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Identification of Disease Causing DNA Motifs in
Human DNA Using Clustering Approach

G. Tamilpavai, C. Vishnuppriya

Abstract—Studying DNA (deoxyribonucleic acid) sequence is
useful in biological processes and it is applied in the fields such as
diagnostic and forensic research. DNA is the hereditary information in
human and almost all other organisms. It is passed to their generations.
Earlier stage detection of defective DNA sequence may lead to many
developments in the field of Bioinformatics. Nowadays various
tedious techniques are used to identify defective DNA. The proposed
work is to analyze and identify the cancer-causing DNA motif in a
given sequence. Initially the human DNA sequence is separated as k-
mers using k-mer separation rule. The separated k-mers are clustered
using Self Organizing Map (SOM). Using Levenshtein distance
measure, cancer associated DNA motif is identified from the k-mer
clusters. Experimental results of this work indicate the presence or
absence of cancer causing DNA motif. If the cancer associated DNA
motif is found in DNA, it is declared as the cancer disease causing
DNA sequence. Otherwise the input human DNA is declared as normal
sequence. Finally, elapsed time is calculated for finding the presence
of cancer causing DNA motif using clustering formation. It is
compared with normal process of finding cancer causing DNA motif.
Locating cancer associated motif is easier in cluster formation process
than the other one. The proposed work will be an initiative aid for
finding genetic disease related research.

Keywords—Bioinformatics, cancer motif, DNA, k-mers,
Levenshtein distance, SOM.

[. INTRODUCTION

NA is the hereditary information in human and almost all

other organisms. Nearly every cell in a human body has
the same DNA. Most DNA is located in the cell nucleus. DNA
is represented by four chemical bases called adenine (A),
guanine (G), cytosine (C), and thymine (T). In genreral 3 billion
bases are there in human DNA. The sequence, of these bases
determines the information available for building and
maintaining an organism. In DNA, A and C are paired with T
and G Respectively. There pairs are called as base pair. Each
base is handy with sugar phosphate Combination of base, sugar,
and phosphate are called as nucleotide. Nucleotides are settled
in two long strands that form a spiral called a double helix.

A DNA motif is defined as a nucleic acid sequence pattern
that has some biological significance. Normally, the pattern is
fairly short (5 to 20 base pairs (bp) long) and is known to recur
in different genes or several times within a gene [1]. Finding
motifs in genomic DNA sequence is one of the most important
and challenging problems in both bioinformatics and computer
science. Motifs are short, recurring patterns in DNA sequence
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having biological function [22].

Many ongoing developments are in this field. Experimental
approaches for finding DNA motifs, e.g., ChIP-chip [2], ChIP-
seq, and micro-array technology [3], are still laborious, time
consuming, and expensive. Last two decades, more number of
computational approaches have been used for DNA motif
analysis [4]. Over these years, many motif search algorithms
and web-based tools have been developed based on
computational intelligence systems and data mining. Several
tools are used for computational processing yields not adequate
performance. String representation and matrix representation
are the two popular methods for motif representation [5], [6]. In
order to prevent the consequence of disease, it is necessary to
find the presence of disease causing sequence in the human
DNA at early stage. Hence it is required to find an accurate
detection of sequence match in DNA. Thus, effective motif
discovery remains challenging in spite of the good number of
endeavors over the previous years, which requires the
investigation of potential outcomes for enhanced
advancements.

The paper is organized as follows; Section II explains the
related works. Section III describes the methodology used for
identifying the disease-causing DNA motifs from DNA
sequence. Experimental results are discussed in section IV.
Section V deals about the conclusion and future enhancements
of the proposed work.

II.RELATED WORKS

To process the DNA sequence and discover the DNA
motif from the massive DNA data set [13], a web service called
Argo Compute Unified Device Architecture was designed.
Clustering using genetic algorithm (GA) [7] helps to find
regulatory motifs in DNA sequence. GA with three kinds of
operations such as addition, deletion, mutation is considered for
motif finding [10]. Other algorithms such as swarm intelligence
based Gravitational Search algorithm (GSA) and Artificial Bee
Colony algorithm also helpful in DNA motif discovery [11].
Moreover, disease specific and healthy control specific motifs
can also be discoverable one using computational algorithm
[12]. Mutation in DNA motif can be identified [15] using scalar
and vector scoring representation methods.
A(C/G)AA(C/G)(A/T) is a motif in association with hotspots in
various human cancers such as blood cancer, breast cancer, lung
cancer, kidney cancer, stomach cancer, liver cancer, large
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intestine cancer, etc. [21]. Real DNA dataset uses for analysis
require some kind of DNA owner’s privacy. A private DNA
motif finding algorithm was proposed [8] to protect the privacy.

To handle large size of data sets k-mer subsequence analysis
is essential in computational algorithm [17]. It will reduce
processing time and occupy less space in DNA sequence
processing. Clustering based DNA motif discovery methods
extracts clusters of same length k-mer sequences. SOM is a
powerful clustering algorithm and fuzzy SOM was used for
DNA motif discovery [9]. SOM is a very good structural
classifier for finding novel motifs [16]. To improve the
performance of SOM, noise filtering from the input DNA
sequence is useful [14]. Distance of strings is calculated using
Levenshtein method and feature distance method [18].
Similarity between two strings can be measured by the distance
between them. Number of transformations required to
transform one string to another string is termed as Levenshtein
distance. A transformation represents the insertion, deletion and
substitution of characters in a string [20]. Classification of DNA
sequences are done using the algorithm of enhanced SOM and
Eugene’s Hom, MEME is used to predict the system efficiency
[19].

Observations made from the above discussed literature are (i)
Motif discovery from a DNA sequence is a challenging task.
(i) Clustering and artificial intelligence algorithms are suitable
for motif discovering process (iii) without losing DNA
information, computationof k-mer separation (sub sequencing
of DNA data) is required (iv) SOM performs well for clustering
of DNA sequence in motifsfinding. (v) Distance metrics is
essential to calculate the similarity between strings.

III. METHODOLOGY

The proposed method contains three steps as follows A. K-
mer separation B. Clustering k-mersC.Identification of cancer
motif. The diagrammatic representation of the proposed method
is shown in Fig. 1.

A. K-mer Separation

Human DNA sequences are collected from National Center
for Biotechnology Information (NCBI). DNA is separated as k-
mers using k-mer separation rule. Due to the large size (total
number of characters presents in the DNA sequence) of the
DNA sequence, it is very difficult to process the total sequence.
Hence k-mer separation is performed. K-mers are substrings of
the DNA sequences over the alphabets {A, C, G, T}. Initially
the k-mer length (k) is fixed according to the length of the
disease associated motifs. Total numbers of k-mers [17] are
obtained from (1),

Total numbers of kpersobtained =N — K + 1 (1)

where N is the length of human DNA sequence and K is the size
of k-mer & 1< K <12. In this work, the size of the reference
pattern of cancer associated human DNA motif is six. So, the
size of k-mer is fixed as six for processing.
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Fig. 1 Flow diagram of proposed methodology

B. Clustering K-mers

An amount of the similarity between two patterns drawn
from clustering procedure. Mean and median feature values are
extracted from human DNA for grouping k-mers. Based on
these two input features, k-mer is grouped into clusters using
SOM.

1. Self-Organizing Map

SOM is a kindof Artificial Neural Network [19]. It follows
unsupervised learning [18], [19]. It maps high dimensional data
into low dimensional grid, like hexagonal or rectangular two-
dimensional grids [19]. Based on distance measures SOM can
performed well for strings and numerical data [18]. SOM is
implemented in four steps such as (a) initialization (b)
activation (c) updating and (d) continuation [19].

(a) Initialization
Random values are chosen for initial weight vectors W; and

a small positive value is assigned to the learning rate parameter
a.
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(b) Activation

Input vector X is utilized for activating SOM network. Using
minimum Euclidean distance measure, the Best Matching Unit
(BMU) neuron X; at iteration p is determined. It is given by (2):

E = min[|[X = W;m)|[= | Zii[X: - Wy ®») @)

where X; is the input vector and i = 1,2, ...n, n is the number
of neurons in the input layer, W;; (p) is the weight repairing at
iteration p and i = 1,2, ...n, here n is the number of neurons in
the input layer .j = 1,2,..m, where m is the number of
neurons in the SOM layer.

(¢) Updating
Weight update is done using (3):

Wi (p+1) =Wp) +0@a®) X)) —W; (®) 3)

where W;; (p) is the weight repairing at iteration p,i=
1,2, ...n here n is the number of neurons in the input layer, j =
1,2, ...m where m is the number of neurons in the SOM layer,
where O is the distance from the BMU i.e. neighborhood
function.

(d) Continuation

Until no change occurs in the feature map, repeat step (b) and
step (c).

C.ldentification of Cancer Motifs

Human DNA sequence containing a short length of
nucleotides pattern called motif. Reference pattern of cancer
associated human DNA motifs [21] are used, for identifying the
presence of cancer motifs in the human DNA k-mers cluster.
TABLE 1 shows the cancer associated human DNA motifs
(length of motif is 6). Levenshtein distance measure is used for
the identification of cancer motifs.

TABLEI
CANCER ASSOCIATED HUMAN DNA MOTIFS
Motif No. Cancer associated motifs
1 ACAACA
ACAACT
ACAAGA
ACAAGT
AGAACA
AGAACT
AGAAGA
AGAAGT

[c RN e Y I N v

1. Levenshtein Distance Measure

Similarity between two strings (source, target) is measured
by Levenshtein distance [20]. It is also called as edit distance.
In this work, Levenshtein distance is measured using dynamic
programming. K-mer string is considered as source and cancer
associated motif string is considered as target. The distance
obtained from this measure refers to the number of insertions,
deletions or substitutions are required to transform the k-mer
string to cancer associated motif string.

If the obtained distance is zero (i.e. all the characters of k-
mer string is exactly matches with the characters of cancer
associated motif string), then it represents the human DNA
sequence having the cancer associated motifs. While the
obtained distance is other than zero (i.e. 1,2, 3 ..., k where k
is the length of k-mer string), then it considered human DNA
sequence having no such cancer associated motifs.

Dynamic programming has two cases (i) Match occurrence
of source and target characters (ii) Mismatch occurrence of
source and target characters. These two cases are shown in (4)
and (5) respectively:

dlnm]=d[n—-1,m—-1]+0,
if n,m>0ands, = t,(4)
d[ln,m—-1],d[n -1, m],)
dln—1,m-1] !
if n,m>0ands, # tp, )

dln,m] =1 +min<

where n and m is the length of k-mer and cancer associated
motif respectively, n=012,..k and m=
0,1,2, ... k.d[n, m] represents the distance value between k-mer
and cancer associated motif. Where s,, is the n" character of k-
mer (source string), t,,, is the m™ character of cancer associated
motif (target string).

IV. EXPERIMENTAL RESULTS

In this proposed system experiments for k-mer separation,
feature extraction for SOM clustering and identification of
cancer associated motifs has been done using Matlab 2013b
tool. Orange 2.7 tool is used for clustering k-mers. FASTA
format of cancer associated human DNA sequences are
collected from NCBI. Details of dataset are shown in TABLE
II. Experiments are done for the dataset mentioned in TABLE
II, in which experimental results of Human BRCA1 gene
(breast cancer) and stomach cancer therapeutic agent-target
gene are discussed in this section. Due to the large size (number
of characters) of data, portion of human DNA data in FASTA
format is shown in Fig. 2.

TABLE I
CANCER ASSOCIATED HUMAN DNA MOTIFS

NCBIdata Human DNA sequence
S.No accession length (Total number of Name of the data in NCBI
number  characters in DNA data)
1 U37574.1 3798 Human BRCAL1 gene
(breast cancer)
Homo sapiens breast and
2 DQI115319.1 383 ovarian cancer BRCA2
gene
Homo sapiens breast and
3 Y08757.1 1482 ovarian cancer BRCAI
gene
Homo sapiens breast
4 AF348515.1 2145 cancer BRCA2 gene
5 BC047121.2 1314 Homo sapiens cDNA clone
6 LV501046.1 1983 Stomach cancer therapeutic
agent -target gene
Gene therapeutic agent —
7  DII58975.1 1967 large intestine cancer,

bladder, lung cancer
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»037574.1 Human BRCAl gene, partial cds

CTECTGGNCCGGETGCTAGENCCCTGACTGLCCGGEGCCEGGGETGLEGG5CCCECTBAGCCCGCECCTCA
CCTGGRACTCGCGCTGECT GECEAGLGCTGLGCGCAGNCCCAGT TCCCACACCCGCCTCTCCCTCCACAS
TTCCCCGLAAGCAGAGEEAGCCGGCTCTGGLTTCGGCCAGCCCAGRGAGGGGLCCCCACAGCGCAGTGGE
GEECTGAAGEGCTCCTCCAGCACGENCAGAATGGACGCCAAGENCGAGGAGGCGLCGAGAGCGAGLGAGG
GCTGCTAGCACGTTIGT CACCTCGCATT CTGAACCACAGACTCTCCAACT CTCCGGNGCTTTICGCCCACT
CGGTCCCTCAGAACACGRAAGEGCTCTCTCATCCTGTCACTARRRCGATTAGCTGTCCGGAGRCACGGARA
AAGTCGCCCCTCTTCTITGCAGGATTCCTCCCTTGAACTTCTCCARACCCTCTTAGIGTGACGTGACCEC
ACCCCTAGCTARCCCAGGCTGCTTCCTTACCAGCTTCCCGCCCCCT GEEGAGECEGCARATGCARAGACCG
TCCECTGLCAGCTCTGCCGCTATCICTGT GEGGT GART CTAACATGGLGGACARAGACAGTAACTAGTCC
CETTTCTCCECGTTTTCECCARGAAGATTGGCTCTTACCACTTGTCCCTCARRACGACCACCCCATTGAC
TGETGGCEATTGLCTCOACGEAGACGLGECARRAGCARGCTGRACCCGRAARARTARCARACACTGELGCT
GAGGGGTGEARCTACGAGT GLGCAGACAT GEGCCAGAGLGCATTTCCCCTGCCCCAGGCARATTCGLCGE
TCACTGCGTCCCCGCAGGCCACTRACCTTACARGACTACTTGCCCCAGACTCCTGGEECTGEATGGGAAT
TGTAGTCTCCCTARAGAGT TGTACGTATCTTTTTARGGCCTAGTTICTGCTTTCHARATACGAARACATR
ACACTCCAGTCCATAACTGTTGACRAGTACRAGCGCGCACAGET CTCCAATCTATCCACTGGATTTCCGT

Fig. 2 Human DNA data (FASTA format)

A.K-merSeparation

Human DNA sequences are separated as k-mers, according
to (1). Based on the size of cancer associated motifs, k size is
taken as 6. Repeated pattern of k-mers are considered one time
for further process. Obtained total number of k-mers are 2267,
1256 for breast cancer data and stomach cancer data
respectively. Table III shows some sample of separated k-mers
for breast cancer data and stomach cancer data.

TABLE III
SAMPLE OF SEPARATED K-MERS (K=6) FOR BREAST CANCER DATA AND
STOMACH CANCER DATA

S.No. K-mer: breast cancer data K-mer: stomach cancer data
1 AAAACA ACCATC
2 ACAAAA ATCCCG
3 CTCTCC CCATCC
4 CCAGCT CACCAT
5 GCTCTG GCTGCG
6 GAGGCT GGCTTC
7 TGAGAG TGCACC
8 TACATA TTCTGG
9 ACAGAT ACATCG
10 CCGCAA CATGAT

B. Clustering K-mers

Separated k-mers are clustered based on the features (mean
and median) calculated from k-mers. ASCII values of
characters are used for calculating mean and median. Table IV
shows some samples mean and median of separated k-mers for
breast cancer and stomach cancer data.

TABLE IV
SAMPLE OF SEPARATED K-MER FEATURES- MEAN AND MEDIAN

Breast cancer data Stomach cancer data
K-mer Mean Median  K-mer Mean Median

AAAACA 653333 65 ACCATC 69.1666 67
ACAAAA 65.3333 65 ATCCCG 70.1666 67
CTCTCC 72.6666 67 CCATCC  69.5 67
CCAGCT 70.1666 67 CACCAT 69.1666 67
GCTCTG 74 71 GCTGCG 71.8333 71
GAGGCT 715 71 GGCTTC 74 71
TGAGAG 71.1666 71 TGCACC 70.1666 67
TACATA 71.1666 66 TTCTGG 76.8333 77.5
ACAGAT 695 66 ACATCG 69.8333 67
CCGCAA 67 67 CATGAT 72.6666 69

%)
gxooo\lom.l;wm—-oz

SOM constructs a map with calculated features using 8*8
mapping topology. The map size is fixed based on the default
size used in MATLAB 2013b tool. Therefore 64 nodes are
created (i.e. 64 clusters).Those 64 cluster nodes are represented
as (0,0), (0,1), (0,2), (0,3), ....., (0,7), (1,0), (1,1), (1,2), ....,
(1,7), (2,0), (2,1), (2,2), ... ,(2,7), (3,0), (3,1), (3,2), .... ,(3,7),
(4,0), (4,1),(4,2), ....,(4,7),(5,0), (5,1),(5,2), ...., (5,7), (6,0),
6,1), (6,2), ...., (6,7), (7,0), (7,1), (7,2), ....., (7,7). Due to
more number of clusters, here two k-mer cluster details of
breast cancer data and stomach cancer data are shown in Tables
V and VI respectively. In Table V, nodes (0,4) and (5,1) of
breast cancer data and in Table VI, nodes (0,1) and (7,3) of
stomach cancer data are discussed.

TABLE V
SAMPLE OF K-MER CLUSTER DETAILS OF BREAST CANCER DATA
Node (Cluster) ~ Number of
position in instances (k- k-mer Mean  Median

SOM mers) in cluster
GGAGGC 69.33334 71
GGCAGG 69.33334 71
GGGGCA 69.33334 71
GAGGCG 69.33334 71
GGCGGA 69.33334 71
GGGCAG 69.33334 71
ACGGGG 69.33334 71
AGGGGC 69.33334 71
CGAGGG 69.33334 71
GACGGG 69.33334 71
GAGGGC 69.33334 71
AGGCGG 69.33334 71
AGGGCG 69.33334 71
GCGAGG 69.33334 71

(0,4) 27 GGGGAC 69.33334 71
CAGGGG 69.33334 71
CGGAGG 69.33334 71
CGGGAG 69.33334 71
CGGGGA 69.33334 71
GCAGGG 69.33334 71
GCGGAG 69.33334 71
GCGGGA 69.33334 71
GGACGG 69.33334 71
GGAGCG 69.33334 71
GGCGAG 69.33334 71
GGGAGC 69.33334 71
GGGCGA 69.33334 71
GGAGGC 69.33334 71
GGCAGG 69.33334 71
GTGGGG 73.16666 71
GGGGTG  73.16666 71

(5,1) 5 GGGGGT 73.16666 71

GGGTGG  73.16666 71
TGGGGG 73.16666 71

C. Identification of Cancer Motifs

To find the presence of cancer associated motifs, Levenshtein
distance is applied on all the obtained k-mer clusters and the
reference pattern of cancer associated human DNA motifs as
discussed in section ITI(C). TABLE VII shows the identified
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cancer motifs in breast cancer data and stomach cancer data. Six
cancer associated human DNA motifs are matched with breast
cancer data and two cancer associated motifs are matched with
stomach cancer data.

D.Time Taken for Identifying Cancer Associated Motifs

Time taken for identifying cancer associated motifs is
analyzed in two different ways such as (i) after clustering k-
mers (for each k-mer clusters) and (ii) before clustering k-mers
(for whole separated k-mers). These two approaches show very
less time difference. Time taken before clustering k-mers shows
less amount of time than the time utilization after clustering k-
mers, for both breast and stomach cancer data. But locating the
k-mer which is matched with cancer associated motif is easy in
k-mer clusters. Because number of k-mers within one cluster is
lesser than the number of k-mers for whole separated k-mers.
This will reduce the search in k-mer cluster. Tables VIII and IX
show the time taken for identifying cancer associated motifs in
breast cancer data and stomach cancer data respectively.

V.CONCLUSION

This proposed work is developed for analyzing and
identifying the cancer-causing DNA motif in a human DNA
sequence. K-mer separation reduces the search space of the
human DNA sequence. Because repetition of k-mer is
considered one time for processing. K-mer clustering is done
using SOM, it calculates two features namely mean and median.
It is effective one, because huge number of separated k-mers
are grouped into small number clusters and it gives the
transparent grouping results. Dynamic programming is used for
identifying the cancer associated motifs and Levenshtein
distance is used for comparison. It is suitable for finding the
distance (i.e. number of transformations required to change a k-
mer string to cancer associated motifs) between k-mer string
and reference pattern of cancer associated human DNA motifs.

For identification of presence of cancer associated motifs,
processing all k-mers without forming cluster takes less amount
of time. But k-mer cluster seems to be effective for locating the
cancer associated motifs, because k-mers count within each
cluster is lesser than the k-mers count for whole separated k-
mers. Experimental results of this proposed work indicate that
both breast and stomach cancer data contain the cancer

associated motifs. Thus, the proposed work will be an essential
aiding tool for finding the cancer disease causing DNA motif
from human DNA sequence.

TABLE VI
SAMPLE OF K-MER CLUSTER DETAILS OF STOMACH CANCER DATA
Node (Cluster) Number of
position in  instances (k-mers)  k-mer Mean  Median

SOM in cluster
CCATCC  69.5 67
CATCCC  69.5 67
CTCACC  69.5 67
CATGAA 695 66
ACAAGT  69.5 66
CCACCT  69.5 67
CCTCAC  69.5 67
TCCACC 695 67
AAAGCT  69.5 66
AACGAT  69.5 66
ACATGA 695 66
ACCCCT  69.5 67
AGAACT 695 66
AGACAT  69.5 66
ATCGAA  69.5 66

(0,1) 31 ATGAAC  69.5 66
CACTCC  69.5 67
CCACTC  69.5 67
CCCATC  69.5 67
CCCCTA  69.5 67
CCCTAC  69.5 67
CCCTCA  69.5 67
CTACCC  69.5 67
GATCAA  69.5 66
TACAAG 695 66
TACAGA  69.5 66
TAGACA  69.5 66
TCAAGA 695 66
TCGAAA  69.5 66
TGAACA  69.5 66
TGCAAA  69.5 66
GGGTGG 73.1666  71.0
GGTGGG 73.1666  71.0

(7,3) 5 GTGGGG 73.1666  71.0

TGGGGG 73.1666  71.0
GGGGTG 73.1666  71.0

TABLE VII
IDENTIFIED CANCER ASSOCIATED MOTIFS IN BREAST CANCER DATA AND STOMACH CANCER DATA

Identified cancer associated motifs in breast cancer data

S. Canft‘er mo'tif 038 (o motif Ngde ' K-mey location in Matched k-mer
No. mentioned in Table I (cluster) position in SOM  corresponding node (cluster)
1 3 ACAAGA 1,7 32 ACAAGA
2 4 ACAAGT 4,7) 53 ACAAGT
3 5 AGAACA (1,7) 80 AGAACA
4 6 AGAACT 4,7 7 AGAACT
5 7 AGAAGA 2,7 15 AGAAGA
6 8 AGAAGT (7,7) 40 AGAAGT
Identified cancer associated motifs in stomach cancer data
1 4 ACAAGT 0,1) 5 ACAAGT
2 6 AGAACT 0,1) 13 AGAACT
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TABLE VIII
TIME TAKEN FOR IDENTIFYING CANCER ASSOCIATED MOTIFS IN BREAST CANCER DATA: TIME UTILIZATION BEFORE CLUSTERING K-MERS (FOR WHOLE
SEPARATED K-MERS) AND TIME UTILIZATION AFTER CLUSTERING K-MERS (FOR EACH K-MER CLUSTERS)

Total number of k-mers Elapsed time (in seconds)
2267 5.216074
S.No. Node (cluster) position in SOM Number of instances (k-mers) in cluster Elapsed time (in seconds)
1 (0,0) 65 0.286370
2 (0,1) 52 0.165626
3 (0,2) 36 0.109144
4 (0,3) 65 0.190538
5 (0,4) 27 0.084368
6 (0,5) 62 0.189373
7 (0,6) 47 0.144888
8 (0,7) 0 0
Elapsed time for 0 layer 1.170307
9 (1,0) 14 0.042168
10 (1,1) 0 0
11 (1,2) 38 0.107069
12 (1,3) 0 0
13 (1,4) 0 0
14 (1,5) 76 0.218969
15 (1,6) 47 0.137617
16 (1,7) 113 0.327274
Elapsed time for 1% layer 0.833097
17 (2,0) 0 0
18 @.1) 0 0
19 (2,2) 33 0.093700
20 (2,3) 28 0.082005
21 2,4) 77 0.210735
22 (2.5) 0 0
23 (2,6) 59 0.167684
24 2,7) 48 0.157067
Elapsed time for 2" layer 0.711191
25 (3,0) 40 0.197100
26 3.1 66 0.225600
27 (3,2) 43 0.128946
28 (3.,3) 0 0
29 (3.4 1 0.005046
30 (3.,5) 105 0.293890
31 (3,6) 78 0.219529
32 3,7) 0 0
Elapsed time for 3 layer 1.070111
33 (4,0) 45 0.119311
34 4,1 45 0.125585
35 (4.2) 90 0.257835
36 (4.3) 0 0
37 (4,4) 64 0.164639
38 (4,5) 78 0.209304
39 (4,6) 80 0.222236
40 4.7) 88 0.250105
Elapsed time for 4" layer 1.349015
41 (5,0) 88 0.227403
42 (5,1 5 0.013575
43 (5,2) 0 0
44 (5,3) 65 0.169711
45 (5.4) 11 0.031081
46 (5,5) 0 0
47 (5,6) 0 0
48 (5,7) 12 0.031677
Elapsed time for 5 layer 0.473447
49 (6,0) 86 0.230100
50 (6,1) 0 0
51 (6,2) 22 0.069530
52 (6,3) 0 0
53 (6,4) 22 0.062232
54 (6,5) 2 0.006778
55 (6,6) 0 0
56 (6,7) 0 0
Elapsed time for 6" layer 0.368640
57 (7,0) 0 0
58 (7,1) 83 0.210134
59 (7,2) 0 0
60 (7,3) 68 0.177690
61 (7,4) 0 0
62 (7,5) 0 0
63 (7,6) 7 0.020648
64 (7,7) 86 0.244197
Elapsed time for 7" layer 0.652669

Total elapsed time for clusters (from 0™ layer to 7" layer) 6.628477
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TABLE IX
TIME TAKEN FOR IDENTIFYING CANCER ASSOCIATED MOTIFS IN STOMACH CANCER DATA: TIME TAKEN BEFORE CLUSTERING K-MERS (FOR WHOLE SEPARATED
K-MERS) AND TIME UTILIZATION AFTER CLUSTERING K-MERS (FOR EACH K-MER CLUSTERS)

Total number of k-mers Elapsed time (in seconds)
1256 3.086345
S.No. Node (cluster) position in SOM Number of instances (k-mers) in cluster Elapsed time (in seconds)
1 (0,0 0 0
2 0,1) 31 0.155338
3 0,2) 27 0.101214
4 0,3) 44 0.147568
5 (0,4) 41 0.128624
6 0,5) 52 0.148558
7 (0,6) 34 0.098779
8 0,7) 92 0.244968
Elapsed time for 0" layer 1.025049
9 (1,0) 0 0
10 (LD 18 0.060271
11 (L,2) 7 0.019075
12 (1,3) 23 0.070542
13 (1.4) 0 0
14 (1,5) 0 0
15 (1,6) 0 0
16 (1,7 0 0
Elapsed time for 1% layer 0.149888
17 (2,0) 66 0.185137
18 2,1 3 0.009387
19 2,2) 0 0
20 2,3) 46 0.127351
21 2.4 15 0.039764
22 (2,5) 0 0
23 (2,6) 57 0.157449
24 2,7 0 0
Elapsed time for 2" layer 0.519088
25 (3,0 6 0.018816
26 3.1 0 0
27 3.2) 41 0.133838
28 (3.3) 1 0.004347
29 3.4 0 0
30 (3.5) 60 0.163426
31 (3.,6) 2 0.008072
32 3,7 0 0
Elapsed time for 3 layer 0.328499
33 (4,0) 47 0.130447
34 4,1 52 0.153686
35 (4,2) 35 0.105823
36 (4,3) 9 0.027266
37 4.4 0 0
38 (4,5) 0 0
39 (4,6) 33 0.096343
40 4,7 23 0.066653
Elapsed time for 4" layer 0.580218
41 (5,0 74 0.200858
42 5.1 31 0.091123
43 (5,2) 0 0
44 (5,3) 0 0
45 (5.4 27 0.106580
46 (5,5) 0 0
47 (5,6) 27 0.080713
48 (5,7) 0 0
Elapsed time for 5™ layer 0.479274
49 (6,0) 0 0
50 6,1) 0 0
51 6,2) 0 0
52 6,3) 20 0.059014
53 (6,4) 39 0.113959
54 6,5) 9 0.032070
55 (6,0) 42 0.116160
56 6,7) 0 0
Elapsed time for 6™ layer 0.321203
57 (7,0) 0 0
58 (7,1 14 0.045669
59 (7,2) 17 0.057360
60 (7,3) 5 0.013987
61 (7,4) 0 0
62 (7,5) 22 0.068615
63 (7,6) 29 0.084266
64 (7,7) 35 0.099474
Elapsed time for 7% layer 0.369371

Total elapsed time for clusters (from 0" layer to 7™ layer) 4.267590
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Future enhancement of this work can be done for considering
the mutation in disease causing motifs. Different type of
clustering and distance computing method can be used in future
work. It can be extended for finding other diseases such as
sickle cell anemia, Huntington’s disease.
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