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Identification of an Unstable Nonlinear System:
Quadrotor

Mauricio Peña, Adriana Luna, Carol Rodrı́guez

Abstract—In the following article we begin from a multi-parameter
unstable nonlinear model of a Quadrotor. We design a control to
stabilize and assure the attitude of the device, starting off a linearized
system at the equilibrium point of the null angles of Euler (hover),
which provides us a control with limited capacities at small angles
of rotation of the vehicle in three dimensions. In order to clear this
obstacle, we propose the identification of models in different angles
by means of simulations and the design of a controller specifically
implemented for the identification task, that in future works will allow
the development of controllers according to fast and agile angles of
Euler for Quadrotor.

Keywords—Quadrotor, model, control, identification.

I. INTRODUCTION

AQuadrotor is an agile and flexible vertical take-off
aerial vehicle with capabilities to work in multiple

applications such as image recognition [5], [6], [26],
agricultural applications [24], military tactics [13] and so on.

Several articles have published many models and controllers
implemented in different ways to make motion control of
a Quadrotor [25]–[27], being the PhD thesis [10], the most
complete and illustrative document on this subject. Other
authors we have started from this experience to improve the
operating features of the vehicle.

Fig. 1. Reference frame in Quadrotor

In spite of the controllers obtained from analytical models
have a good performance, we propose that the controllers
designed using experimentals models could have better
responses since the controller designed is obtained from
real values. This article aims to show a simulation case

M. Peña is with the Department of Mechanical Engineering, Libre
´

in which mathematical models are based on identification
techniques such as parameter estimation and ARX (Auto-
Regressive with eXogenous inputs) in order to design controls
in different positions and angular velocities to extend the range
of operation.

Section II presents a nonlinear model and its linearized
model at an equilibrium point. Section III-A shows LQR
control with integral effect and its performance, and then it
is applied in section IV-B1 where a controller with observer
is designed which allows a mathematical solving for the
plant that makes possible the model identification from ARX
techniques and estimation of parameters given in Section
IV-B. Finally, the conclusions raise some observations and
suggestions to consider in making identifications of nonlinear
and unstable models. [5]–[12], [14]–[17], [22], [23], [27], [28].

II. MATHEMATICAL MODEL

A Quadrotor consists of a central body and four beams
joined to it. Each beam has a motor with two rotating wings
at the far extreme. The wings give sustentation to the vehicle
and offer the possibility of controlling the orientation and
translation of the system.

In the identification of nonlinear and unstable systems, as
a Quadrotor, it is indispensable to count on some physical
knowledge of the system because it helps to understand its
unstable behavior when some test signals are introduced.

Fig. 2. Definition of Roll, Pitch and YawUniversity, Bogota, Colombia, (e-mail: mauriciovladimirp@gmail.com).
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The dynamic model of the vehicle developing in [18], [21]
takes into account the aerodynamic effects of the rotating
wings and results in an unstable non-linear system.

Fig. 1 shows the Quadrotor and its reference frame which is
represented by the rotational transformation of the Roll-Pitch-
Yaw Euler angles as in Fig. 2.

Euler angles - Roll (φ), Pitch (θ) and Yaw (ψ) - are defined
as reference frames x, y, z rotations around Z, y

′
and x

′′
in

the amounts ψ, θ and φ respectively, as can be seen in Fig. 2.
According to the Newton-Euler equations, the translational

and rotational accelerations for the Quadrotor aerial vehicle
can be written as in (1):[

ẍ ÿ z̈ φ̈ θ̈ ψ̈
]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(sinφ sinψ + cosψ sin θ cosφ)
i=4∑
i=1

Ti

m

(− cosψ sinφ+ sinψ cosφ sin θ)
i=4∑
i=1

Ti

m

mg − cosφ cosψ
i=4∑
i=1

Ti

m
θ̇ψ̇ (Iyy − Izz) + Jr θ̇Ωr

Ixx
φ̇ψ̇ (Izz − Ixx)− Jrφ̇Ωr

Iyy

φ̇θ̇ (Ixx − Iyy) + JrΩ̇r
Izz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
i=4∑
i=1

Hxi − Cx
1
2Acρẋ |ẋ|

m

−
i=4∑
i=1

Hyi − Cy
1
2Acρẏ |ẏ|

m−Cz 1
2Acρż |ż|
m[

l1 (T4 − T2) +
i=4∑
i=1

(−1)i+1Rmxi − l2

i=4∑
i=1

Hyi

]

Ixx

l1 (T1 − T3) +

i=4∑
i=1

(−1)i+1Rmyi + l2

i=4∑
i=1

Hxi

Iyy

l1 [(Hx2 −Hx4) + (Hy3 −Hy1)] +
i=4∑
i=1

(−1)iQi

Izz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where:

Ti = CT ρA(ΩiR)
2 is the thrust of the i-st propeller, with

R is the radius of the propeller and Ωi is the angular velocity
of the i− st propeller.

m is the mass of the vehicle, Ixx, Iyy and Izz are elements
of the inertial momentum matrix, Jr is the inertial momentum
of the propellers,
Jrω(φ,θ,ψ)Ωr is the gyroscopic effect of the propeller with

respect to the main axes (x, y and z),
Hxi, Hyi are Hub forces of the i− st propeller,
Rmxi, Rmyi are the roller moments of the i− st propeller,
Cx, Cy and Cz are the drag coeficients,
Ac is the area that the propeller covers,
ρ is the air density,
l1 and l2 are the distances between the propeller and the

center of the vehicle in the horizontal and vertical plane
respectively,
Qi is the drag momentum produced in the i− st.
For detail description of the model, see [19], [20].

From 1, the equilibrium point X0 is obtained by equating
to zero.

X0 =
[
0 0 0 0 0 0 0 0 0 0 0 ψ

]T
(2)

Any point of equilibrium would mean ”hover”. The thrust
sum must be equal to the weight of the vehicle, so U0 is a
constant. The linear system around the equilibrium point is
obtained by using the symbolic toolbox of Matlab:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v̇x
ẋ
v̇y
ẏ
v̇z
ż
ω̇φ
φ̇
ω̇θ
θ̇
ω̇ψ
ψ̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
mCtaU0(1)·θ

vx
− 1
mCtaU0(1)·φ

vy
− 1
mCtaU(1)

vz
1
Ixx

Ctl1aU(3)

ωφ
1
Iyy
Ctl1aU(4)

ωθ
1
Izz
CqaRU(2) + JrU̇(5)

ωψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where:

Ct is the lift coefficient and Cq is the drag coefficient of
the propeller,
a = ρAcR

2

U(1) = (Ω1
2 +Ω2

2 +Ω3
2 +Ω4

2)
U(2) = (Ω1

2 +Ω3
2 − (Ω2

2 +Ω4
2))

U(3) = (Ω4
2 − Ω2

2)
U(4) = (Ω1

2 − Ω3
2)

U(5) = (Ω1 +Ω3 − (Ω2 +Ω4))
and U(i) are the inputs.

III. CONTROL FOR IDENTIFICATION

For modeling from identification is required to stabilize the
plant previously, which can be done with the help of a control
in feedback.

Any controller is not the correct to enable identification.
It is necessary to obtain a controller that does not erase the
dynamics of the plant and if this is simple, the mathematical
model of the plant is easy to solve.
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Fig. 3. LQR control for stabilizing the system

A. LQR (Linear Quadratic Regulator)

LQR control ( [1]–[3]) is a method to find the optimal
solution for a problem of minimization that assures the system
stability in close-loop, in addition its calculation is easy. The
most general problem that this method can solve is given by
the equation of the dynamic system:

ẋ(t) = A(t)x(t) +B(t)u(t); x(t0) = x0 (4)

with x(t) ∈ Rn and u(t) ∈ Rm,

z(t) = C(t)x(t) (5)

where A(t) is a continuous-time function, B(t) and C(t)
are continuous-time and bounded functions. and z(t) ∈
Rp. Equation (6) represents the quadratic cost function to
minimize:

J =
1

2

∫ tf

t0

[
zT (t)Rzzz(t) + uT (t)Ruuu(t)

]
dt

+
1

2
xT (tf )F (tf )x(tf )

where Rzz > 0, and Ruu > 0, are continuous-time and
bounded functions defined by the user and Ftf ≥0 refers to a
boundary condition.

Thus, the general problem in LQR method is to find an
input u(t) in time domain between the initial and final given
times. The optimal input is defined by (6):

uop(t) = −R−1
uuB

TP (t)x(t) = −K(t)x(t) (6)

where P (t) (in (7)) is the solution to the Ricatti differential
equation:

−Ṗ (t) =A(t)TP (t) + P (t)A(t) + C(t)TRzzC(t)

− P (t)B(t)R−1
uuB(t)TP (t)

(7)

For linear time-invariant systems, (7) reaches a value in
stable state that is reduced to the (8):

ATP + PA+Rxx − PBR−1
uuB

TP = 0 (8)

called the Control Algebraic Ricatti Equation (CARE) and it
finds the optimum value of P . The optimal input is defined
by (9):

u(t) = −Kssx(t) (9)

The value Kss is easily found by the control system toolbox
of Matlab using the syntax: Kss = lqr(A,B,CTRzzC,Ruu)
( [4]). The diagram that describes the stabilizing control is
shown in Fig. 3. Here A, B and C are the matrices associated
to the linearized system and Rzz and Ruu are the weight
matrices respectively to increase or to diminish the effect of the
states and the entrances and those are selected by the designer
in agreement with the required performance.

B. LQR with Integral Effect

Using the concept of the above control we can stabilize
the aerial vehicle in hover but we can not follow arbitrary
reference angles φ, θ and ψ. Thus, it is neccesary to add an
integral effect. For this aim we can include new states:

xI(t) =

∫
e(t)dt =

∫
(r(t)− y(t))dt =

∫
(r(t)− Cx(t))dt

where e(t) is the error signal between the ouput signal y(t)
and the reference signal r(t) given by the user. The new system
in state variables is defined by (11):[

ẋ(t)
ẋI(t)

]
=

[
A 0
−C 0

] [
x(t)
xI(t)

]
+ (10)[

B
0

]
u(t) +

[
0
I

]
r(t) (11)

With x(t) = [x(t) xI(t)]
T , the new cost function is defined

by (12):

J =

∫ ∞

0

[
xT (t)Rzzx(t) + uT (t)Ruuu(t)

]
dt (12)

therefore:

u(t) = − [
k kI

] [ x(t)
xI(t)

]
= −Kx(t) (13)

Once the control has been designed, it must take the shape
in the close-loop architecture shown in the diagram by Fig. 4.

Fig. 4. LQR control following the reference

IV. RESULTS

A. Design of LQR Control

In this section, the values of the parameters are found for
a real Quadrotor. A graphic model and the real model are
placed in the linear model of the form Ẋ(t) = ALNX(t) +
BLNU(t) , with Y (t) = CLNX(t)+DLNU(t) , whose values
for ALN , BLN , CLN and DLN are:

ALN =

⎡
⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤
⎥⎦ , BLN =

⎡
⎢⎣

0 127.4725 0 0
0 0 127.4725 0
0 0 0 278.0868

−7.5188 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦ ,

CLN =

[ 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]
and DLN =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦

With the previous matrices, the weight matrix Q (values of
weight for the most important states) and the matrix R (values
of weight for the amplitud signal control), the LQR problem
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finds the solution with the lqr command in control toolbox of
Matlab, thus:

Q =

⎡
⎢⎣

10 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0
0 0 10 0 0 0 0 0
0 0 0 10 0 0 0 0
0 0 0 0 10 0 0 0
0 0 0 0 0 10 0 0
0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 10

⎤
⎥⎦ and R =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

And the constant matrix of control k is calculated. Its value
is:

k =

[ 0.00 −0.00 0.00 −10.22 0.00 −0.00 0.00 −17.45
10.01 0.00 0.00 −0.00 17.32 −0.00 0.00 −0.00
0.00 10.01 0.00 0.00 0.00 17.3283 0.00 −0.00
0.00 0.00 10.00 −0.00 0.00 −0.00 17.32 −0.00

]

and ki =

[
0.0000 0.0000 0.0000 −10.0000
10.0000 −0.0000 −0.0000 −0.0000
0.0000 10.0000 0.0000 0.0000
0.0000 −0.0000 10.0000 −0.0000

]
(14)

The control of the linear system is optimum for these
matrices weights Q and R, so the performance objective for
the system is modified by changing these weights to check
the signal control is between the limits of the actuator. In the
linear system, the dynamic of the four motors (actuators) and
the friction forces are despised, while in the non-linear system
this dynamics were not despised. Therefore it is in order to
compare both systems and to verify that the designed control
works appropriately.

The complete architecture of the system including the
control is shown in the diagram blocks of Fig. 5 which includes
the linear and non-linear systems.

Fig. 5. Block Diagram of the LQR control with integral effect

B. Identification

One of the important parts in the identification process is
to have an idea of the bandwidth of the system in open loop
from an approximated mathematical model. This bandwidth
indicates us the frequencies at which the system should be
excited and, if we do not have them, the identification process
becomes a process of trial and error, situation in which the
resulting models could be simply not predict the dynamics
of the system or predict it partially in certain ranges of
frequencies.

Neither LQR control nor LQR with integral effect control
allow us to isolate the mathematical model of the plant from
the model of the system in feedback. Thus, a observer-based
controller was neccesary.

Fig. 6. Block diagram of observer based controller

1. Observer-Based Control
LQR control with integral effect does not allow to find the

model of the plant from the identification of the system in
feedback, thus a LQR controller with integral effect based
on observer must be designed, which can be seen as a
controller of two parameters, whose system in feedback allows
the algebraic uncovering of the plant of the system as it is
mentioned next.

Based on the LQR control with integral effect designed in
the previous section, an observer with the objective of reading
the states of the system is created.

Fig. 6 can be expressed mathematically as follows:

Ẋi = IR− IY
˙̂
X = AX̂ +BU + L(Y − CX̂) ; U = −KX̂ +KiXi

where I is the identity matrix and L is the gains
vector of the observer for locating its poles. These poles
normally are located at least 6 times further towards
the left of the dominant poles in feedback. For the
design of this case in particular they were located
in −100,−101,−102,−103,−104,−105,−106,−107 of so
form that the dynamics of the observer is despicable and the
system in feedback approaches to order 12 (8 states and 4
integrators of error).

Replacing:
˙̂
X = AX̂ +B(−KX̂ +KiXi) + L(Y − CX̂)
˙̂
X = (A−BK − LC)X̂ +BKiXi + LY

In matricial form:[
Ẋ

Ẋi

]
=

[
A−BK − LC BKi

0 0

]
+

[
0 L
I −I

] [
R
Y

]

U =
[ −K Ki

] [ X̂
Xi

]
+
[
0 0

] [ R
Y

]
The controller can be seen as a controller of two parameters

(Fig. 7)

⎡
⎣ U1

U2

U3

U4

⎤
⎦ =

⎡
⎣ GC11

· · · GC14
GC15

· · · GC18

...
...

...
...

...
...

GC41
· · · GC44

GC45
· · · GC48

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

R1

...
R4

Y1
...
Y4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Fig. 7. Block diagram of controller based on observer seen as controller of
two parameters.

R =

⎡
⎣ R1

R2

R3

R4

⎤
⎦ =

⎡
⎣ φr

θr
ψr

Zr

⎤
⎦ Y =

⎡
⎣ Y1

Y2
Y3
Y4

⎤
⎦ =

⎡
⎣ φ

θ
ψ
Z

⎤
⎦ U =

⎡
⎣ U1

U2

U3

U4

⎤
⎦

the system expressed as a controller of two parameters in
general form is:

U = C1R+ C2Y (15)
con: (16)

Y = GU

Thus:

Y = G(C1R+ C2Y )

Y = GC1R+GC2Y

Thus:

Y −GC2Y = GC1R

[I −GC2]Y = GC1R

Y = [I −GC2]
−1
GC1R

Thus, the transfer function in feedback is:

T = [I −GC2]
−1
GC1 (17)

From which the transition function of the plant G is found,
thus:

[I −GC2]T = GC1

IT −GC2T = GC1

IT = G [C1 + C2T ]

G = T [C1 + C2T ]
−1 (18)

The model of the system remains simple and now its plant is
easily cleared.

For the case of the LQR system with integral effect and
observer, it starts from the 8 states already mentioned: 6 for
the attitude and 2 for the altitude as is shown in Fig. 8.

Continuing with the design of the controller, Fig. 9 shows
the responses of the system to inputs of step type. We see that
the system follows the references at a finite time.

Fig. 8. Block diagram for two parameters control.

Fig. 9. System responses to reference steps in 0.2618, 0.1745 and 0.087
radians (15, 10 and 5 degrees) in roll, pitch, yaw and 1 meter of altitude
respectively.

Taking into account the outputs of the controller are the
voltages applied in the motors of propellers (in Volts), we
obtained the angular velocities of propellers in rad/s (shown
in Fig. 10), and consequently, the thrusts in N and moments
in Nm shown in Fig. 11. The control signals do not exceed
the conditions of saturation of the actuators as is observed in
Fig. 10 and Fig. 11.

Starting from the nonlinear model of the plant, we linearized
it around of an equilibrium point and then, the crossover
frequency of gain of the system in open loop is taken from
its diagram of Bode. We designed a controller such that the
crossover frequency of gain of the system in feedback is
smaller or just equal than the crossover frequency of gain
in openloop for keeping the dynamics of the plant since
the primary target of the control is to make insensitive the
dynamics input-output of the system in feedback to parametric
variations of the plant.

The previous statements can be observed in the theorem of
Black, written for systems MIMO with L, F , S (sensitivity
function) and T (function of complementary sensitivity).

L = GK

F = I +GK

S = (I +GK)−1

T = PK(I +GK)−1

that it affirms: The influence of the disturbances is
attenuated in a system in feedback if:

|L| � 1, |F | � 1
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(a) Angular Velocity of the propellers.

(b) Voltage in the power circuit.

Fig. 10. Control signal in the actuators.

and
S ≈ 0

In other words, the changes of the system G in openloop
will be less perceivable than the changes of the system in
feedback T .

As the plant in feedback is non observable since it has a
realization in another space, the result of the identification in
black box produces a matrix such that the outputs are a linear
combination of state variables without an associated physical
sense to the plant.

2. Identification Using Controller Based on Observer

As the real system is nonlinear, we expect that there is
no an unique linear model that describes it. Thus, we do the
identification of the plant and obtain the performance of the
process in Fig. 12.

In Fig. 12 we observe four set data, datav, m0, m1, m2.
The first one is the simulated data, and the next ones are
models obtained by PEM, ARX and NLARX respectively.
We analize that any of the three methods of identification
predicts accurately the behavior of the control-plant system
in feedback. The dynamics of the plant can be found by using
18.

(a) Thrust generated for the propellers.

(b) Moments in the system.

Fig. 11. Control signal for the actuators.

From the models m0 and m1 (obtained by means of
PEM and ARX respectively) the equations of the system are
obtained in form of equations of variables of state of 50
states, that are indispensable to reduce them without loosing
considerable information in the frequencial rank, where the
dynamics of system is predominant. The models were reduced
by using singular values of Hankel with the command reduce
of MATLAB, later the validity of these models is corroborated
comparing them with the nonlinear system in the dominion of
the time.

The differences between the models are observed in the Fig.
13 by zooming, otherwise they would not notice. The Fig.
13 shows the responses of the system: nonlinear, simulated
linear system Gss, identificated system by PEM G0, reduced
identificated system by PEM G0red, identificated system by
ARX G1 and reduced identificated system by ARX G1. Any
of these two models of plant would correctly describe the
dynamics of the airship, at least in the dominion of the time.

On top of that, the frequency response of the linearized
system is observed in the Fig. 14, both models obtained
by means of identification using algorithms PEM and ARX
of high order and models PEM and ARX of reduced
orders is compared. It is possible to determine that they are
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(a) Roll (b) Pitch (c) Yaw (d) Altitude

Fig. 12. Fitness of the identified models by using a PRBS (Pseudo Random Binary Signal).

(a) Roll (b) Pitch

(c) Yaw (d) Altitude

Fig. 13. Comparison among the responses of the nonlinear system, system
with identified plant and system with identified plant reduced.

approximated in the rank of 100 to 102 rad/s where the
predominant dynamics of the system is had.

Analyzing and verifying the validity of these models, we
can be certain that they are useful in the description of the
plant: either to control and dynamic system analysis or for a
further investigation of a improved and/or extended design of
a Quadrotor.

Despite the range in which the linearized model is sufficient
to perform control on the vehicle, other angular positions can
be taken to identify others models in order to the Quadrotor
can travel at higher speeds in the horizontal plane and with
better maneuverability.

Maintaining the signal of excitation in the height reference
and changing the signals of excitation in the references of Roll,
Pitch and Yaw in the same amounts. Linearized models were
obtained whose satisfactory results are in [18].

To illustrate, the model obtained by PEM in equations

(a) Roll (b) Pitch

(c) Yaw (d) Altitude

Fig. 14. Comparison between the frequency responses of the linearized
model, model with identified plant and model with identified plant reduced.

matrix of state variables A, B, and D is:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.2637 1.0586 −0.3342 −0.1575 0.6655 0.0348
−0.4457 0.2637 −0.2009 0.0546 0.1302 0.1937

0 0 0.0361 0.2128 0.1827 0.0861
0 0 −0.7769 0.0361 −0.0772 0.0236
0 0 0 0 0.1244 −0.1970
0 0 0 0 0.8348 0.1244
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−0.2680 0.1413 −0.3825 −0.3454 0.0653 −0.2367
−0.1699 −0.0747 0.5154 −0.0232 0.4290 −0.0911
−0.3836 −0.1581 1.007 −0.8310 −0.1996 0.0127
0.1997 −0.7080 −0.3976 −0.4468 −0.4220 −0.1062
0.0590 −0.3013 −0.2680 −0.5757 −0.7762 −0.0149

−0.5981 −0.2426 0.6952 −0.1227 0.0669 −0.4762
0.1032 −0.3212 −0.6088 0.1833 −0.2289 0.0358
0.2524 0.1032 −0.6433 0.07414 −0.4093 0.3831

0 0 0 −0.0795 0.1357 0.1084
0 0 0 0.0051 0.0557 −0.0340
0 0 0 0 0.0441 0.0186
0 0 0 0 0 0.2831

⎤
⎥⎥⎥⎥⎥⎥⎦
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B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0437 0.2541 1.2324 −14.0937
−0.0372 −3.4209 0.5442 −17.9142
0.0023 0.3407 −0.0617 7.9305

−0.0842 −0.8811 −0.8173 2.4644
−0.0355 3.4869 0.0815 −1.4586
0.0430 −1.1115 −0.8651 1.0147

−0.0299 −0.7688 −0.6186 −13.28
−0.0279 −2.2966 −0.5460 −4.7082
−0.2091 −0.2156 −0.2683 −4.6788
−0.0212 −2.4429 5.4089 −1.2185
−0.0189 −2.4560 2.9797 −1.1907
0.0367 −5.9319 −5.3715 −1.1438

⎤
⎥⎥⎥⎥⎥⎥⎦

C =

[
0.5452 −0.1174 −1.3459 1.1945 2.1627 2.65373

−0.2423 −0.2435 −2.4417 0.8565 −1.4513 1.1402
−2.7313 0.6462 −0.4365 −0.0985 0.538351 0.2496
0.1619 1.4412 3.7846 0.6537 −2.5137 −0.9570

−0.9076 −0.1814 −0.1845 1.1370 −0.3952 0.607
0.3083 −2.3451 0.4517 −0.5037 0.4335 −0.3355
0.4213 −0.1691 −0.2003 0.3096 0.1068 −0.1659

−0.9621 −3.5122 −0.8971 −1.1906 0.8778 0.0702

]

D =

[
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
(19)

V. CONCLUSIONS

For identification process, controllers are not designed in
order to fulfill performance characteristics ot improve response
speeds. The controls in feedback are designed of such a form
that is possible to extract the dynamics of the plant. This means
that the dynamic response of the control does not have to hide
the dynamics of the plant, whereas the objective of an ideal
control is to erase the dynamics of the plant.

If a model of the plant is had and the operation limits of
the actuators are known, control strategies can be designed
that allow to obtain an optimal performance of the system.

The identification process is very specific for the Quadrotor,
this is a nonlinear and unstable plant, that is why its
identification in openloop is impossible. It is necessary, first
of all, to stabilize the plant with some type of control in
feedback that does not hide the dynamics of the plant and
in addition that it can make observable the system in order
to be able to obtain the model of the plant. Having some
idea of the bandwidth of the system is very important to
excite and identify the system by using test signals, since
by using methods of test and error, it can be imprecise and
belated, which could cause that the resulting models simply
are not able to predict the dynamics of the system or partially
predict it in certain ranges of frequencies. This is obtained
by studying a mathematical model with physical sense of the
plant that perhaps does not contain the totality of variables and
parameters that perfectly describe the plant, but that contains
the important phenomena of its dynamics.
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