
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:10, No:1, 2016

167

 

 

1 
Abstract—Nowadays, food safety is a great public concern; 

therefore, robust and effective techniques are required for detecting 
the safety situation of goods. Hyperspectral Imaging (HSI) is an 
attractive material for researchers to inspect food quality and safety 
estimation such as meat quality assessment, automated poultry 
carcass inspection, quality evaluation of fish, bruise detection of 
apples, quality analysis and grading of citrus fruits, bruise detection 
of strawberry, visualization of sugar distribution of melons, 
measuring ripening of tomatoes, defect detection of pickling 
cucumber, and classification of wheat kernels. HSI can be used to 
concurrently collect large amounts of spatial and spectral data on the 
objects being observed. This technique yields with exceptional 
detection skills, which otherwise cannot be achieved with either 
imaging or spectroscopy alone. This paper presents a nonlinear 
technique based on kernel Fukunaga-Koontz transform (KFKT) for 
detection of fat content in ground meat using HSI. The KFKT which 
is the nonlinear version of FKT is one of the most effective 
techniques for solving problems involving two-pattern nature. The 
conventional FKT method has been improved with kernel machines 
for increasing the nonlinear discrimination ability and capturing 
higher order of statistics of data. The proposed approach in this paper 
aims to segment the fat content of the ground meat by regarding the 
fat as target class which is tried to be separated from the remaining 
classes (as clutter). We have applied the KFKT on visible and near-
infrared (VNIR) hyperspectral images of ground meat to determine 
fat percentage. The experimental studies indicate that the proposed 
technique produces high detection performance for fat ratio in ground 
meat. 
 

Keywords—Food (Ground meat) inspection, Fukunaga-Koontz 
transform, hyperspectral imaging, kernel methods.  

I. INTRODUCTION 

YPERSPECTRAL IMAGING (HSI) is an emerging 
technology that provides spatial and rich spectral 

information [1]. A hyperspectral image pixel can be 
represented by a vector that each component of the vector 
corresponds to a specific wavelength. For instance, the 
HYDICE (HYperspectral Digital Imagery Collection 
Experiment) hyperspectral sensor [2] has 210 spectral 
channels over the range 0.4-2.5 µm. This high-dimensional 
spectral information allows for the identification of materials 
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based on their light absorption and reflection characteristics. 
The major hyperspectral applications include pixelwise 
classification which can be exploited for object recognition 
[3], target detection [4], land-cover/land use classification [5], 
biomedical applications [6], food inspection [7] etc. 

Food-related problems are one of the high priority concerns 
of people’s daily lives. That’s why robust techniques for 
improving food safety and quality play a significant role. The 
scope of food safety comprises physical (e.g., texture, color), 
chemical (e.g., fat content, protein content, pH), and biological 
(e.g., bacterial counts) contamination. Estimation of quality 
and safety commonly contains classical visual inspection, in 
addition to chemical or biological determination analyses 
which are tiring, slow, and destructive [8]. As an alternative 
approach, HSI can produce both spatial and spectral 
information from the materials. More advantages are provided 
by these kinds of systems. As an illustration, such a system 
can simplify collecting spectral information in operator-
defined regions, where corresponding relation between 
experimental spectra and reference values is guaranteed. HSI 
can also be utilized to create chemical maps to demonstrate 
distributions of features of interest. The benefits in 
spectroscopy and computer vision have yielded various 
applications in the food industry [7].  

Fukunaga-Koontz transform (FKT) is one of the most 
efficient techniques for solving two-class problems. It is a 
favorite scheme method for quadratic correlation filters 
(QCF). The essence of QCF-based classification is to 
construct a coefficient matrix to make the two patterns 
discriminated in a margin as large as achievable. 

The classical FKT has been developed with kernel 
machines for improving the capability of nonlinear 
discrimination. The nonlinear version of FKT, called as kernel 
FKT (KFKT), has been employed for target detection on 
infrared images [9], classification on hyperspectral images 
[10], and face recognition [11]. In this work, we suggested 
KFKT-based framework to determination of fat content in 
ground meat on hyperspectral images. The proposed 
framework focuses to separate the fat content of the ground 
meat visually by regarding the fat as target class. The KFKT-
based technique tested on a VNIR hyperspectral image. 

The rest of the paper is organized as follows. In Section II, 
brief information about hyperspectral data and employed 
classification method is provided. The experimental results 
present a performance analysis for suggested technique in 
Section III. Finally, concluding remarks are included in last 
section. 

Hyperspectral Imaging and Nonlinear Fukunaga-
Koontz Transform Based Food Inspection 

Hamidullah Binol, Abdullah Bal 
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corresponding covariance matrices defined as: 
 

	 ઱ଵ ൌ ۱ଵ
థ۱ଵ

థ୘

(4) 
	 ઱ଶ ൌ ۱ଶ

థ۱ଶ
థ୘

 
where the superscript T represents the transpose operation. 
These matrices are called as kernel matrices and their elements 
can be computed via any kernel function represented in (3), 
i.e., ઱ሺ݅, ݆ሻ ൌ ,௜࢞൫ܭ  ௝൯. This phenomenon is dubbed as “kernel࢞
trick”. ઱ଵ is constructed as:  

 

઱ଵ ൌ

ۏ
ێ
ێ
ێ
ۍ
,ଵࢇሺܭ ଵሻࢇ ⋯ ,ଵࢇሺܭ ெሻࢇ

,ଶࢇሺܭ ଵሻࢇ
⋮

…
⋱

,ଶࢇሺܭ ெሻࢇ
⋮

,ெࢇሺܭ ଵሻࢇ ⋯ ,ெࢇሺܭ ےெሻࢇ
ۑ
ۑ
ۑ
ې

 (5) 

 
The eigenvalue/eigenvector decomposition of the sum of 

training kernel matrices is obtained by 
 

઱ ൌ ઱ଵ ൅ ઱ଶ ൌ ୘܄઩܄ (6) 
 

The transform operator ۾ ൌ  ઩ିଵ/ଶ is then designed and܄
we can write following expression using (6) 

 

۾୘઱۾ ൌ ۷ (7) 
 

۱ଵ
థ and ۱ଶ

థ are transformed by operator ۾. Thus, ۱෠ଵ ሺ۱෠ଵ ൌ

୘۱ଵ۾
థሻ and ۱෠ଶ ሺ۱෠ଶ ൌ ୘۱ଶ۾

థሻ are obtained. The transformed ۱෠ଵ 
and ۱෠ଶ constitute the following new covariance matrices: 

 

	 ઱෡ଵ ൌ ۱෠ଵ۱෠ଵ
୘
ൌ ୘۱ଵ۾

థ۱ଵ
థ୘۾ ൌ 	۾୘઱ଵ۾ (8) 

	 ઱෡ଶ ൌ ۱෠ଶ۱෠ଶ
୘
ൌ ୘۱ଶ۾

థ۱ଶ
థ୘۾ ൌ 	۾୘઱ଶ۾

 
From (7) and (8), the key point of the KFKT can be easily 

derived that 
 

઱෡ ൌ ઱෡ଵ ൅ ઱෡ଶ ൌ ୘ሺ઱ଵ۾ ൅ ઱ଶሻ۾ ൌ ۷ (9) 
 

If ࢜ is the eigenvector of ઱෡ଵ corresponding to eigenvalue λ, 
then ሺ1 െ λሻ must be the eigenvalue of ઱෡ଶ corresponding to the 
same eigenvector. In other words, the most dominant 
eigenvectors in class one will be the incapable eigenvectors in 
class two [14]. Following formulas represent these deductions: 

 
	 ઱෡ଵ࢜ ൌ ൫۷ െ ઱෡ଶ൯࢜ ൌ λ࢜	

(10) 
	 ઱෡ଶ࢜ ൌ ሺ۷ െ λሻ࢜	

 
To determine the class of test vector ࢠ, the QCF approach is 

employed [14], [18]. If we can construct the optimal 
coefficient matrix, the output of its belonging to the test vector 
will be positive or larger for ࢠ	 ∊ ۱ଵ, and negative or smaller 
for ࢠ	 ∊ ۱ଶ. Matrix elements of ࢜ ,܄௜	ሺ݅ ൌ 1,⋯  ሻ, areܯ,
eigenvectors corresponding to the eigenvalues of ઱෡ଵ arranged 
in descending order as ߣଵ ൒ ଶߣ ൒	. . . ൒ 	 ெߣ ൒ 0. The first ݉ଵ 
eigenvectors ሺ܄ଵሻ represent the class one while the rest of the 

eigenvectors ሺ܄ଶሻ represent the class two: 
 

ଵ܄ ൌ ሾ࢜ଵ, ,ଶ࢜ . . . , ௠భ࢜
ሿ	

(11) 
	 ଶ܄						 ൌ ,ெ࢜ൣ ,ெିଵ࢜ . . . , 	ெି௠మାଵ൧࢜

 
Output of the classification system can be found as: 
 

y୭୳୲ ൌ ଵ܀
୘܀ଵെ܀ଶ

୘܀ଶ (12) 
 

where, ܀ଵ is ܄ଵ
୘ࢠොథ, ܀ଶ is ܄ଶ

୘ࢠොథ and ࢠොథ is transformed 
version of ࢠథ with operator ۾. For computation without using 
mapping function, firstly ઱ଵ is centralized [19] by, 
 

઱෩ଵ ൌ ઱ଵ െ ۷ெ઱ଵ െ ઱ଵ۷ெ ൅ ۷ெ઱ଵ۷ெ (13) 
 
where, ۷୑ is the matrix which has the same elements of 1/M. 
The eigenvectors of ઱෩ଵ (ࣂଵ, ,ଶࣂ … , ௠భࣂ

) corresponding to the 
݉ଵ largest eigenvalues λଵ ൒ λଶ ൒	. . . ൒ 	 λ௠భ  are obtained. Then, 

for the training vectors of class one, the ݅୲୦ feature vector f୧ of 
the testing vector ࢠ: 
 

௜݂ ൌ
1

ඥλ௜
௜ࣂ

୘ሾܭሺࢇଵ, ,ሻࢠ ,ଶࢇሺܭ ,ሻࢠ . . . , ,ெࢇሺܭ ሻሿ.ࢠ (14) 

 
The feature vector ࢌ ൌ ሾ ଵ݂, ଶ݂, … , ௠݂భ

ሿ is transformed into 
෠ࢌ ൌ  ෠ projected onto the subspacesࢌ ,Finally .ࢌ்۾

 
ଵ܀ ൌ ଵ܄

୘ࢌ෠	 	
(15) 

ଶ܀ ൌ ଶ܄
୘ࢌ෠	

 
Now, we can rewrite the (12) 
 

y୭୳୲ ൌ ଵ܀
୘܀ଵെ܀ଶ

୘܀ଶ (16) 
 

Equation (16) can be utilized as a decision rule in KFKT-
based QCF design. 

III. EXPERIMENTAL RESULTS 

In this section, we will show the classification performance 
of our proposed framework on real HSI. In this experiment, 
the training spectral vectors, extracted previously on an 
independent data set, were used as an input of KFKT-based 
classifier. The sample spectral signatures of meat and fat are 
given in Fig. 3. Designed classifier tries to segment the fat 
content of the ground meat by regarding the fat as target class. 
For representation of class two in KFKT, we utilized training 
samples of pure meat content.  

To construct KFKT from classical FKT, we exploited the 
RBF kernel which has single free parameter σ. The parameter 
σ in the RBF kernel should be determined appropriately to 
achieve a sufficient classification performance. In [20], a 
Differential Evolution algorithm based kernel parameter 
selection technique for KFKT has been proposed. In this 
study, the kernel parameter is determined experimentally. 
Then, we have employed KFKT to detect percentage of the 
fat. After obtaining similarity map of fat content via KFKT, a 
user-defined threshold value is applied to map. Finally, the 
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