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Abstract—Intelligent deep-drawing is an instrumental research
field in sheet metal forming. A set of 28 different experimental data
have been employed in this paper, investigating the roles of die
radius, punch radius, friction coefficients and drawing ratios for
axisymmetric workpieces deep drawing. This paper focuses an
evolutionary neural network, specifically, error back propagation in
collaboration with genetic algorithm. The neural network
encompasses a number of different functional nodes defined through
the established principles. The input parameters, i.e., punch radii, die
radii, friction coefficients and drawing ratios are set to the network;
thereafter, the material outputs at two critical points are accurately
calculated. The output of the network is used to establish the best
parameters leading to the most uniform thickness in the product via
the genetic algorithm. This research achieved satisfactory results
based on demonstration of neural networks.

Keywords—Deep-drawing; Neural network; Genetic algorithm;
Sheet metal forming

I. INTRODUCTION

EEP drawing is one of the most imperative processes used
in industries for metal shell forming. The cylindrical

product drawing is a complex art. Hence, in order to survive in
the ever increasing competition in market, artificial
intelligence technology is applied to the metal shell forming.
The use of neural network based researches on metal shell
forming has been increased tremendously since 1980’s. In the
early developments, the main focus was on V-type bending
[1], [2] rather than deep drawing [3], [4]. The reason is that the
deep drawing process is much more complicated than
bending.There are many factors influencing the formability of
cylindrical products including; the material of the work piece,
the lubrication condition of the material, the velocity of the
hydrodynamics, the radius of punch, the radius of die, the
pressure on the blanket and the pressure of the hydrodynamics.
These factors are of central importance in determining the
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result of the deep drawing workpiece. Therefore, in order to
fulfill the specifications of the target product, a highly
experienced die-design engineer is required. While the poor
performance of the engineer will certainly lead to drastic
losses of money and time. Meanwhile, in traditional factories,
still the metal sheet forming processes are still controlled and
designed manually by process engineers using the trail-and-
error techniques.

The deep drawing of the sheet metal parts are governed by
the limitations of wrinkling (buckling) and tearing. These
limiting factors are measured by the drawability of the
workpiece and is determined by the factor called 'limiting
drawing ratio' or LDR defined by the ratio of the original
material radius, 1 to the final perfect product radius of 2 .

There is a direct relation between LDR and that of the material
of the material employed in the work piece, the process
parameters and tool design. Theoretically, for an optimal
design determining the material stress and strain distribution
considering LDR parameters is indispensible.

Whitely [5] made vast researches on the importance of the
anisotropy in correlation with LDR. Hu’s [6] proposed r-value
anisotropy theory.  Ruminski [7] investigated the strain
distribution of dies of different shapes by finite element
method using simulation as well as experimental technique
taking in account the hardness measurement. Lin [8] and you-
Min [9] established the importance of clearance that is
inevitably important existing between the die and punch on the
formability in the cup-drawing process. Zhao [10] employed
neural networks to establish the real-time identification of the
friction and coefficients used in deep drawings. Zhao [11],
also determined the critical parameters via conventional curve
fitting. Their work focused of an axisymmtric work piece. Yet
there have been no or very few optimization techniques
employing genetic algorithm in collaboration with neural
network in this field.

As a matter of fact, this study, takes even one step ahead of
the previous articles by utilizing an established intelligent
computational techniques determine the optimum parameters.
This technique which is getting more attention in these days is
neural network (NN) model. The EBP-NN model in
correlation with the GA-NN model is utilized to identify of the
certain parameters influencing the deep drawing product‘s
thickness uniformity. The target is to achieve the most uniform
thickness in the product. It includes considering the role of
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different die and punch radii considering different LDRs and
lubricating conditions.  A set 28 data has been derived through
the experiments in the workshop.

II. EXPERIMENTAL PROCEDURE

All experiments were conducted on st-14 steel plates with
initial uniform thickness of 1mm. Fig.1, Fig.2 and Fig.3 shows
the schematic view of the experiment apparatus, experimental
room and the some of the final products respectively. The
equipments used in the test are hydraulic press, control unit,
monitor and a printer. The experiment was conducted as
follow;

1. Cutting circular plates of different diameters from the
initial plate.

2. Measurement and registration of diameters of matrix
and die, the active tolerances and the holder pressure.

3. Adjustment of the circular plate.
4. Application of the lubricant.
5. Fine-tuning the speed of the matrix.
6. Registration of the required forces.

In order to study the effect of zinc-stearate and press oil,
plates of different diameters with a matrix with die arc of 8mm
was employed. In order to find the limiting dying ratio
diameter of the plate was increased from 80mm with an
increment of 10 mm and after reaching 100mm this increment
was changed to 5mm. After the estimation of the approximate
dimension the increment was further reduced to 1mm. LDR
was obtained based on diameter where rupture occurred.
Different parameters were tested by fixing all parameters but
the on being considered.

Fig. 4 shows the amount of punch travel versus the punch
load for the test with Zinc-strearate lubricant. It clearly
indicates the point where the rupture occurs. Fig.5 also depicts
the amount of punch travel versus punch load in applying press
oil and Zinc-stearate. It is clear that zinc-stearate consumes
less energy. This fact highlights the stability quality of zinc-
strearate in high pressure in respect to press oil. Note that
Fig.4 and Fig.5 have been derived via the experimental control
system.

Fig. 1 Schematic view of the experimental apparatus

Fig. 2 Experimental apparatus and its control system

Fig. 3 Specimen that have been successfully drawn

Fig. 4 The magnitude of punch traveled versus the applied load in a
test to determine the rupture limit

Fig. 5 The magnitude of punch travel versus the punch load in a test
for a different lubricant oils
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III. ARCHITECTURE OF NEURAL MODEL

1. Design OF INPUT and output layers

Fig. 6 shows the schematic geometry of a typical work piece
before and after drawing. For the simulation of such processes,
there have been several hypotheses are used. Such hypothesis
include: straight generatix, constant area, and quasi- straight
beam bending. The materials are usually modeled by the strain
hardening law;

nB (1)
The generalized expression for the thickness is

where T represents the thickness, Rd is the die radius, Rp is the
punch radius, µ represents the friction coefficient, Dr
represents the drawing ratio, n the strain hardening exponent,
B the material strength coefficient, and r the normal
anisotropy. All these parameter are obtained prior to the
design, while µ is obtained by generating a correlation
between the simulation and the experimental data of different
lubricants. Fig. 7 shows the architecture of the neural network
used in this work. The metal sheet used for the drawing is St-
16. The fact that the material is same in all the experiential
data established in the workshop, was all the same dictating
the fact that there was no need to include the strain hardening
coefficients. Fig. 7 shows a typical geometry of network used
in this paper to predict the cost function defined afore. It is
evident that there exist 4 input parameters and 2 output
parameters existing in the network so designed.

2. Gathering and Processing of Sample Data

The sample data is categorized in two basic parts in neural
network: the input data and the output data. In this paper, the
input data consists of die radius, punch radius, the friction
coefficient and the drawing ratio, established in the

Fig. 6 The schematic geometry of workpiece before and after drawing

Fig. 7 Feed-forward neural network model
TABLE I

SAMPLE DATA

No. Rd Rp µ Dr TA TB

1 4 8 0.1 2 0.811 0.832

2 6 8 0.1 2 0.852 0.835

3 8 8 0.1 2 0.875 0.839

4 10 8 0.1 2 0.881 0.841

5 12 8 0.1 2 0.905 0.846

6 14 8 0.1 2 0917 0.852

7 8 8 0.1 1.6 0.880 0.841

8 8 8 0.1 1.8 0.878 0.840

9 8 8 0.1 2.1 0.873 0.837

10 8 8 0.1 2.2 0.871 0.835

11 8 8 0.1 2.3 0.866 0.830

12 8 4 0.1 2 0.895 0.821

13 8 6 0.1 2 0.883 0.840

14 8 10 0.1 2 0.866 0.861

15 8 12 0.1 2 0.865 0.862

16 8 14 0.1 2 0.863 0.862

17 4 8 0.01 2 0.853 0.883

18 6 8 0.01 2 0.896 0.888

19 8 8 0.01 2 0.905 0.872

20 10 8 0.01 2 0.906 0.874

21 12 8 0.01 2 0.912 0.879

22 14 8 0.01 2 0.914 0.886

23 8 8 0.01 1.6 0.905 0.882

24 8 8 0.01 1.8 0.910 0.885

25 8 8 0.01 2.2 0.888 0.864

26 8 8 0.01 2.28 0.872 0.855

27 8 8 0.01 2.36 0.821 0.760

28 8 8 0.01 2.44 0.770 0.679

There was no need to normalize the thicknesses since they were 1cmm.

, , , , , ,d pT f R R Dr n B r (2)
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workshop. The output of the designed neural network consists
of thickness at two different parts of the product. The variation
of thickness after the deep drawing is established in the
workshop. The punch and die radii vary from 4mm to 14mm,
since these two numbers form the practical boundaries of the
die design. The higher radii than 14mm lead to “spring back”
while the smaller radii than lead to the rupture. The test was
conducted using St-14. The radii of the specimen were initially
taken to be 100mm.

The value of the friction coefficient was obtained in the
experiment and thereby, by using the FEM simulation and
comparing the results with that of the experiment data obtained
in the workshop. Consequently, it was assumed that common
press oil represents the coefficient of 0.1 while zinc stereat
represented that of 0.01. Different drawing ratios ranging from
1.6 to 2.44 for µ=0.01form the limiting drawing ratio
established in the workshop. The value of limiting drawing
ratio has a direct relation with the value of friction coefficient
of lubricant.

The output nodes of the neural network nodes predict the
thickness of two critical regions of the product in deep
drawing. The first point is the value of thickness at point A
(see Fig. 4) while the second point is the thickness at region B
the values of which is in Table I, in columns 6 and 7
respectively.

It is important to note that point B lies at the edge of
punched flat part of the workpiece made from direct contact of
the flat edge of punch’s flat circular surface to the plate sheet.
Point A lies on the beginning of the cylindrical region of the
workpiece. The region A is more critical. Therefore, the output
cost function is chosen in a way that 80% of the output cost is
dedicated to the thickness at point B while due to the lesser
significance of the critical point at B; it weighs 20% of the
output cost.

The sample sheets had a thickness of 1mm. Therefore, the
value of the thickness of the final product easily shows the
percent reduction in thickness. In the workshop it was
established that the after the plate reaches the value of 67.9%
of its initial thickness, the necking starts and consequently the
rupture starts. Hence, the more uniform the thickness and the
closer to the initial thickness. Hence, the chance of fracture
under static and dynamic loads will be lesser.

It is important to note that many a times there exists a large
difference in the magnitude of the variables. This fact results
in the formation of large number of singularities and
consequently local maxima/minima. Such data lead to the poor
convergence capability of the costs functions and thereby,
have a direct influence on the time for global search. Hence,
the sample data are conventionally normalized before training
the network. In this paper, the magnitude of the data was
relatively close to each other. Hence no normalization has
been done.

3. Number of Hidden Layers And Hidden Nodes

As a matter of fact, it is a well known there is a relation
between the numbers of hidden layer to the overall error of the
network. Hence, it can be concluded that addition of hidden
layers may decrease the network error. Therefore, accuracy of
the result is increased. This act also has the drawback of
increase in the topology of the network. Hence, the training
time for finding the values of the network weights gets
increased tremendously. There is another way which is widely
used to reach the desired precision that is by increasing the
number of nodes in the hidden layer. The neural network is a
mean to map the input data to the output data. There are some
relations between the hidden layer nodes and, input and output
nodes. In general there is no particular rule, but in most of the
papers in this matter, the number of the hidden layer nodes is
assumed to be a number around;

2 1N n (3)
Where N is the number of the hidden layer nodes while, n is
the number of input parameters. Therefore, a sum of 11 nodes
for the input may have even more satisfactory result while
satisfying the condition more or less.

4. Training and Testing of Data

A total number of 5 sets were made, each set containing 22
items for training the network while 6 were kept aside to test
the convergence of the network. Table II shows the given set
of data. The data for testing the convergence were chosen on
the random basis. While testing the network, it was found that
set number 5 had the least error for predicting the unknown 6
items. The sixth item had the largest number of epochs for the
convergence. The criteria for convergence test were an rms
error of 0.055. Table II shows different number of epochs
required to reach the specified error. For the prediction test it
was found that set number 5 had an rms error of 0.037 which
was the least among the 5 randomly chosen sets.

Consecutively, the weights of set number 5 were chosen as
the best weights being able to realize the space of the sample
data.

TABLE II

RESULTS OBTAIN FOR TESTING EACH SET OF DATA

Case Order Error Epochs
Test rms

error

1 5-7-13-18-21-26 0.05 5384 0.0038

2 3-8-15-18-24-27 0.05 158 0.0132

3 2-6-10-16-20-25 0.05 673 0.0057

4 3-9-17-21-23-26 0.05 437 0.0154

5
4-11-14-18-20-

26
0.05 14293 0.0035

As a result, these weights were used for predicting some
unknown values within the space of the sample data, and also
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to be used in GA to determine the best diameter for die and
punch for getting the highest and the most uniform thickness in
the deep drawing product. As a result, the values of thickness
of the deep drawing product are determined for equal punch
and die radii ranging from 4mm to 14mm given in the tabe3
and Table 4 with friction coefficients 0.1 and 0.01
respectively.

5. Training and Testing Of Data

Error back propagation is one of the most qualified neural
network being widely used. In special cases where there exists
large number of data covering a large space with several local
extremums with comparatively wide range of parameter space,
neural network is modified to highly qualified algorithms like
simulated annealing. The biggest drawbacks of such
algorithms are that they are rather time consuming. Taking
account the domain of the data, there was no need to
complicate the algorithm. Since the present algorithm was
enough satisfactory and have proved itself in this paper as well
as in many other researches, we found no need for
overdesigning our network.

The algorithms so defined for the determination of the
optimum parameters in deep drawing process were based on
genetic algorithm. The algorithm was so design that maximum
cost as well as the mean cost of the population was
monotonically increasing if not being stationary for some
generation. The population was chosen comparatively large,
that is, a number of 800 initial populations were chosen in
order to increase the chance of searching the outer space at
each evolutionary stage.  Therefore, there were 100 pair of
population reproducing at each generation.The mutation rate
was chosen to be 20%.

The strategy to reach the target in this paper can be seen in
the Fig.8. The theory of genetic algorithm shows that the
crossover operators as well as the selective operators have no
obvious effect on evolution [12]. At the same time, the
mutation operators have great potentials for increasing the
searching space. Thereby, the chance for sudden approach to
the desired cost function increases. Usually the neural net
programs are written, using C, VB, or C++ languages. Here,
the programs are written with the help of MATLAB but, no
tool box has been used.

IV. RESULTS AND DISCUSSIONS

The error dynamic convergence process is be observed and
error goals are set at any time to any arbitrarily number for
reaching convergence with  a certain precision. It is frequently
seen that as long as the action function is appropriate,
convergence steps are enough and the topology of the network
can approximate arbitrarily a nonlinear system to any degree
of precision. As a result, in order to test the generality of the
neural network, a set of five elements have been made, from
which the last set had the least error for prediction of the
unknown data. Fig. 9 shows the number of epochs required to
reach the training error to a value of only 0.05, the assumed

value. As tabulated in Table III, case 2 had the list number of
epochs to reach the required error for training the network.

At the same time it has relatively higher prediction error.
Instead, case 5 which had the maximum number of epochs had
the least error for the prediction of the unknown data for the
neural network. Therefore, case 5 had realized he space of the
data best and its weights our criteria. The test error for the
prediction of the conserved data was 0.0035 in case 5 which
are calculated on the r.m.s. error calculation criteria.

This value is guaranteeing the correct prediction of the
further data. The next step was to predict certain values
especially the thickness of workpiece for different die and
punch radii, and different friction coefficients. The values
obtained are tabulated in Table IV. The next task of this paper
was to find the best parameters that lead to the highest cost
function where the cost function was defined by

0.2* 0.8*cf B AT T T
(4)

where Tcf is the cost function, having the dimension of
thickness, TB the least thickness of the region B and TA the
least thickness of the region A.

Fig. 8 The optimization strategy
The values so found are tabulated in table five given in the

following page. For this test, different drawing ratios are taken
into consideration to find the best value serving the cost
function. It was found that for all the drawing ratios maximum
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cost function is the one with die and punch arc radii of 14mm.
since, the values more the 14mm lead to spring backing of the
workpiece special measures need to be taken in the design of
such specimens.

Consecutively, the aim was to find the values that lead to the
maximum cost function among all the cost in the entire
parameter of the defined space. The result was the case one of
the Table IV which was expected to be so.
The interesting point is that all the friction coefficients are the
least possible ones, i.e., 0.01. Fig. 10 shows the convergence
of the mean cost and the maximum cost to the same value
which occurs at around generation 18 of the randomly selected
population satisfying the boundary conditions so defined in the
problem. The red line shows the maximum cost function at
each generation while, the blue one shows the mean cost
function.

In Fig. 10, it is easily noticed that each generation is either
better or equal to the last generation. This fact highlights the
role of the sequences employed in the genetic algorithm. Since
these values are the predicted values, there is a chance of
deviation from the exact values by a small amount. Still, the
sequence is enough precise.

Fig. 11 depicts the thickness of different items used in
testing the accuracy of case 5.

TABLE III
PREDICTED VALUES OF WORKPIECE THICKNESS AFTER DEEP DRAWING FOR

DIFFERENT DIE AND PUNCH RADII, AND DRAWING RATIO EQUAL TO TWO

TABLE IV
PREDICTED VALUES OF WORKPIECE THICKNESS AFTER DEEP DRAWING FOR

DIFFERENT DIE AND PUNCH RADII, AND DRAWING RATIO EQUAL TO TWO

Dr Rp Rd µ TA TB Tcf

1.6 14 14 0.01 0.8928 0.8731 0.8770

1.7 14 14 0.01 0.8927 0.8729 0.8768

1.8 14 14 0.01 0.8926 0.8726 0.8766

1.9 14 14 0.01 0.8925 0.8723 0.8764

2.0 14 14 0.01 0.8924 0.8721 0.8761

2.1 14 14 0.01 0.8923 0.8718 0.8759

2.2 14 14 0.01 0.8921 0.8715 0.8756

2.3 14 14 0.01 0.8920 0.8712 0.8754

2.4 14 14 0.01 0.8919 0.8709 0.8751

In Fig. 11, N.N.B stands for neural network output
corresponding to the thickness at region “B” while, E.R.A
stands for the experimental records at point “A”. In most of the
similar paper, the output dimensions are normalized but here
since the maximum amount of the cost function is 1, such a

procedure is unnecessary.

Fig. 9 Training errors versus the number of errors in case 2

Fig. 10 Convergence of the mean cost to the maximum cost

Fig. 11 Results obtained in different test items in case 5 versus the
thickness at different regions of the product

V. CONCLUSION AND SUMMERY

This paper illustrates a neural network approach for
modeling and predicting the cylindrical products deep drawing
parameter. These parameters included die and punch radii,
friction coefficient and drawing ratios which are qualified by
the thickness values of the output, in search of the most
uniform and closer to the initial thickness.In this paper a good
model to realize the parameter space was obtained.

punch and
die radii

Friction coefficient= 0.1 Friction coefficient= 0.01

Region A Region B Region A Region B

Rp=Rd=4 0.8145 0.7801 0.8164 0.7811

Rp=Rd=6 0.8619 0.8293 0.8628 0.8295

Rp=Rd=8 0.88 0.8508 0.8804 0.8509

Rp=Rd=10 0.8874 0.8616 0.8877 0.8616

Rp=Rd=12 0.8906 0.8678 0.8908 0.8679

Rp=Rd=14 0.8921 0.872 0.8922 0.8721
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Meanwhile, the optimum values for different punch and die
radii were found. Consecutively, it was established that punch
and die radii of 14mm produce the best quality products in this
experimental data. Therefore, the rapidity and the efficiency of
determining deep drawing designing parameter for cylindrical
piece can successful improved. It also to note that the values
obtained via neural network has certain errors. This error
depends on the density of the relative distribution of the
training data. Hence, it may found that certain values do not
produce expected results due to the presence of low density
data around the required region.
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