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Abstract—Nowadays, food safety is a great public concern;
therefore, robust and effective techniques are required for detecting
the safety situation of goods. Hyperspectral Imaging (HSI) is an
attractive material for researchers to inspect food quality and safety
estimation such as meat quality assessment, automated poultry
carcass inspection, quality evaluation of fish, bruise detection of
apples, quality analysis and grading of citrus fruits, bruise detection
of strawberry, visualization of sugar distribution of melons,
measuring ripening of tomatoes, defect detection of pickling
cucumber, and classification of wheat kernels. HSI can be used to
concurrently collect large amounts of spatial and spectral data on the
objects being observed. This technique yields with exceptional
detection skills, which otherwise cannot be achieved with either
imaging or spectroscopy alone. This paper presents a nonlinear
technique based on kernel Fukunaga-Koontz transform (KFKT) for
detection of fat content in ground meat using HSI. The KFKT which
is the nonlinear version of FKT is one of the most effective
techniques for solving problems involving two-pattern nature. The
conventional FKT method has been improved with kernel machines
for increasing the nonlinear discrimination ability and capturing
higher order of statistics of data. The proposed approach in this paper
aims to segment the fat content of the ground meat by regarding the
fat as target class which is tried to be separated from the remaining
classes (as clutter). We have applied the KFKT on visible and near-
infrared (VNIR) hyperspectral images of ground meat to determine
fat percentage. The experimental studies indicate that the proposed
technique produces high detection performance for fat ratio in ground
meat.

Keywords—Food (Ground meat) inspection, Fukunaga-Koontz
transform, hyperspectral imaging, kernel methods.

I. INTRODUCTION

YPERSPECTRAL IMAGING (HSI) is an emerging

technology that provides spatial and rich spectral
information [1]. A hyperspectral image pixel can be
represented by a vector that each component of the vector
corresponds to a specific wavelength. For instance, the
HYDICE (HYperspectral Digital Imagery Collection
Experiment) hyperspectral sensor [2] has 210 spectral
channels over the range 0.4-2.5 um. This high-dimensional
spectral information allows for the identification of materials
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based on their light absorption and reflection characteristics.
The major hyperspectral applications include pixelwise
classification which can be exploited for object recognition
[3], target detection [4], land-cover/land use classification [5],
biomedical applications [6], food inspection [7] etc.

Food-related problems are one of the high priority concerns
of people’s daily lives. That’s why robust techniques for
improving food safety and quality play a significant role. The
scope of food safety comprises physical (e.g., texture, color),
chemical (e.g., fat content, protein content, pH), and biological
(e.g., bacterial counts) contamination. Estimation of quality
and safety commonly contains classical visual inspection, in
addition to chemical or biological determination analyses
which are tiring, slow, and destructive [8]. As an alternative
approach, HSI can produce both spatial and spectral
information from the materials. More advantages are provided
by these kinds of systems. As an illustration, such a system
can simplify collecting spectral information in operator-
defined regions, where corresponding relation between
experimental spectra and reference values is guaranteed. HSI
can also be utilized to create chemical maps to demonstrate
distributions of features of interest. The benefits in
spectroscopy and computer vision have yielded various
applications in the food industry [7].

Fukunaga-Koontz transform (FKT) is one of the most
efficient techniques for solving two-class problems. It is a
favorite scheme method for quadratic correlation filters
(QCF). The essence of QCF-based classification is to
construct a coefficient matrix to make the two patterns
discriminated in a margin as large as achievable.

The classical FKT has been developed with kernel
machines for improving the capability of nonlinear
discrimination. The nonlinear version of FKT, called as kernel
FKT (KFKT), has been employed for target detection on
infrared images [9], classification on hyperspectral images
[10], and face recognition [11]. In this work, we suggested
KFKT-based framework to determination of fat content in
ground meat on hyperspectral images. The proposed
framework focuses to separate the fat content of the ground
meat visually by regarding the fat as target class. The KFKT-
based technique tested on a VNIR hyperspectral image.

The rest of the paper is organized as follows. In Section II,
brief information about hyperspectral data and employed
classification method is provided. The experimental results
present a performance analysis for suggested technique in
Section III. Finally, concluding remarks are included in last
section.
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Fig. 1 Schematic diagram of a hyperspectral imaging system
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Fig. 2 Ground meat images: (a) RGB, (b) Wavelength is 460 nm, (c)
Wavelength is 550 nm, and (d) Wavelength is 640 nm

II. MATERIAL AND METHODS

A. Image Acquisition and Correction

A typical laboratory hyperspectral imaging system consists
of hardware and software. Its hardware platform contains
common basic components, e.g., light source, spectrograph,
objective lens, conveyer, and computer (see Fig. 1) [12]. The
hyperspectral data set was gathered by the SPECIM sensor. It
originally has 931 x 916 pixels and 196 spectral channels in
the wavelength range of VNIR. After removing noisy bands,
187 bands were used in experiments. We worked a part of

image which has 681 x 581 pixels. Fig. 2 shows RGB image
and arbitrary three spectral channels of HSI data.

To obtain the reflectance spectrum, the spectral raw cube
was corrected using two references, i.e., “white” and “black”.
The “white” is used to create the maximum reflectance
conditions, which was acquired for a white ceramic tile under
the same condition of the raw image; and a “black” one to
characterize the no reflectance case, which was got by turning
off the light source and entirely covering the lens with its dark
beret. The corrected image was then computed by

I,—B

I =
W —-B

(M

where Iy, W, and B represent the spectral raw image, white
reference, and dark condition, respectively [13].

B. Classification Based on Nonlinear FKT

The FKT [14] is originally a feature selection and ordering
approach. One feature extracted by FKT carries the
meaningful information about one class; it has the least
information about the other. Using this property, the
coefficient matrix for QCF with FKT has been constructed in
[15]. The main drawback of the FKT is that it considers
second-order correlations, so it cannot capture the higher order
statistical properties of data. That’s why some researchers [9],
[11], have extended the FKT to its nonlinear version via kernel
machines. By operating a ¢ mapping scheme [16], the input
data x € R? is mapped into high-dimensional feature space
called Hilbert, {¢(x)} €F.

RY > F

LSRR

2
Instead of knowing ¢ implicitly, the dot products in F, i.e.,

(p(x;),¢(x;)), can be evaluated using a positive definite
function expressed by

K(x;, %)) = ((xy), p(x;)) ©)]

More details about kernel-based learning may be found in
[17]. Experimentally, we utilized popular Gaussian Radial
Basis Function (RBF) which has one free parameter. Some of
the popular kernel functions are listed in Table 1.

TABLE 1
COMMON USED KERNEL FUNCTIONS
Kernels Formula
RBF K(x,y) = exp(—|lx — ylI2/262)
Laplacian  K(x,y) = exp(—|lx — yll/o)
Linear K(x,y) = xTy
Polynomial K(x,y) = (xTy + 1)¢
Sigmoid  K(x,y) = tanh(vxTy + 1)

Considering training input vectors of two classes C; =
[ai, a,,...,ay] and C, =[by, by, ...,by] which have been
centered. Assume that Cf and C‘Zp the mapped versions of
input vectors belonging to class C; and C,, respectively. Then,
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corresponding covariance matrices defined as:

T
z, =cfc?
1 )
z, = cfc!
where the superscript T represents the transpose operation.
These matrices are called as kernel matrices and their elements
can be computed via any kernel function represented in (3),
ie., 2(i,j) = K(x;, x;). This phenomenon is dubbed as “kernel
trick”. ¥, is constructed as:

K(ay,a) K(ay, ay)
3, = K(azzn a) K(az; aM)] (5)
K(ay, a;) K(ay, aM)J

The eigenvalue/eigenvector decomposition of the sum of
training kernel matrices is obtained by

=%, +2, =VAVT 6)

The transform operator P = VA™Y/2 is then designed and

we can write following expression using (6)

PTEP = I. 7

c? and ¢? are transformed by operator P. Thus, €; (€, =
PTc?) and €, (C, = PTC?) are obtained. The transformed C;
and €, constitute the following new covariance matrices:

™)

®)

A AT T

1 =066 = PTCfo P=PTz,P
A~ aT T

»=GC,C, =PTc?c? P=PTL,pP

)

From (7) and (8), the key point of the KFKT can be easily
derived that

=3 +%, =PI, +3,)P=1 9)

If v is the eigenvector of £; corresponding to eigenvalue A,
then (1 — A) must be the eigenvalue of £, corresponding to the
same eigenvector. In other words, the most dominant
eigenvectors in class one will be the incapable eigenvectors in
class two [14]. Following formulas represent these deductions:

flvAz 1-Z)v=rw (10)
Yv=~_101- v

To determine the class of test vector z, the QCF approach is
employed [14], [18]. If we can construct the optimal
coefficient matrix, the output of its belonging to the test vector
will be positive or larger for z € C;, and negative or smaller
for z €C,. Matrix elements of V, v;(i=1,-,M) are
eigenvectors corresponding to the eigenvalues of £, arranged
in descending order as A, = A, >...> Ay =0. The first m,
eigenvectors (V;) represent the class one while the rest of the

eigenvectors (V,) represent the class two:

Vv, = [771»'72:---er1]

11
vV, = [VM'VM—lf'-'va—m2+l] an
Output of the classification system can be found as:
Yout = R’{Rl_R;RZ (12)

where, R; is V;T2%, R, is V,72% and 2¢ is transformed
version of z® with operator P. For computation without using
mapping function, firstly X, is centralized [19] by,

=2 —IyE — 50 + 1,20,y (13)

where, I is the matrix which has the same elements of 1/M.
The eigenvectors of Z; (64,0,,...,0,,)) corresponding to the
m, largest eigenvalues A, = A, =...2 A, are obtained. Then,

for the training vectors of class one, the it feature vector f; of
the testing vector z:

1
fi :_eiT[K(alrz)rK(ale)l'"IK(aM'Z)]' (14)

T

The feature vector f =[fy,f2, ..., fm,] is transformed into
7 = PTf. Finally, f projected onto the subspaces

Ry = V1Tf

- 15
R; = Vsz {13)
Now, we can rewrite the (12)
Yout = R}‘Rl_RgRZ (16)

Equation (16) can be utilized as a decision rule in KFKT-
based QCF design.

III. EXPERIMENTAL RESULTS

In this section, we will show the classification performance
of our proposed framework on real HSI. In this experiment,
the training spectral vectors, extracted previously on an
independent data set, were used as an input of KFKT-based
classifier. The sample spectral signatures of meat and fat are
given in Fig. 3. Designed classifier tries to segment the fat
content of the ground meat by regarding the fat as target class.
For representation of class two in KFKT, we utilized training
samples of pure meat content.

To construct KFKT from classical FKT, we exploited the
RBF kernel which has single free parameter 6. The parameter
o in the RBF kernel should be determined appropriately to
achieve a sufficient classification performance. In [20], a
Differential Evolution algorithm based kernel parameter
selection technique for KFKT has been proposed. In this
study, the kernel parameter is determined experimentally.
Then, we have employed KFKT to detect percentage of the
fat. After obtaining similarity map of fat content via KFKT, a
user-defined threshold value is applied to map. Finally, the
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whole area of ROI is divided by thresholded pixelwise fat
region, so the ratio of fat content is predicted. Table II reports
the true percentage of fat content and the fat percentage
estimated by KFKT-based technique.

TABLEII
REAL AND ESTIMATED PERCENTAGES OF FAT CONTENT

Data Set VNIR — 187 bands
Real Percentage 64.29
Our prediction 63.53

From Table II, we can find that the estimation percentage of
the employed technique is considerably close to the real value.
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Fig. 3 Sample spectral signatures

IV. CONCLUSION

HSI fuses two attractive technologies, i.e., spectroscopy and
computer vision. This phenomenon allows researchers to give
both spectral and textural features of food products
simultaneously. Such copiousness in information brings a
broad platform for employing numerous pattern recognition
techniques and multivariate data analyses to expose quality
and safety characteristic features in the food materials.

In this paper, we have considered the estimation of fat
content of ground meat on hyperspectral images. For this
purpose, we have employed KFKT-based -classification
algorithm. The experimental results show that the proposed
supervised framework is effective and suitable for computer
vision-based inspection of food products. The main drawback
of this technique is to need much computation time just as
other kernel-based.

Even though we use KFKT to estimate of fat content of
ground meat in this work, apparently it can be employed to
solving any problems involving two-patterns in food
inspection.
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