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Abstract—Standard Hammerstein-Wiener models consist of a 

linear subsystem sandwiched by two memoryless nonlinearities. The 
problem of identifying Hammerstein-Wiener systems is addressed in 
the presence of linear subsystem of structure totally unknown and 
polynomial input and output nonlinearities. Presently, the system 
nonlinearities are allowed to be noninvertible. The system 
identification problem is dealt by developing a two-stage frequency 
identification method. First, the parameters of system nonlinearities 
are identified. In the second stage, a frequency approach is designed 
to estimate the linear subsystem frequency gain. All involved 
estimators are proved to be consistent. 
 

Keywords—Nonlinear system identification, Hammerstein 
systems, Wiener systems, frequency identification. 

I. INTRODUCTION 
AMMERSTEIN-WIENER systems consist of a series 
connection including a linear subsystem element 

sandwiched by two nonlinear blocs (Fig. 1). Clearly, this 
model structure is a generalization of Hammerstein and 
Wiener models and so it is expected to feature a superior 
modeling capability. This has been confirmed by several 
practical applications e.g. RF power amplifiers [1], submarine 
detection systems [2], ionospheric dynamics [3]. 

As a matter of fact, Hammerstein-Wiener systems are more 
difficult to identify than the simpler Hammerstein and Wiener 
models [4]. The complexity of the former lies in the fact that 
these systems involve two internal signals not accessible to 
measurements, whereas the latter only involve one. Then, it is 
not surprising that only a few methods are available that deal 
with Hammerstein-Wiener system identification. 

The available methods have been developed following four 
main approaches i.e. blind methods [4], [5], frequency 
methods [6], iterative nonlinear optimization procedures [7]-
[9], and stochastic methods [10]. 

Most previous works have focused on Hammerstein-Wiener 
systems with memoryless input nonlinearity and invertible 
output nonlinearity (e.g. [7], [9], and [11]). 

In this paper, the problem of identifying Hammerstein-
Wiener (Fig. 1) systems is addressed, for simplicity, in the 
continuous-time. Unlike many previous works, the model 
structure of the linear subsystem is entirely unknown. 
Furthermore, the system nonlinearities are not required to be 
invertible. The proposed identification methods also differ by 
the type of assumptions, made on both the system dynamic 
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and the input signals, and the nature of convergence analysis 
results. 

The major difficulty of the identification problem lies, on 
one hand, in the fact that the internal signals v  and w  are not 
accessible to measurement, on the other hand, in the form of 
input and output nonlinearities. In the present study, a 
frequency domain identification approach is designed based 
on the frequency geometric. First, the identification of system 
nonlinearities can be achieved by using a set of constant 
points. Then, a set of points of the linear subsystem frequency 
gain locus is estimated using a pre- ad post-controller [13], 
[14]. Doing so, the augmented system, including both the pre- 
and post-controller, boils down to a linear system with transfer 
function ( )G s . Then, the estimation of the linear element can 
be coped with using available methods. Finally, we note that 
the signals used are easy to generate. 

The outline of the remaining part of this paper consists of 4 
sections. The identification problem is formally described in 
Section II. The identification scheme for input and output 
nonlinearities will be discussed in Section III and the linear 
subsystem identification is coped with in Section IV. 

 

 
Fig. 1 Mapping Hammerstein-Wiener Model structure  

II. ASSUMPTION AND PROBLEM FORMULATION  
We are interested in systems that can be described by the 

Hammerstein-Wiener model (Fig. 1) with backlash input 
nonlinearity; the above model is analytically described by the 
following equations 

 
  ( ) ( ) ( ) ( ) ( ) ; ( )y t x t t h w t v f uξ ξ= + = + =          (1a) 

 

     

( )1
  ( ) ( ) * ( ) with  ( ) ( )w t g t v t g t L G s−= =            (1b) 

 
where * refers to the convolution operation and L to Laplace 
transform; g(t) denotes the impulse response of linear 
subsystem. The only measurable signals are the system input 
u(t) and output y(t). The noise ( )tξ  is supposed to be ergodic 
end it is a zero-mean stationary sequence of independent 
random variables. 

The system is subject to the following assumptions: 
A.1 The input nonlinearity (.)f  is polynomial; its degree is 

increased by a known integer n.  
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A.2 The linear subsystem ( )G s  is supposed to be 
asymptotically stable and (0) 0G ≠ . 

A.3 The output nonlinearity (.)h  is polynomial of known 
degree m. 

Except for the above assumption f(.), ( )G s  and (.)h  are 
arbitrary. In particular, the static output nonlinearity is of 
unknown structure outside the subinterval where the 
identification of system nonlinearities is carried out. The linear 
subsystem may be continuous- or discrete-time. 

We aim at designing an identification scheme that is able to 
provide: the estimates of the input and output nonlinearities (f 

and h); for any frequency ω , provide the estimates of 
( )( ), ( )G j G jω ω∠ ; 

Remark 1. The considered identification problem does not 
have a unique solution: if (f(u) , ( ),G s h(w)) represents a 
solution then, any model of the form (f(u)/k1 , ( )G s /k2 , h(k1 

k2w)) is also a solution (where k1 and k2 are any nonzero real). 
This naturally leads to the question: what particular model 
should we focus. This question will be answered later. 

III. IDENTIFICATION OF SYSTEM NONLINEARITIES  
In this section, we seek the estimation of the input and 

output nonlinearities. First, let I [ ]m Mu u=  the working interval 
within which the identification of system nonlinearities is 
carried out. Within the interval I, the output nonlinearity h(.) is 
assumed to be polynomial and arbitrary elsewhere. 
Accordingly, the Hammerstein-Wiener system is successively 
excited by N constant inputs { }1; ; NU U… , where the 

selected abscissas are arbitrarily chosen in the working 
interval I and N should verify the following condition 

 
  mnN +>                                    (2) 

 
Then, it follows A1 that, the input nonlinearity is 

polynomial function, it can be written as follows  
 

     1 0( ) n
nf x a x a x a= + + +…                      (3) 

 
Presently, the output nonlinearity takes also the following 

form (from A3) 
 

     1 0( ) m
mh x b x b x b= + + +…                     (4) 

 

On the other hand, let 0
  ... n
Ta a a⎡ ⎤⎣ ⎦=  and 0  ... m

Tb b b⎡ ⎤⎣ ⎦=  be 
the coefficients vector corresponding to the input and output 
nonlinearities respectively. Then, the resulted polynomial 
function p hof=  is of degree nm and entails the following 
structure  

 

   *
1 0( ) ( ) nm

nmp x h f x x xα α α= = + + +D …               (5) 

where *( ) (0) ( )f x G f x= . Let 0  ... nm
Tθ α α⎡ ⎤⎣ ⎦=  is the 

coefficients vector of the composed polynomial function p(.). 
Presently, to determine a set of points belonging to the 

polynomial function p(.), apply the input sequence 
  

   ( ) ju t U= for all [ ]( 1) r rt j LT jLT∈ −  with 1j N= …    (6) 
 

where rT  should be comparable to the system rise time. Then, 
as the system is asymptotically stable, its step response settles 
down (i.e. gets very close to final value) after a transient 
period of rLT  seconds with 1.L ≥  The number of points N  
is arbitrary but must satisfied (2). It follows from (1a) and (6) 
that, the internal signal v(t) takes N  constant values and turns 
out to be 

 

  ( ) ( )j jv t f U V= = for all [ ]( 1) r rt j LT jLT∈ −          (7) 
 

where 1j N= … . Accordingly, for constant excitations Uj 

applied within the interval [ ]( 1) r rj LT jLT−  ( 1j N= … ), as 

the linear subsystem ( )G s  is asymptotically stable, it follows 
that the steady-state of the internal signal w(t) is constant. 
Then, it is readily obtained from (1a)-(7), the undisturbed 
output x(t) takes N  constant values, in the steady state, that 
can be expressed as follows 

 

  *( ) ( )j j jX p U h f U== D  for 1j N= …              (8) 
 
Finally, notice that the steady-state undisturbed output jX  

( 1 )j N= …  can simply be estimated using the fact that 
( ) ( ) ( )y t x t tξ= + . The above results suggest the following 

estimator for jX
 

 

  
( 1)

1ˆ ( ) ( )
r

j
rr

jLT

j LT
X L y t dt

LT −
= ∫ for 1j N= …            (9) 

 
where rT  should be comparable to the system rise time and 
L≥ 1. Since N is of high integer, usually higher than nm+1, the 

optimal estimate 0( , ) ( , )ˆ ˆ ˆ( , )  ... nm
T

L N L NL Nθ α α⎡ ⎤⎣ ⎦=  of θ  is 
calculated based on the least-squares estimate. 
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TABLE I 
NONLINEARITIES IDENTIFICATION  

Stage 1 Apply the piecewise signal defined by (6). 

Record the system output ( )y t  for [ ]0 rNLT . 

Stage 2 Compute the filtered values ˆ ( )jX L  for 1j N= …  using the estimator (9). 

Stage 3 * Calculate the least-squares estimates 
 

  0
ˆˆ ˆ ˆ ˆ( , ) ( , ) ... ( , ) ( , ) ( , )nm nm

T
L N L N L N L N L Nθ α α θ α= =⎡ ⎤⎣ ⎦  using the set of points 

( ){ }ˆ, ( ) ; 1j jU X L j N= …  

* Deduce the estimate 
 

  0
ˆ ˆ ˆ( , ) ( , ) ... ( , )nm

T
L N L N L Nθ α α= ⎡ ⎤⎣ ⎦  

Stage 4 Set 0

n
q x=

 
and ˆ ( , ) 1na L N =

 

Take 1 0β =  denoting the coefficient of 
1nm

x
−

 in 0( )
nmm

q x= . 

Then 1 1 1
1

ˆ ˆ( , ) ( , )ˆ ( , ) nm nm
n

L N L N
a L N

m m
α β α− −

− = =
−

  

Do the following steps for 2 1k n= −…  

* Let 1

1 2
ˆ ( , )

n k

k k n kq q a L N x
− +

− − −
= + . 

* Compute 1( )k

m
q − .  

* Deduce kβ  and determine 
ˆ ( , )ˆ ( , ) nm k k

n k

L N
a L N

m
α β−

− =
−

 

Stage 5 The coefficients vector corresponding to h�  can be estimated by solving the system ( , )A b L N c=� , where ( 1, 1)A i j+ +  (0 , )i j m≤ ≤  is the 

coefficient of inx  in ( ) ( ) ( ), 1
ˆ ( )

j

L N n n

j j
f x q q

−
= =  and 

 

   0
ˆ ˆ ˆ( , ), ( , ), ... ( , )n nm

T
c L N L N L Nα α α= ⎡ ⎤⎣ ⎦  

 
Proposition 1. (see [12]).  

1) Let take the polynomial *p h f= D . The elements f* and h 
can be obtained by using the algorithm of Table I. 

2) The couple of components *( , )f h  is not unique, e.g. 
n m m nx x x xο ο=  and * *( ) ( )h f h x b f b= + −D D . 

Then, if the model ( (.), ( ), (.))f G s h  is solution of the above 
identification problem whatever, then it is readily checked 
that, any model ( (.), ( ), (.))f G s h  defined as follows is also 
solution  

 

  *
1 1 0( ) ( )f x k f x k k= −                           (10a) 

 

     
1 2

( )
( )

G s
G s

k k
=                                 (10b) 

 

     ( ))()( 02 kxkhxh +=                          (10c) 
 

whatever the real triplet ),,( 210 kkk  with 1k  and 2k  are 
nonzero real scalar.  

To solve this problem, it will prove judicious to focus on 
the model ( (.), ( ), (.))f G s h  characterized by the following 
properties:  

First, consider the polynomial function that entails the 
following structure  

  1 0

1
( ) ( ) ( ) nm

nm

p x p x h f x x xα α
α

= = = + + +� D …       (11) 

 
where ( ) ( ) / nmh x h x α=�  and /k k nmα α α=  ( 0k nm= … ).  

Let 0  ... nm
T

α αθ ⎡ ⎤⎣ ⎦=  is the coefficients vector of the 

polynomial function (.)p . 
Currently, we aim to obtain the elements of the polynomial 

function p h f= � D , where (0) 0f = . Let 0  ... n
T

a aa ⎡ ⎤⎣ ⎦=  be 

the coefficients vector corresponding to (.)f . It is readily 
checked from (10a)-(11) that 

 
  /k k na a a=   for 1k n= …                       (12a) 

 

     0 0a =    and   1na =                            (12b) 
 

Let 0  ... m
T

b bb ⎡ ⎤⎣ ⎦= � ��  be the coefficients vector corresponding 

to (.)h� . On the other hand, let us define the following 
function 
 

   1
1 ...n n n k

k n n kq x a x a x− −
− −= + + +  for  0 1k n= −…     (13) 

 
Knowing that 1na = , it is easy to check that 
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     0
nq x=    and   1 ( )n nq q f x−= =                    (14a) 

 
and for 1 1k n= −…  

 

     1
n k

k k n kq q a x −
− −= +                           (14b) 

 

Then, the (k+1)th coefficient of ( )k
mq  is the coefficient of 

nm kx − . Let βk denote the coefficient of nm kx −  in 1( )k
mq − . Also, 

it is readily obtained [12] 
 

   nm k n k km aα β− −= +    for   1 1k n= −…               (15) 
 
These ideas are formalized in the estimator of Table I. 

IV. LINEAR SUBSYSTEM IDENTIFICATION  
The problem of identifying the linear subsystem is dealt 

with in this section. The proposed solution is designed in two 
steps. First, an adequate controller is introduced. Many 
previous studies focused on compensating for input 
nonlinearity (e.g. [13], [14]). The obtained system 
representation is further transformed to cope with the 
unavailability of the internal signals v(t) and w(t). 

At this point, the input and output nonlinearities ( (.)f and 
(.)h ) are known. From the nonlinearity identification 

procedure (Table I), one gets estimates of input and output 
nonlinearities. For simplicity, we presently suppose that the 
estimated points have been exactly determined.  

On the other hand, knowing that the input nonlinearity (.)f  

is polynomial function, let 1 (.)f −  designates its inverse. To 
get profit from this result, a controller (Fig. 2) will be 
introduced at the input of system (see e.g. [13]-[14]). 
Furthermore, using the fact that the output nonlinearity (.)h  is 
polynomial function, there exists a non-zero interval such that 

(.)h  is invertible and let 1(.)h−  designates its inverse. The 

second key idea is to introduce the inverse 1(.)h−  of (.)h  at 
the system output (Fig. 2).  

Theoretically, the resulting system is equivalent to a linear 
subsystem with transfer function ( )G s . In this context, an 
approach is designed based on the frequency method. The 
resulting system is submitted to a given sine input 

 
  ( ) cos( )u t U tω=                              (16) 

 
for any frequency ω > 0, the amplitude V is judiciously chosen 
Then, the problem of identifying ( )G s  becomes a trivial 
issue. 
 

 

 
Fig. 2 The system to be identified augmented with pre- and post- 

adaptive controller 

V. CONCLUSION 
We have developed a new frequency identification method 

to deal with continuous-time Hammerstein-Wiener systems, 
the problem is addressed in presence of polynomials input and 
output nonlinearities.  

Accordingly, the nonlinear parts are determined first using 
the algorithm of Table I. The linear subsystem identification is 
coped with by using an adequate controller designed so that 
the resulting system becomes equivalent to a linear subsystem 

The originality of the present study lies in the fact that the 
system is not necessarily parametric and of structure totally 
unknown. It is interesting to point that the estimation of linear 
subsystem and nonlinearities are performed separately. 

Another feature of the method is the fact that the exciting 
signals are easily generated and the estimation algorithms can 
be simply implemented, compared with several published 
approaches. Finally, we note that the choice of interest 
frequency band is not required. 
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