the desired period of time
is reached.

An alternative, which is described as non-iterative algorithm
is proposed by [5] for the above solution procedure, which is
used in the analysis. It is non-iterative conditioning over a
sufficiently small time step. With such a time step, the force
acting on the vehicle at the current time step is estimated from
the previous step. According to [5], the choice of the time
step should be small enough to capture the highest desired
frequency of the bridge, the vehicle passage, and the excitation
from road unevenness. Moreover a factor of 1

10 is introduced
into the Δt selected to secure reasonable integration accuracy
and is expressed as:

Δt ≤ 1

10
×min

{
Tf =

1

fmax
, Ts =

L

v
, Tr = vκmax

r

}
, (12)

where fmax is the upper frequency of interest for the bridge,
and κmax

r is the largest wavenumber of the road unevenness
corresponding to the minimum wavelength. The numerical
integration procedure used to solve the system of differential
equations is the Newmark-β method.

In general, many DOFs are involved in the FE model
of the bridge system, but only the first modes of vibration
make the significant contribution to the dynamic response.
Therefore, the modal superposition method has been used to
solve the equations of motion of the bridge, which reduces
the computational effort considerably, which is regarded as
advantageous [19].

D. Road unevenness

The road unevenness is often obtained from measuring
existing roadways which is a laborious procedure. Therefore,
[20] suggested simplified means to describe the road surfaces.
The authors attested the treatment of road unevenness as a
realization of a stationary Gaussian homogeneous random pro-
cess described by its power spectral density function in space
domain Sf0f0(κ) with κ as the wavenumber. However, the dy-
namic analysis is performed in time domain, and a description
of the road unevenness in time domain is needed. Therefore,
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the temporal power spectral density function Sf0f0(ω) is to
be computed. Assuming a constant speed for the vehicle v,
Sf0f0(ω) and Sf0f0(κ) can be related using the following:

Sf0f0 (ω = vκ) =
1

v
Sf0f0(κ) (13)

When performing the analysis in time domain, one can de-
duce that the excitation of the vehicle due to road unevenness
can be described as non-stationary when the vehicle speed is
time dependent [21]. Even when the speed is constant and
the vehicle excitation is stationary, the dynamic responses of
the bridge are non-stationary due to the movement of the
vehicle [8]. This observation is of importance in deriving the
stochastic characteristics when the dynamic problem is solved
in frequency domain.

In most engineering applications, the one sided spectral
density function SFF (κ) is derived from measurements for
which the following relation holds,

SFF (κ) = 2Sff (κ). (14)

There are two main models for generating realizations
of random processes going back to the work of Rice and
Shinozuka [22], [23]. One consists of a series of sines and
cosines with random amplitudes and the other consist of a
series of cosine terms with random phase angles. The latter is
adopted for the realizations of road profiles and is modified
by assuming random amplitudes. This modified model can be
found in [7], [29], and described in (15).

f(t) =

Nd−1∑
k=0

[Ckcos(ωkt+Φk)] , (15)

ωk = ωl + kΔω ,

k = 0, 1, 2, . . . , Nd − 1 ,

where Φks are independent random phase angles uniformly
distributed in the range [0, 2π] and Cks are random variables
following Rayleigh distribution with a mean value of βk

√
π
2

and a variance of β2
k(2− π

2 ) taking βk as
√

SFF (ωk)Δω. SFF

is the one sided power spectral density function (PSD) used
to describe the road unevenness. Further, the realized road
surfaces reflect the prescribed probabilistic characteristics of
the random process accurately as the number Nd gets larger.

It is noticed from (15) that the PSD is discretized into
temporal frequency bands of a width of Δω, and the corre-
sponding discretized frequencies are used in the realization of
the stochastic process. However, the entire frequency domain
of the PSD cannot be used in the realization for mathematical
and physical reasons [23]. For the realizations of road surfaces,
cut-off frequencies are needed. The discretizing frequency
band is defined as

Δω = (ωu − ωl)/Nd , (16)

with ωu and ωl (rad/s) as the upper and the lower cut-off
frequencies. The long wavelength irregularities correspond
to low frequency components in the time domain and short
wavelength irregularities correspond to high frequency compo-
nents [24]. The different wavelengths and their corresponding
temporal frequencies excite different vibrational modes of

the heavy vehicle; the bouncing mode of the sprung mass
is more of a low frequency mode while the axle hop and
pitching modes are of higher frequencies [18]. Further, when
the wavelengths of the irregularities are too small compared
with the dimensions of the contact patch between the tire
and the roadway, the tire due to its flexibility absorb these
irregularities. This phenomenon is referred to as tire envelop-
ment which reduces the excitations of the axle of the vehicle.
Therefore, filtering or smoothing algorithms depending on the
dimension of the contact patch are recommended [25]. Often
a moving averaging filter is employed for such purposes [26].

IV. NUMERICAL EXAMPLE

A. Description of subsystems

For the numerical verification, the vehicle model presented
by [17] is used. The characteristics of the vehicle are found
in [28]. The bridge model is a single span simply supported
beam model for the Pirton Lane Highway bridge in Gloucester
(United Kingdom) [18]. The bridge has a length L = 40m, an
estimated mass per unit length of m = 12000 kg/m and a
bending stiffness of EI = 1.26 × 105 MNm2. The bridge’s
first natural frequency is f1 = 3.20 Hz with a modal damping
ratio ζ1 = 0.02.

TABLE I
EIGENFREQUENCIES OF THE SINGLE SPAN BRIDGE

Bridge mode Natural freq. [rad/s]

1st 20
2nd 80
3rd 180

The eigenmodes with their corresponding eigenfrequencies
are computed and presented in Table II for the vehicle model.
It is noticed that the heavy vehicle has two ranges of vibra-
tional frequencies, the first range is (1.5-5 Hz) representing
the sprung mass bounce involving pitching and axle hop
movements, the second range is (8-12 Hz) representing the
axle hop involving slight suspension pitch modes.

TABLE II
EIGENMODES AND EIGENFREQUENCIES OF THE (8DOF) VEHICLE

Vehicle mode Freq.
(Hz)

Bounce of body mass 1.4
Bounce and pitch 1.6
Pitch, axle hop, and bounce 4.6
Axle hop (tractor-front) 8.9
Axle hop (tractor-rear) 10.4
Axle hop (tridem-middle) 12.0
Axle hop (tridem-front) 12.0
Axle hop (tridem-rear) 12.1

Each realization of road profiles follows (15) where ωl =
1.74 rad/s and ωu = 75.54 rad/s with Δω = 0.104 rad/s.
Furthermore, the road profile is passed through a moving
averaging filter.
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The dynamic estimates used for the assessment are the
dynamic incremental factor for the displacements (DIFu)
and strains (DIFε) and the normalized accelerations. These
estimates are determined for the mid-span.

B. Effects of random road processes

The focus of the dynamic problem studied is the interaction
between the bridge and vehicle when road unevenness is
considered. As the vehicle travels over the bridge, its dynamic
tire forces introduce dynamic effects on the bridge. These
effects are mainly due to the excitation of the vehicle caused by
the dynamic deflection of the bridge (Source I) and the initial
road unevenness (Source II). The combination of these two
excitations describes the dynamic effect of the coupling of the
vehicle and bridge on the response of interest. Fig. 2 depicts
the mid-span displacements of the single-span system, i.e.,
the total response and its constituents due to a vehicle model
traveling at a speed of 25 m/s (90 km/h). The total response
is the moving weight solution combined with the interaction
of the two sources of excitation. The interactions between the
excitations caused by the dynamic deflection of the bridge
and road unevenness vary, thereby having different effects on
the moving weight solution. In addition, the amplitudes of
the excitations due to road unevenness have a great influence
on the additional dynamic effects caused by bridge-vehicle
interaction as these excitations may render the ones due to
the dynamic deflection of the bridge to secondary. Fig. 2
depicts two examples for the one axle of the vehicle model
excited by two different road profiles while traveling over the
bridge. Fig. 2(a) shows the excitations to be significant enough
to amplify the dynamic response. This case is attributed as
“greatly amplified”. Whereas, Fig. 2(b) shows the excitations
being out-of-phase with approximately equal amplitudes to
cancel each other, thereby having no significant effect on the
moving weight solution. This case is attributed as “slightly
amplified”. This observation depends on the interaction be-
tween the excitations due to the dynamic deflection of the
bridge and road unevenness as well as the internal interaction
between the excitations caused by the frequencies constituting
the road unevenness.

The interaction forces corresponding to the displacements
in Fig. 2 are retrieved and plotted for both cases in Fig. 3.
It can be seen that the maximum of the interaction forces for
the greatly amplified case is larger by a factor of 1.95 when
compared to the slightly amplified case as shown in Fig. 3(a).
In studying the amplitude spectra shown in Fig. 3(b), it is
observed that the amplitudes around the bouncing frequency
of the vehicle and the bridge’s first natural frequency (3.2 Hz)
are higher for the greatly amplified case.

The realization of road profiles is described as a summation
of cosine waves with random phase angles. Hence, the main
difference between a realization and another is the randomly
selected phase angles, which are introduced to ensure the
randomness of the generated road profiles. Therefore, it is
logical to assume that these phase angles are the reason behind
the variation of the effects caused by road unevenness on the
dynamic response. In order to examine this, the interaction

forces caused by a single harmonic excitation related to one of
the frequencies describing the road unevenness are determined
and shown in Fig. 4. The frequencies are selected around
the bouncing frequency of the vehicle, and the same set of
data employed in the realizations of the road profiles for the
analyses in Fig. 2 are used. It can be seen from Fig. 4, that
the interaction forces caused by single harmonic excitations
vary from being in-phase and out-phase. Therefore, the forces
in Fig. 4 may amplify or cancel each other depending on
the phase angles assigned to the exciting frequencies of the
road profile. Also in Fig. 4, the sum of the interaction forces
due to the single harmonic excitations is computed to show
the amplification (Fig. 4(b)) or the cancellation (Fig. 4(b)) of
the output; the sum holds as linear systems are assumed. The
same analysis can be performed for all frequencies of the road
profile and this amplification or cancellation of the exciting
forces would explain the difference in the total contact forces
observed in Fig. 3 and in the responses in Fig. 2. The above
are only examples of what can be expected when performing
the dynamic analysis considering road unevenness, which may
explain the output of the dynamic analysis and its scatter when
a probabilistic analysis is run.

C. Effect of vehicle’s speed

The dynamic responses determined considering bridge-
vehicle interaction depend on the frequencies of the bridge,
the vehicle and the driving speed used in the analysis. The
influence of these frequencies and their interaction on the
dynamic response is evident. A number of studies have focused
on the relation between the dynamic response and speed. In
the study done by [27], it was found that a unique function
for the maximum dynamic response and the speed exists.
This was calculated analytically for a simply supported beam
using a moving weight model, in which the first beam mode
was considered. Furthermore, [28] studied critical speeds in
relation to the frequency of the bridge system; the examination
was also done for a moving weight model on single-span
bridges.

The relationship between the speed and first natural fre-
quency of the bridge is examined here when the interaction
between the bridge and the vehicle is considered. Fig. 5
depicts the dynamic response estimates due to the eight-
degree-of-freedom vehicle model in relation to the speed
circular frequency ωs and the bridge first natural frequency
ωb. The speed circular frequency ωs is defined as:

ωs =
πv

L
, (17)

where v is the speed of the vehicle [m/s] and L is the span of
the bridge [m].

The pattern for the displacements and the strains is clear
and similar, while the accelerations show a slightly different
trend as they tend to positively increase with the speed circular
frequency with no distinguished pattern, Fig. 5.

Diagonal lines can be drawn to envelope the local peaks of
the dynamic response relations in Fig. 5. The slopes of these
lines represent the critical ratios which relate the speed and
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Fig. 2. Decomposition of the mid-span displacement of the single-span
system: ( ) Source I, ( ) Source II, ( ) Total coupled response, ( )
Moving weight

the bridge frequencies that envelope the maximum dynamic
response estimate,

FRc =
ωs

ωb
. (18)

Some of these critical frequency ratios FRc are computed
and presented in Table III. The ratios apply to short to medium
bridges that have a range of first bending natural frequencies
between 10 rad/s and 40 rad/s (1.6-6.4 Hz) and to vehicle’s
speeds that range from 40 km/h to 130 km/h (10-36 m/s). The
critical ratios for the accelerations are not computed since they
positively increase with the speed circular frequency and there
is no clear enveloping slopes for the response.

D. Identification of critical wavelengths

Sensitivity analysis is used to identify the temporal frequen-
cies of road unevenness, which influence a dynamic output the
most. The randomness of the realized road profiles has been
considered in this investigation, and the dynamic response
is determined for different speeds. Hence, the speed and
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(b) Amplitude spectra of interaction forces

Fig. 3. Contact forces between 2DOF vehicle model and the bridge
considering road unevenness: ( ) greatly amplified, ( ) slightly amplified

TABLE III
CRITICAL FREQUENCY RATIOS (FRc)

DIFu DIFε

0.090 0.092
0.144 0.146

corresponding temporal frequencies of road unevenness are
used for the sensitivity analysis.

The sensitivity analysis is run directly on the model output.
The general scheme for running the sensitivity analysis is as
follows:

1) One set of random phase angles is generated Φ (1×Nd)
with Nd as the number of discretized frequencies.

2) Random samples of the amplitudes are generated C
(Ns ×Nd) with Ns as the number of samples.

3) The road profiles are generated according to (15) assum-
ing the same set of phase angles for every realization.

4) The dynamic analysis is performed considering the sam-
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Fig. 4. Contact forces due to single excitations of road unevenness temporal
frequencies: ( ) ω1 = 19.87 rad/s, ( ) ω2 = 19.94 rad/s, ( ) ω3 =
20.03 rad/s, ( ) ω4 = 20.11 rad/s, ( ) Sum

ples of road profiles generated and the dynamic output
is obtained.

5) The sensitivity analysis is applied and the sensitivity
indices for the speed and the ranges of road frequencies
studied are estimated.

6) All steps (1-6) are repeated in order to consider different
random sets of phase angles and the average value of the
sensitivity indices are calculated.

The proposed sensitivity analysis is preformed in such a way
to overcome the challenge imposed by considering the random
phase angles in the realization of road profiles.

The numerical example is illustrated for the dynamic re-
sponse due to the eight-degree-of-freedom vehicle model
traveling at different speeds considering road unevenness.
The sensitivity indices Si and STi are given in Table IV.
These indices provide quantitative measures for the influence
of frequency ranges of road profiles on the variance of the
dynamic response. The ranges of the frequencies of road
profiles are chosen in the ranges of the eigenfrequencies of

Fig. 5. Dynamic responses versus the bridge first natural frequency and the
speed circular frequency for the 8DOF vehicle model

the eight-degree-of-freedom vehicle model. The first range
(0.2 Hz to 4.6 Hz) corresponds to the bouncing of the tractor
and the semi-trailer masses with some pitching modes; the
second range (4.6 Hz to 10.5 Hz) corresponds to the axle
hop of the tractor axles; and the third range (10.5 Hz to 12.5
Hz) corresponds to the axle hop of the semi-trailer axles. It
can be observed from the indices in Table IV as expected
that the displacements and strains are mainly affected by the
temporal frequencies of road profiles, which coincide with the
bouncing mode of the tractor and the semi-trailer, whereas the
accelerations are affected by the ones that coincide with the
bouncing modes and the axle hop modes, especially the ones
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of the semi-trailer axles. The corresponding wavelengths of the
identified frequencies of road unevenness can be calculated for
the different speeds.

TABLE IV
IDENTIFICATION OF THE FREQUENCIES OF ROAD UNEVENNESS WITH THE

GREATEST IMPACT ON DYNAMIC RESPONSE

Si STi

Displacements
Road temporal frequency

range
0.2 to 4.6 [Hz] 0.19 0.28
4.6 to 10.5 [Hz] 0.00 0.00
10.5 to 12.5 [Hz] 0.00 0.00
Speed 0.71 0.81

Strains
Road temporal frequency

range
0.2 to 4.6 [Hz] 0.11 0.18
4.6 to 10.5 [Hz] 0.00 0.00
10.5 to 12.5 [Hz] 0.00 0.00
Speed 0.81 0.89

Normalized accelerations
Road temporal frequency

range
0.2 to 4.6 [Hz] 0.08 0.11
4.6 to 10.5 [Hz] 0.02 0.04
10.5 to 12.5 [Hz] 0.04 0.08
Speed 0.78 0.84

V. CONCLUSION

The study examines the effects of the interaction of different
wavelengths of roadways on the dynamic response of bridges,
and it goes further to employ a variance based sensitivity anal-
ysis approach to identify the contribution of these wavelengths
to the variance of the response when considering bridge-
vehicle interaction. It is found from the estimated sensitivity
indices that the displacements and strains of the bridge are
mainly affected by the temporal frequencies of road profiles
that matches the bouncing mode of the tractor and the semi-
trailer, whereas the accelerations are affected by the ones that
coincide with the bouncing modes and the axle hop modes,
especially the ones of the semi-trailer axles. The wavelengths
corresponding to these frequencies can be determined for
different speeds. The outcome of such a study is of help to
the state authorities and regulators in assessing the level of
maintenance for the roadways and deciding on appropriate
speed limits for heavy vehicles crossing short to medium
highway bridges.
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